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ABSTRACT 
Several transcendental approximations to the Normal Distribution are contrasted relative to mean absolute as 
well as maximum absolute error. Low degree Lagrange and Chebyshev polynomial interpolants are similarly 
studied to reduce mathematical complexity. Ultimately, a piecewise polynomial approximation, easily 
understood and handy for students, is explored as an alternative. This approximation is amenable to simple 
programming on a graphing calculator. Classroom examples are proposed and discussed.  

1. Introduction  

One of the premier examples that students studying introductory mathematical probability 
and statistics encounter, for which the Fundamental Theorem of Calculus, (FTC) is ineffective for 
purposes of calculating closed-form probabilities, is the Normal Cumulative Distribution Function 
(NCDF), 
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Students at this level are usually annoyed at being relegated to the use of numerical tables 

or software for approximating NCDF probabilities, particularly after learning of the astounding 
applicability of FTC in previous calculus courses. Clearly, the need to explore numerical 
approximations to NCDF in some detail with these students is both relevant and justified. On the 
other hand, introductory, applied, statistics courses, crafted primarily for students with minimal 
mathematics backgrounds, typically adapt readily to the use of NCDF tables or statistical software 
to aid computations. Yet, the risk of student distraction using tables or software may inhibit the 
essential insights behind the calculations to be performed, reducing the whole effort to an inert 
exercise from their viewpoint. Again, some reasonable numerical elaboration of NCDF, at the 
appropriate developmental level, is crucial, certainly for these students.  
 The title specifies the central theme of this article. In Section 2, we study some historically 
useful, and sometimes clever, transcendental approximations to NCDF readily found in the 
literature. Bear in mind that no attempt to survey or catalogue the plethora of NCDF 
approximations is ventured here. Our primary goal is to migrate from quite sophisticated 
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approximations and engender the development of (low degree) polynomial, or piecewise 
polynomial, NCDF approximations which are both reasonably accurate as well as insightfully 
accessible to students. In Section 3, we customize some of the voluminous contributions of Joseph-
Louis Lagrange to produce four low degree, polynomial approximation to NCDF, together with 
their respective approximation errors, while Section 4 uses the contributions of Pafnuty Lvovich 
Chebyshev to similarly develop a cubic Chebyshev polynomial approximant to NCDF. Section 5 
discusses Hoyt’s piecewise polynomial approximant to NCDF, while in Section 6 we construct a 
straightforward piecewise polynomial approximation easily accessible for student use. Suitable 
classroom examples are offered in Section 7, followed by conclusions and recommendations in 
Section 8. 

2. Some Historical Perspectives        

Many attempts have been made to approximate NCDF in (1) using well-behaved 
polynomials both for educational purposes and for numerical efficiency. One notable difficulty is 
the inefficiency in using a straightforward Taylor series expansion. As shown by Marsaglia [7], 
such a strategy provides a great deal of accuracy but can require hundreds of terms to maintain 
acceptable precision for large values of x. On the other hand, many clever strategies have been 
developed that provide a consistently reasonable degree of accuracy on a wide interval without 
requiring an extremely high degree of polynomial approximation. We first present a sample of 
approximations to Φ(x) which shall be used as a basis for comparison for later discussion. 

Famously, in 1945 Polya [9] published the approximation 
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in an effort to simplify calculations in mathematical physics. Equation (2) has become somewhat of a 
standard in the literature for approximating Φ(x). In 1951, Cadwell [3] proposed 
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extending Polya’s approximation and reducing the maximum error by roughly 80% using a quartic 
in place of a quadratic rational function in the exponent. 

Hart [5] compiled almost one hundred approximations to Φ(x) with varying degrees of 
complexity, precision, and accuracy. One such approximation is 

 

( ) ( )

1
2 2

2 2
2 2
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 (4) 

where 1 2( ) (2 ) exp( / 2)x xϕ π −= −  represents the standard normal density function.  
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Several examples in the literature embed a high-degree polynomial within an algebraic 
formula to achieve high levels of approximation accuracy. For example, Zelen and Severo [10] 
construct a highly accurate algorithm,  

 
                     ( )2 3 4 5

1 2 3 4 5
ˆZelen and Severo:  ( ) 1 ( ) ,x x b t b t b t b t b tϕΦ = − + + + +                 (5) 

 
where t = (1 + 0.2316419x)−1, b1 = 0.31938153, b2 = −0.35656378, b3 = 1.78147794, 
b4 =1.82125598, and b5 = 1.33027443. This approximation produces a maximum error that is much 
smaller than previous approximations considered here. These authors noted that ( )xϕ itself can also 
be approximated using polynomials to avoid any evaluation of transcendental functions, and this 
results in only a modest increase in error. 
 

In 1975, Carta [4] developed a table of approximations using rational functions. A commonly 
used example is 

                       ( )( 16)2 3 4 5
0 1 2 3 4 5

ˆCarta:  ( ) 1 0.5 ,x a a x a x a x a x a x
−

Φ = − + + + + +          (6) 
where a0 = 0.9999998582, a1 = 0.0487385796, a2 = 0.02109811045, a3 = 0.003372948927, 
a4 = 0.00005172897742, and a5 = 0.0000856957942. This approximation produces error values 
that are similar to those achieved with the Polya approximation. Seeking to build a simple 
expression that compared favorably with the Hart approximation in equation (4), Byrc [2] 
constructed rational functions, including 

 

Byrc:  Φ� (𝑥𝑥) = 1 − 𝑥𝑥2+5.575192695𝑥𝑥+12.77436324
𝑥𝑥3√2𝜋𝜋+14.38718147𝑥𝑥2+31.53531977𝑥𝑥+25.548726

𝑒𝑒−�
𝑥𝑥2

2 � .               (7) 
 

As illustrated in Tables 1 and 2, Byrc’s approximation compares favorably with the work of 
Zelen and Severo in equation (5), and these two approaches provide the best overall results among 
the examples considered here. Table 1 provides the maximum absolute error for each approximation 
on the intervals [0, 1]; [1, 3];  and [3, 4]. Table 2 presents the mean absolute error for each 
approximation over the interval [0, 4], since the CDF Φ(𝑥𝑥) is very close to the value 1.0 for 𝑥𝑥 > 4. 

Table 1: Maximum Absolute Errors for Some Common Approximations of Φ(𝑥𝑥). 

 
  

 Range of the Standard Normal Variable 
Approximation Method 0 – 1.0 1.0 – 3.0 3.0 – 4.0 
Polya (1945) 1.774 × 10−3 3.146 × 10−3 5.371 × 10−4 
Cadwell (1951) 8.323 × 10−5 6.684 × 10−4 4.155 × 10−4 
Hart (1968) 5.808 × 10−5 5.790 × 10−5 2.687 × 10−7 
Zelen and Severo (1964) 1.120 × 10−5 1.095 × 10−5 4.990 × 10−6 
Carta (1975) 2.868 × 10−3 2.457 × 10−3 7.160 × 10−5 
Byrc (2001) 1.185 × 10−5 1.873 × 10−5 2.051 × 10−6 
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Table 2: Mean Absolute Errors on [0,4] for Some Common Approximation of Φ(𝑥𝑥). 

 
                                  

 
 
 
 
 
 
 

 
Many other recent approximations to ( )xΦ are available, some of which often require the use of 

somewhat complicated transcendental functions. Still others may be expressed in a fairly simple 
format, such as the compact approximation  

                             ( ) ( )12 2ˆPage : ( ) 1 ,    where 0.7988 1 0.04417tx e t x x
−−Φ = + = +              (8) 

offered by Page [8]. Unfortunately, these typically lack the accuracy we seek. 
All the approximations presented in this section rely on the use of square roots and the 

evaluation of exponential functions to achieve very accurate results. For students lacking a deep 
background in calculus, polynomial approximations can provide a simple approach where minimal 
knowledge of differentiation can be used to convert between a CDF and its corresponding PDF. In the 
following section, we illustrate effective methods for building such approximations with the goal, in 
general, of enhancing student insight into the ideas and methods for constructing useful 
approximations.  

3. Lagrange Approximations to Φ(x) 

Our first approach is to construct effective polynomial approximations using the standard 
Lagrange form for polynomial interpolation. In an effort to keep the degree of interpolant as low as 
possible, we choose nodes based on a uniform discretization of the range of the CDF Φ(𝑥𝑥) rather 
than for the domain. For example, to construct a cubic interpolant first note that 

                        Φ(0) = 0.5,   Φ(0.4307273) = 0.666667, and  Φ(0.9674216) = 0.8333333.                   

Combining these three nodes with a fourth at either (3, 1) or (3.5, 1) produces approximations 

                                2 3
3( ) 0.5 0.41957 0.07432 0.00333 .P x x x x= + − −                                         (9)                            

                                                                               and 

                               2 3
3.5 ( ) 0.5 0.42087 0.07867 0.00022 .P x x x x= + − −                                       (10)                                   

 
Figure 1 illustrates the relationship between P3(x), P3.5(x) and Φ(x). Assuredly, both 

Approximation Method Mean Absolute Error 
Polya (1945) 7.865 × 10−4 
Cadwell (1951) 1.671 × 10−4 
Hart (1968) 1.492 × 10−5 
Zelen and Severo (1964) 5.980 × 10−6 
Carta (1975) 7.171 × 10−4 
Byrc (2001) 6.921 × 10−6 
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polynomials provide an overestimate in their respective tails. In addition to the inherent error associated 
with using a cubic polynomial interpolant over a wide interval, the fact that these polynomials 
overestimate Φ(x) near the tail effectively prevents them from being used as CDFs.  

 

 
 
                             Figure 1: CDF Φ(x) (solid curve), along with interpolants P3(x) (dotted curve)  

                                  with right endpoint (3, 1) and P3.5(x) (dashed curve) with right   
          endpoint (3.5, 1). 

 
 

To reduce the error in approximation seen in Figure 1, quintic interpolants are derived in a 
similar manner. Quartic polynomials are intentionally avoided to maintain a shape that closely 
matches that of Φ(𝑥𝑥) on the interval [0, 4]. Following our previous procedure, five equally spaced 
nodes in the range are combined with either (3, 1) or (3.5, 1) from the tail to generate the following 
quintic approximations: 

 
    2 3 4 5

3  0.5  0.397993  0.00779150 0.0882330  0.0257886 0.001937) 0( 1Q x x x x x x= + + − + − ,         (11)    
                                                                                                                                                                                        

    2 3 4 5
3.5   0.5 0.397952 0.00811747 0.0890655 0.0266322 0.00222781 .( )Q x x x x x x= + + − + −         (12)           

                                                                            
In Figure 2, we illustrate the relationships between Q3(x), Q3.5(x) and Φ(x). Both of our 

quintic interpolants have function values that are less than that of Φ(x), and both are much better 
approximations than their cubic counterparts, but both functions suffer on an interval where they are 
decreasing. Again, this prevents them from being used as true CDFs. 
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                 Figure 2: CDF Φ(x) (solid curve), along with interpolants Q3(x) (dotted curve) with  
                                  right endpoint (3, 1), and Q3.5(x) (dashed curve) with right endpoint (3.5, 1). 
 

              
Table 3: Maximum Absolute Errors for Lagrange Form Polynomial Approximations of Φ(𝑥𝑥). 

 

 

 

 

 
           

 
 

Table 4: Mean Absolute Errors on [0,4] for Lagrange Form Polynomial Approximations 
 

 
 
 
 
 
 
 

 

Tables 3 and 4 give the errors for each of the approximations. These polynomial 
approximations maintain reasonable accuracy, but as noted before, none meets the requirements for 
a CDF on its domain of interpolation. As mentioned in [1] and elsewhere, increasing the degree of 
polynomial approximation will result in unsatisfactory results near the endpoints used for  

 Range of the Standard Normal Variable 
Polynomial 
Approximation  0 – 1.0 1.0 – 3.0 3.0 – 4.0 

𝑃𝑃3(𝑥𝑥) 1.919 × 10−3 4.211 × 10−2 2.239 × 10−1 
𝑃𝑃3.5(𝑥𝑥) 2.079 × 10−3 6.341 × 10−2 8.929 × 10−2 
𝑄𝑄3(𝑥𝑥) 5.834 × 10−5 1.056 × 10−2 1.881 × 10−1 
𝑄𝑄3.5(𝑥𝑥) 6.361 × 10−5 2.136 × 10−2 5.809 × 10−2 

Polynomial 
Approximation Mean Absolute Error 

𝑃𝑃3(𝑥𝑥) 5.598 × 10−2 
𝑃𝑃3.5(𝑥𝑥) 2.239 × 10−2 
𝑄𝑄3(𝑥𝑥) 4.703 × 10−2 
𝑄𝑄3.5(𝑥𝑥) 1.452 × 10−2 
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interpolation. In subsequent sections, we examine some well-known alternative approaches to 
building polynomial approximations. 

4. Chebyshev Approximations to Φ(x). 

An alternative to uniformly spaced nodes that produces a near minimax approximation (i.e., a nearly 
minimum value for error in the sense of the uniform norm) can instead be found using the Chebyshev nodes, 

cos ,    0,1,2,......., ,k
kx k n
n
π = − = 

   

translated to the desired interval of interpolation. Unlike the standard Lagrange approach, where one can 
ensure that an interpolant achieves a right-hand limit of 0.5 at x = 0 and a left-hand limit of 1.0 for a particular 
abscissa x, a complicating factor is that no such guarantee can easily be made when using the Chebyshev 
nodes. However, it is relatively easy to instead construct a cubic polynomial interpolant using four Chebyshev 
nodes. In fact, 

 

            2 3
3

ˆ ( ) ( ) 0.491937 0.486062 0.153919 0.01606304 ,x T x x x xΦ = = + − +                        (13)  
 

has mean absolute error of 1.841 × 10−3 on [0, 4], and its close fit to the CDF Φ(𝑥𝑥) is shown in Figure 3. 

 
 

 
 

Figure 3: CDF Φ(x) (dashed curve) and cubic Chebyshev interpolant (solid curve) 
  



JPSS    Vol. 23 No. 1    August  2025     pp. 146-159 

153 
 

 
Error values can be improved with a moderate increase in polynomial degree using this method, but 

convergence is slow and relies on a high degree of precision for the coefficients. Yet, the intended benefit of 
this approach is a single polynomial that is easy to evaluate and invert, and 𝑇𝑇3(𝑥𝑥) is such a function. Due to 
numerical instability produced by even Chebyshev polynomial interpolations of increasing degree on a finite 
interval, we do not pursue that approach further. A common remedy for this problem is the use of piecewise 
polynomial approximations of low degree, as shown next.  

5. Hoyt’s Piecewise Polynomial Approximations to Φ(x).  

Our stated goal is to construct an approximation that is easily understood and manipulated by students 
in introductory-level probability and statistics courses, which still preserves a high degree of numerical 
accuracy. For example, in 1968, Hoyt [6] suggested the quadratic, piecewise polynomial 

 

           

2

2

2

(3 ) /16,  3 1
ˆ (3 ) / 8,   1 1 ( )Hoyt PDF Approximation :  ( ) ,

(3 ) /16,  +1 3
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This simple approximation is easily manipulated because straightforward integration results in the cubic, 
piecewise polynomial approximation 
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            (15) 

 
Figure 4 clearly illustrates that G(x) closely follows the trajectory of Φ(x). However, it has 

significantly more error than most of the transcendental approximations already discussed. For example, the 
mean absolute error on [0, 4] is 2.463 × 10−3, similar to that of our Chebyshev approximation from Section 
4, yet worse than the historical examples already considered in Section 2. In the next section, we will construct 
examples akin to the Hoyt approximation but built via interpolation of Φ(𝑥𝑥) instead of its corresponding 
PDF. 
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Figure 4: CDF Φ(x) (dashed curve) and the Hoyt approximation G(x). 
 

6. Developing an Accessible Piecewise Polynomial for Students 

When teaching undergraduates ideas concerning continuous distributions, a typical textbook approach 
is to define the uniform distribution and illustrate its essential aspects, such as expected value, variance and 
standard deviation, using a few examples that include piecewise-defined functions, and then pivot swiftly to a 
discussion of the normal distribution. Our aim is to provide examples that help illustrate the value of so-called 
“bell shaped” probability distributions before introducing the standard normal distribution. A typical example 
is the piecewise linear PDF, commonly called the “tent” density, h(x), and its corresponding CDF, H(x), both 
shown in Figure 5. These functions are simple enough that elementary probability calculations, using area and 
function evaluation, are easily performed. However, H(x) is readily seen to be a very poor approximation to 
Φ(x), having mean absolute error 1.627 × 10−2 on the interval [0, 4]. 

 

                                                  Figure 5. Tent PDF h(x) and Tent CDF H(x). 

As a first step towards the goal of building a function in a similar format that can serve as an accurate 
approximation to Φ(x), modify 𝑇𝑇3(𝑥𝑥) by constructing a simple piecewise cubic interpolant that attains the 
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value of 0.5 at x = 0.0166763 and attains the value of 1.0 at 𝑥𝑥 = 4.022883: 

 

2 3
3

 0 0.0166763
ˆ 

0.5,
.491937 0.486062    0.153919 0.0160304 ,     0.0166763 ( ) ( ) 3

1,     
   4.02288

4.0228 38

x
C x x

x
x x x x

≤ <
= Φ = <
 ≤

+ + <



−               (16)             

                                                                                                                                                                                                                                                                                         
                 

  Figure 6 illustrates the close fit of this approximation to Φ(𝑥𝑥), like that observed in Figure 3. 

 

 

                           Figure 6: C3(x), a piecewise cubic CDF, in comparison with Φ(x). 

 
Note that this approximation, C3(x), almost meets the definition for a CDF, since it is piecewise 

continuous, but it unfortunately decreases near the tail. To remedy this deficiency, we consider a piecewise cubic 
that is similar to C3(x), but still easier for students to manipulate: 

 

                        

3

3

2

2 3

0.5 0.48 0.15 0

 

.015 ,

0.4

8   0  3
8ˆ( ) =  ( ) ,8    33

1                         

6 0.54 0.1 0.02

          ,  3

x

S
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x x x xx x

 < <

Φ = < <


<

− +

+ −



+

+                 (17)   

 
This approximation was constructed by adjusting the piecewise cubic interpolant 3( )C x by 

insisting on nodes at 𝑥𝑥 = 0, 𝑥𝑥 = 8
3� , and 𝑥𝑥 = 3, which are specifically chosen to ensure that each 

piece is continuously increasing. The close approximation of 3( )S x to Φ(𝑥𝑥) is illustrated in Figure 7.  
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                  Figure 7:   𝑆𝑆3,  a  piecewise cubic CDF, relative to Φ(x) 
 

Note that   𝑆𝑆3(𝑥𝑥) has only one point of discontinuity, at x = 8/3, but reaches ordinate value 1 much 
faster than other approximations considered here. Table 5 and Table 6 present the error for this function, the Hoyt 
approximation 𝐺𝐺(𝑥𝑥) and the Chebyshev approximation 𝑇𝑇3(𝑥𝑥), following the same format as before. 

 

Table 5: Maximum Absolute Errors for Piecewise Polynomial Approximations of Φ(𝑥𝑥) 
 
 
 
 

 
 

Table 6: Mean Absolute Errors on [0,4] for Piecewise Polynomial Approximations 
 

 

 
               
 

These results demonstrate that function T3(x), produced using Chebyshev interpolation, has error that is 
comparable with the historical approximations by Polya, Carta, and others. Except for values in the tail, i.e., for 
𝑥𝑥 ∈ (3, 4), T3(x) also performs better than the Hoyt approximation. The error values for S3(x) are lowest for    
𝑥𝑥 ∈ (1, 3), but higher than T3(x) and the approximation of Hoyt elsewhere. Based on the mean absolute errors 
presented in Table 6, we view both T3(x) and S3(x) (along with the approximation by Hoyt) as meeting our goals 
for accuracy and easy manipulation by students. In the next section, we illustrate how our approximations can be 
effectively used in an introductory level statistics course. 

 Range of the Standard Normal Variable 
Approximation  0 – 1.0 1.0 – 3.0 3.0 – 4.0 
𝑇𝑇3(𝑥𝑥) 7.362 × 10−3 4.516 × 10−3 4.966 × 10−3 
𝐺𝐺(𝑥𝑥) 9.853 × 10−3 8.011 × 10−3 1.350 × 10−3 
𝑆𝑆3(𝑥𝑥) 1.354 × 10−2 3.730 × 10−3 9.986 × 10−1 

Approximation Mean Absolute Error 
𝑇𝑇3(𝑥𝑥) 1.841 × 10−3 
𝐺𝐺(𝑥𝑥) 2.463 × 10−3 
𝑆𝑆3(𝑥𝑥) 3.386 × 10−3 
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7. Classroom Examples 

The following examples illustrate how our cubic Chebyshev interpolant 𝑇𝑇3(𝑥𝑥) in equation (13) and the 
piecewise polynomial 𝑆𝑆3(𝑥𝑥) in equation (17) can be used effectively.   

Often, we ask students to use the CDF of a continuous distribution to calculate probabilities for various 
interesting events. Here, we are mindful that each calculation should be a reasonable approximation to the same 
probability calculation using the standard normal distribution. Note that if Z is a standard normal random 
variable, then 

                                                             P (Z ≤ 1.25) = Φ(1.25) ≈ 0.8944.                                                              (18) 

With our cubic Chebyshev interpolant, we find that 

                 3
3

20.491937 0.486062 1.25 0.153919 1.25 0.0160304 1.25 0.8903,(1.25) ( ) ( ) ( )T = + − + ≈           (19) 

         an approximation with 0.45% relative error. With our piecewise-cubic, 

                                    2
3

3(1.25) ( ) ( ,0.5 0.48 1.25 – 0.15 1.25 0.015 1.25 0.8( ) 94) 9S ≈= + +                             (20)                           

an approximation with 0.058% relative error, and one that is extremely simple for students to calculate 
as well as program into many common hand-held calculators. 

Another common exercise for students is, given a CDF, obtain a formula for the corresponding 
PDF. For x > 0 and the cubic Chebyshev interpolant 𝑇𝑇3(𝑥𝑥), this is easily accomplished: 

 
      ( ) ( )3 2

3
20.486062 2 0.153 .919 3 0.0160304 0.486 062 0. 0( )( ) 307838 0.048 912dT xt x x xx

dx
x− − += =+=              (21)     

 

 
        Figure 8: The graph of t3(x) in comparison with the standard normal PDF. 

 
 

In Figure 8 we illustrate this approximation to the standard normal PDF. Although the fit is 
reasonably close, we note that t3 cannot be a PDF since it takes on negative values near x = 3. In fact, 
our piecewise polynomial 3( )S x  performs somewhat better than the Chebyshev interpolant 3( ).T x  
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For x > 0, we have 

 

                            
3

3

2

2

80.48 0.3 0.045 ,    0 3

 

80.54 0.36 0.0( )( ) ,    

1,                             

8 33
3

dS xs

x x x

x
x

x
d

x

xx



= = 


<

− + < ≤

− +



< ≤                                  (22)              

                                                                                                                                                                                                                                                         

Figure 9 depicts this approximation to the NPDF. Notice that although small discontinuities are 
present, the function remains nonnegative on its domain. 

 

   
 

     Figure 9: The graph of p̂3 (x) in comparison with the standard normal PDF 

 

8. Conclusions 

Numerous approximations to the standard normal cumulative distribution function are found in 
the literature. Unfortunately, much less effort has been directed to motivating student interest in these 
necessary approximations. The persistent pursuit of simple approximations for this distribution 
function, for the benefit of student insight, is the essence of this article. Here, the contextual discussion 
sequentially follows three themes: (i) the need for approximation, given the formidable form of the 
standard normal cumulative distribution function, (ii) a brief survey of some common, useful 
approximations, and (iii) motivational insight that students can grasp for simple, piecewise polynomial 
approximation, depending on the developmental level of the audience. That is, for students studying 
statistical methods in service courses, supporting the simple polynomial approximations studied here 
with clear tables and graphs is sufficient. Yet, students majoring in statistics, mathematics and the hard 
sciences can be challenged to gain appreciation for the deeper aspects of numerical approximation put 
forward by titans such as Polya, Lagrange, Chebyshev and others. 
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