The Marshall-Olkin-Odd Power Generalized Weibull-G Family of Distributions with Applications of COVID-19 Data
DOI:
https://doi.org/10.37119/jpss2022.v20i1.509Abstract
Attempts have been made to define new families of distributions that provide more flexibility for modeling data that is skewed in nature. In this work, we propose a new family of distributions called Marshall-Olkin-odd power generalized Weibull (MO-OPGW-G) distribution based on the generator pioneered by Marshall and Olkin [20]. This new family of distributions allows for a flexible fit to real data from several fields, such as engineering, hydrology, and survival analysis. The mathematical and statistical properties of these distributions are studied and its model parameters are obtained through the maximum likelihood method. We finally demonstrate the effectiveness of these models via simulation experiments and applications to COVID-19 daily death data sets.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Fastel Chipepa, Thatayaone Moakofi, Broderick Oluyede
This work is licensed under a Creative Commons Attribution 4.0 International License.