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ABSTRACT 
The objective of this study is to assess the applicability of the three-parameter Poly-Exponential Weibull 
distribution for modelling the reliability of cement sheath data, specifically based on Vickers hardness 
measurements (MPa). This research explores the theoretical properties of the Poly-Exponential Weibull 
distribution, including the derivation of its quantile function, incomplete moments, Rényi and q-entropies, 
mean deviations, and the Bonferroni and Lorenz curves. Parameter estimation is performed using the 
method of maximum likelihood. The findings suggest that the Poly-Exponential Weibull model offers a 
promising alternative to existing models in the literature, particularly for handling highly skewed reliability 
data. 
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1. Introduction 

There are many ways to infer properties and characteristics of life-testing experiments 
based on various probability distributions. Depending on the probability distribution, a theory 
about how well it estimates the parameters of the probability model is used to explain the life 
testing framework. However, this framework is lacking in various ways when the distribution has 
a large variance. To overcome this issue, various distributions have been studied in the statistics 
literature. The well-known family of probability distributions is the Weibull distribution for 
studying life-testing problems whose shapes are unimodal, skewed, and roughly symmetric. It is a 
versatile family of probability distributions that can have remarkable effects on the behavior of 
supplementary types of probability models based on the value of the shape parameter. The Weibull 
distribution is a widely used parametric family because it is a flexible parameter family structure 
that has been found in practice to be more flexible for fitting a wide range of real-world 
applications. The motivations for its extensive deployment for developing new probability 
distributions that are more flexible for modelling reliability/survival data, because the information 
can present a high degree of skewness and kurtosis.  The Weibull distribution was established by 
Waloddi Weibull [1] and has been applied comprehensively to construct a new family of lifetime 
distributions. A random variable 𝑋 has the classical Weibull distribution with two parameters 𝛼 
and 𝛽, 𝑥 > 0, its cumulative distribution function (cdf) is given by  

𝐺(𝑥; 𝛼, 𝛽) = 1 − 𝑒𝑥𝑝൫−𝛼𝑥ఉ൯,                                                          (1) 
the probability density function corresponding to (1) is given by 

𝑔(𝑥; 𝛼, 𝛽) = 𝛼𝛽 𝑥ఉିଵ𝑒𝑥𝑝൫−𝛼𝑥ఉ൯,                                                 (2) 
where 𝛼 and 𝛽 are the scale and shape parameters of the Weibull distribution, respectively.  

The Poly-Weibull Distribution was pioneered by Berger et al. [2] as a generalization of the 
standard Weibull distribution, who studied the Bayesian framework using informative priors. This 
research paper aims to provide a new bathtub-shaped failure rate distribution, namely the three-
parameter Poly exponential Weibull distribution, and investigate the potential usefulness of this 
model which extends the recent work of Chesneau et al. [3]. This research examines the three-
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parameter Poly exponential Weibull distribution properties and parametric estimation using both 
graphical methods and maximum likelihood estimation. Khan et al. [4] studied the transmuted 
Weibull distribution with regression analysis and discussed the various structural properties with 
applications. Mudholkar and Srivastava [5] introduced the idea of exponentiated distribution and 
studied the exponentiated Weibull distribution as an extension of the Weibull distribution. Zaindin 
and Sarhan [6] introduced the new generalized Weibull distribution for modelling lifetime data. Xie 
and Lai [7] inspected the reliability of an additive Weibull model with a bathtub-shaped failure rate 
function. According to this approach, a random variable X is said to have a Poly exponential G-
distribution if its cumulative distribution function (cdf) satisfies the relationship 

𝐹(𝑥) =
1

1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)
൛1 − ൫1 − 𝜃𝐺(𝑥)൯ 𝑒𝑥𝑝൫𝜃𝐺(𝑥)൯ൟ,                   (3) 

and 

𝑓(𝑥) =
1

1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)
𝜃ଶ𝐺(𝑥)𝑒ఏீ(௫)𝑔(𝑥),                                           (4) 

where 𝐺(𝑥) is the cdf of the base distribution, 𝑔(𝑥) and 𝑓(𝑥) are the corresponding probability 
density function (pdf) associated with 𝐺(𝑥) and 𝐹(𝑥) respectively. The article is organized as 
follows: Section 2 presents the analytical shapes of the probability density and hazard function of 
the PEW distribution. Section 3 derives the incomplete moments, the moment generating function, 
and the quantile function. Maximum likelihood estimates (MLEs) of the unknown parameters and 
the asymptotic confidence intervals of the unknown parameters of the PEW models are discussed 
in Section 4. Rényi, q-entropies, mean deviation, Bonferroni, and Lorenz curves are derived in 
Section 5. The flexibility of the PEW family is illustrated using cement sheath data in Section 6. 
Concluding remarks are addressed in Section 7. 

2. Poly Exponential Weibull Distribution 

A random variable 𝑋 is said to have Poly exponential Weibull distribution with parameters 
𝛼 > 0 𝛽 > 0 and 𝜃 ∈ ℝ, then  𝑋 has the distribution function as 

𝐹(𝑥; 𝛼, 𝛽, 𝜃) = 𝑤 ቂ1 − ൛1 − 𝜃൫1 − 𝑒𝑥𝑝൫−𝛼𝑥ఉ൯൯ൟ 𝑒𝑥𝑝 ቀ𝜃 − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁቃ,                    (5) 

where 𝑤 = 1 {1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)}⁄ , the probability density function corresponding to (5) is 
given by 

𝑓(𝑥; 𝛼, 𝛽, 𝜃) = 𝛼𝛽𝜃ଶ 𝑤 𝑥ఉିଵ𝑒𝑥𝑝 ቀ−𝛼𝑥ఉ − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁ ൫1 − 𝑒𝑥𝑝൫−𝛼𝑥ఉ൯൯ .               (6) 

  
The parameter 𝛽 controls the shape of the distribution, whereas the parameter 𝛼 𝑎𝑛𝑑 𝜃 

control the scale of the distribution, respectively. If 𝑋 has the Poly exponential Weibull 
distribution, then it can be denoted as 𝑋~𝑃𝐸𝑊(𝑥; 𝛼, 𝛽, 𝜃). Figure 1 shows the shape of the Poly 
exponential Weibull PDF with different choices of parameters. The x-axis represents the variable 
of interest, while the y-axis represents the probability. The PEW distribution curves have been 
overlaid on the graph, demonstrating how well the theoretical distribution fits the empirical data. 
The parameters of the PEW distribution provide insights into the shape and scale of the data. These 
parameters are crucial for understanding the distribution's behaviour and making predictions based 
on the PEW model. 
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Figure 1: Plots of the Poly exponential Weibull PDF 

   

 

            Figure 2: Plots of the Poly exponential Weibull Hazard Function  

 If 𝑋 has the PEW distribution, then the reliability function and hazard functions are given by 

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

f(
x)

  0.5,  1,  1
  0.5,  1.2,  1
  0.7,  1.5,  1
  0.9,  2,  1
  1.2,  2.5,  1

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

  1,  3.4,  10

x

h(
x)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

  1,  1.5,  5

x

h(
x)

0 1 2 3 4 5

0.
1

0.
2

0.
3

0.
4

0.
5

  0.5,  0.5,  2.5

x

h(
x)

1.380 1.385 1.390 1.395 1.400

-2
50

0
-1

50
0

-5
00

0

  0.8,  1.5,  1.5

x

h(
x)



JPSS    Vol. 23 No. 1    August  2025     pp. 108-119 

111 
 

𝑅(𝑥; 𝛼, 𝛽, 𝜃) = 1 − 𝑤 ቂ1 − ൛1 − 𝜃൫1 − 𝑒𝑥𝑝൫−𝛼𝑥ఉ൯൯ൟ 𝑒𝑥𝑝 ቀ𝜃 − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁቃ,        (7) 

and 

ℎ(𝑥; 𝛼, 𝛽, 𝜃) =
𝛼𝛽𝜃ଶ 𝑤 𝑥ఉିଵ𝑒𝑥𝑝 ቀ−𝛼𝑥ఉ − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁ ൫1 − 𝑒𝑥𝑝൫−𝛼𝑥ఉ൯൯ 

1 − 𝑤ൣ1 − {1 − 𝜃(1 − 𝑒𝑥𝑝(−𝛼𝑥ఉ))} 𝑒𝑥𝑝൫𝜃 − 𝜃𝑒𝑥𝑝(−𝛼𝑥ఉ)൯൧      
.    (8) 

Figure 2 displays the PEW hazard rates graph yields valuable insights into the failure 
characteristics of the system. The hazard graph illustrates the hazard function of the PEW model, 
providing insights into the failure pattern over time. The x-axis typically represents time, and the 
y-axis depicts the hazard rate, representing the probability of an event occurring at a specific point 
in time given survival up to that time. These features of the instantaneous failure rates illustrate 
that the PEW distribution has increasing, decreasing, and upside-down bathtub shapes with 
different choices of parameters.  

3. Moments and Quantiles 

This section presents the 𝑘௧௛ incomplete moments, moment generating function, and 
derivation of the quantile model of the Poly exponential Weibull distribution. 
 
Theorem 1: If 𝑋 has the 𝑃𝐸𝑊(𝑥; 𝛼, 𝛽, 𝜃), then the 𝑘௧௛ incomplete moment of 𝑋 say 𝜓௞(௤) is given 
as follows 

𝜓௞(௤) = ൝෍ 𝛵𝒾,ଵ,௞,ఉ,ఏ

ஶ

𝒾ୀ଴

𝛾 ൬
𝑘

𝛽
+ 1, 𝛼(𝒾 + 1)𝑞ఉ൰ + ෍ 𝛵𝒾,ଶ,௞,ఉ,ఏ 

ஶ

𝒾ୀ଴

𝛾 ൬
𝑘

𝛽
+ 1, 𝛼(𝒾 + 2)𝑞ఉ൰ൡ. 

Proof: The 𝑘௧௛ incomplete moment of the PEW distribution as follows 

𝜓௞(௤) = න 𝑥௞ାఉିଵ
௤

଴

𝛼𝛽𝜃ଶ 𝑤 𝑒𝑥𝑝 ቀ−𝛼𝑥ఉ − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁ ൫1 − 𝑒𝑥𝑝൫−𝛼𝑥ఉ൯൯  𝑑𝑥,              

the above integral reduces to 

𝜓௞(௤) =
𝛼𝛽𝜃ଶ𝑒𝑥𝑝(𝜃)

{1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)}
න 𝑥௞ାఉିଵ 𝑒𝑥𝑝 ቀ−𝛼𝑥ఉ − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁ 𝑑𝑥

௤

଴

+ 

𝛼𝛽𝜃ଶ𝑒𝑥𝑝(𝜃)

{1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)}
න 𝑥௞ାఉିଵ 𝑒𝑥𝑝 ቀ−2𝛼𝑥ఉ − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁ 𝑑𝑥,

௤

଴

 

Using Taylor series expansions, the above integral reduces to 

𝜓௞(௤) =
𝛼𝛽𝜃ଶ𝑒𝑥𝑝(𝜃)

{1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)}
෍

(−1)𝒾𝜃𝒾

𝒾!

ஶ

𝒾ୀ଴

න 𝑥௞ାఉିଵ 𝑒𝑥𝑝 ቀ−𝛼𝑥ఉ(𝒾 + 1)ቁ 𝑑𝑥
௤

଴

+ 

𝛼𝛽𝜃ଶ𝑒𝑥𝑝(𝜃)

{1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)}
෍

(−1)𝒾𝜃𝒾

𝒾!

ஶ

𝒾ୀ଴

න 𝑥௞ାఉିଵ 𝑒𝑥𝑝 ቀ−𝛼𝑥ఉ(𝒾 + 2)ቁ 𝑑𝑥,
௤

଴

 

Finally, we obtain 

𝜓௞(௤) = ൝෍ 𝛵𝒾,ଵ,௞,ఉ,ఏ

ஶ

𝒾ୀ଴

𝛾 ൬
𝑘

𝛽
+ 1, 𝛼(𝒾 + 1)𝑞ఉ൰ + ෍ 𝛵𝒾,ଶ,௞,ఉ,ఏ 

ஶ

𝒾ୀ଴

𝛾 ൬
𝑘

𝛽
+ 1, 𝛼(𝒾 + 2)𝑞ఉ൰ൡ.       (9) 

where  

𝛵𝒾,𝒿,௞,ఉ,ఏ =
𝜃ଶ𝑒𝑥𝑝(𝜃)𝛼 

ି 
௞
ఉ

{1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)}

(−1)𝒾𝜃𝒾

𝒾! (𝒾 + 𝒿)
௞
ఉ

ାଵ
𝛤 ൬

𝑘

𝛽
+ 1൰ ,       𝒿 = 1, 2. 

Theorem 2: If 𝑋 has the 𝑃𝐸𝑊(𝑥; 𝛼, 𝛽, 𝜃), then the moment generating function of X,  𝑀௑(𝑡) is 
given as follows  
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𝑀௑(𝑡) =
𝜃ଶ𝑒𝑥𝑝(𝜃)

{1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)}
෍

𝑡𝓂𝑈௠,ఉ,ఏ

𝓂! 𝛼
 
𝓂
ఉ

ஶ

𝓂ୀ଴

𝛤 ൬
𝑚

𝛽
+ 1൰, 

where 

𝑈௠,ఉ,ఏ = ෍
(−1)𝒾𝜃𝒾

𝒾! (𝒾 + 1)
௠
ఉ

ାଵ

ஶ

𝒾ୀ଴

+ ෍
(−1)𝒾𝜃𝒾

𝒾! (𝒾 + 2)
௠
ఉ

ାଵ

ஶ

𝒾ୀ଴

. 

Proof: The moment generating function of the TW distribution as follows 

𝑀௑(𝑡) = න 𝑥ఉିଵ𝛼𝛽𝜃ଶ 𝑤 𝑒𝑥𝑝 ቀ𝑡𝑥 − 𝛼𝑥ఉ − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁ ൫1 − 𝑒𝑥𝑝൫−𝛼𝑥ఉ൯൯ 𝑑𝑥,                 
ஶ

଴

 

the above expression can be written as 

𝑀௑(𝑡) =
𝛼𝛽𝜃ଶ𝑒𝑥𝑝(𝜃)

{1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)}
න 𝑥ఉିଵ 𝑒𝑥𝑝 ቀ𝑡𝑥 − 𝛼𝑥ఉ − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁ 𝑑𝑥

ஶ

଴

+ 

𝛼𝛽𝜃ଶ𝑒𝑥𝑝(𝜃)

{1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)}
න 𝑥ఉିଵ 𝑒𝑥𝑝 ቀ𝑡𝑥 − 2𝛼𝑥ఉ − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁ 𝑑𝑥,

ஶ

଴

 

using the Taylor series expansions, the above integral reduces to 

=
𝛼𝛽𝜃ଶ𝑒𝑥𝑝(𝜃)

{1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)}
෍

𝑡𝓂

𝓂!

ஶ

𝓂ୀ଴

න 𝑥𝓂ାఉିଵ 𝑒𝑥𝑝 ቀ−𝛼𝑥ఉ − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁ 𝑑𝑥
ஶ

଴

 

+
𝛼𝛽𝜃ଶ𝑒𝑥𝑝(𝜃)

{1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)}
෍

𝑡𝓂

𝓂!

ஶ

𝓂ୀ଴

න 𝑥𝓂ାఉିଵ 𝑒𝑥𝑝 ቀ−2𝛼𝑥ఉ − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁ 𝑑𝑥
ஶ

଴

,   

The above integral for 𝑀௑(𝑡) can be finally obtained as 

𝑀௑(𝑡) =
𝜃ଶ𝑒𝑥𝑝(𝜃)

{1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)}
 

× ෍
𝑡𝓂

𝓂! 𝛼
 
𝓂
ఉ

ஶ

𝓂ୀ଴

𝛤 ൬
𝑚

𝛽
+ 1൰ ቐ෍

(−1)𝒾𝜃𝒾

𝒾! (𝒾 + 1)
௠
ఉ

ାଵ

ஶ

𝒾ୀ଴

+ ෍
(−1)𝒾𝜃𝒾

𝒾! (𝒾 + 2)
௠
ఉ

ାଵ

ஶ

𝒾ୀ଴

ቑ.    (10) 

which completes the proof. 
 
Theorem 3: The 𝑞𝑡ℎ quantile 𝐹൫𝑥௤൯ of the 𝑃𝐸𝑊 random variable is given by  

𝐹൫𝑥௤൯ = ቈ−
1

𝛼
𝑙𝑛 ቊ1 −

1

2𝜃
±

1

2𝜃
ට1 − 4𝑙𝑛൛1 − 𝑞൫1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)൯ൟቋ቉

ଵ
ఉ

,   0 <  𝑞 < 1.  (11) 

 
Proof: The 𝑞𝑡ℎ quantile 𝑥௤ of the 𝑃𝐸𝑊 distribution is defined as 

𝑞 = 𝑃൫𝑋 ≤ 𝑥௤൯ = 𝐹൫𝑥௤൯,           𝑥௤ ≥ 0.  
Using the distribution function of the 𝑃𝐸𝑊 distribution we have 

𝑞 = 𝐹൫𝑥௤൯ = 𝑤 ቂ1 − ൛1 − 𝜃൫1 − 𝑒𝑥𝑝൫−𝛼𝑥ఉ൯൯ൟ 𝑒𝑥𝑝 ቀ𝜃 − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁቃ, 

that is 

𝑤 ቂ1 − ൛1 − 𝜃൫1 − 𝑒𝑥𝑝൫−𝛼𝑥ఉ൯൯ൟ 𝑒𝑥𝑝 ቀ𝜃 − 𝜃𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁቃ + 𝑞 = 0. 

the above equation can be written as, by setting D = 𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ 
𝜃ଶ𝐷ଶ − (2𝜃ଶ − 𝜃)𝐷 + 𝜃ଶ − 𝜃 + 𝑙𝑛൛1 − 𝑞൫1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)൯ൟ = 0 

Consider this as a quadratic equation as 
∆= 1 − 4𝑙𝑛൛1 − 𝑞൫1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)൯ൟ.) 

It has roots 
൫ଶఏమିఏ൯±ఏ√∆

ଶఏమ
. These exist if ∆ is positive, then 
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𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ =
(2𝜃ଶ − 𝜃) ± 𝜃√∆

2𝜃ଶ
. 

Finally, we obtain the 𝑞𝑡ℎ quantile 𝑥୯ of the 𝑃𝐸𝑊 distribution as 

𝑥௤ = ൤−
1

𝛼
𝑙𝑛 ൜1 −

1

2𝜃
±

1

2𝜃
√∆ൠ൨

ଵ
ఉ

, 

which completes the proof.  

4. Parameter Estimation 

Consider the random samples 𝑥ଵ , 𝑥ଶ, … , 𝑥௡ consisting of 𝑛 observations from the Poly 
exponential Weibull distribution, then the log-likelihood function ℒ = lnL  of (6) is given by 
ℒ = 𝑛𝑙𝑛𝛼 + 𝑛𝑙𝑛𝛽 + 2𝑛 𝑙𝑛𝜃 + 𝑛𝜃 − 𝑛 𝑙𝑛൫1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)൯ +   

(𝛽 − 1) ෍ 𝑙𝑛𝑥௜

௡

௜ୀଵ

− 𝑛𝛼 ෍ 𝑥௜
ఉ

௡

௜ୀଵ

+ ෍ 𝑙𝑛൫1 − 𝑒𝑥𝑝൫−𝛼𝑥௜
ఉ൯൯ − 𝑛𝜃 ෍ 𝑒𝑥𝑝൫−𝛼𝑥௜

ఉ൯

௡

௜ୀଵ

   

௡

௜ୀଵ

.   (12) 

Let Θ = (𝛼, 𝛽, 𝜃)୘ be the parameter vector. The associated score function is given by 
𝑈(𝛩) = (𝜕ℒ 𝜕𝛼,⁄ 𝜕ℒ 𝜕𝛽,⁄ 𝜕ℒ 𝜕𝜃⁄ )୘, where  

∂ℒ

∂𝛼
=

𝑛

𝛼
− 𝑛𝑙𝑛𝛽 − 𝑛 ෍ 𝑥௜

ఉ

௡

௜ୀଵ

+ ෍
𝑥௜

ఉ 𝑒𝑥𝑝൫−𝛼𝑥௜
ఉ൯

(1 − 𝑒𝑥𝑝(−𝛼𝑥௜
ఉ))

௡

௜ୀଵ

+ 𝑛𝜃 ෍ 𝑥௜
ఉ 𝑒𝑥𝑝൫−𝛼𝑥௜

ఉ൯

୬

୧ୀଵ

,        

𝜕ℒ

𝜕𝛽
=

𝑛

𝛽
+ ෍ 𝑙𝑛𝑥௜

௡

௜ୀଵ

− 𝑛𝛼 ෍ 𝑥௜
ఉ𝑙𝑛(𝑥௜)

௡

௜ୀଵ

+ ෍
𝛼 𝑒𝑥𝑝൫−𝛼𝑥௜

ఉ൯ 𝑥௜
ఉ𝑙𝑛(𝑥௜)

(1 − 𝑒𝑥𝑝(−𝛼𝑥௜
ఉ))

+ 𝑛𝛼𝜃 ෍ 𝑒𝑥𝑝൫−𝛼𝑥௜
ఉ൯ 𝑥௜

ఉ𝑙𝑛(𝑥௜)

௡

௜ୀଵ

௡

௜ୀଵ

,                       

𝜕ℒ

𝜕𝜃
=

2𝑛

𝜃
+ 𝑛 −

𝑛 𝜃 𝑒𝑥𝑝(𝜃)

1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)
− 𝑛 ෍ 𝑒𝑥𝑝൫−𝛼𝑥௜

ఉ൯.                        

௡

௜ୀଵ

                             

The maximum likelihood estimates (MLEs) of the parameter vector Θ = (𝛼, 𝛽, 𝜃)୘ are obtained 
by solving the non-linear equations U(Θ) = 0. These systems of non-linear equations can be 
solved numerically by using softwares such as R, SAS, and MAPLE.   
For interval estimation and hypothesis tests on the model parameters of the PEW distribution, we 
require the 3 × 3 unit observed information matrix is 

𝐼௡(𝛩) = − ቌ

𝐼ఈ,ఈ 𝐼ఈ,ఉ 𝐼ఈ,ఏ

𝐼ఈ,ఉ 𝐼ఉ,ఉ 𝐼ఉ,ఏ

𝐼ఈ,ఏ 𝐼ఉ,ఏ 𝐼ఏ,ఏ

ቍ, 

The elements of the 3 × 3 information matrix 𝐼௡(𝛩) are given by 

𝜕ଶℒ

𝜕𝛼ଶ
= −

𝑛

𝛼ଶ
− ෍

𝑥௜
ଶఉ 𝑒𝑥𝑝൫−𝛼𝑥௜

ఉ൯

(1 − 𝑒𝑥𝑝(−𝛼𝑥௜
ఉ))

௡

௜ୀଵ

− 𝑛𝜃 ෍ 𝑒𝑥𝑝൫−𝛼𝑥௜
ఉ൯൫ 𝑥௜

ఉ൯
ଶ

௡

௜ୀଵ

             

𝜕ଶℒ

𝜕𝛽ଶ
= −

𝑛

𝛽ଶ
− 𝑛𝛼 ෍ 𝑥௜

ఉ𝑙𝑛(𝑥௜)ଶ

௡

௜ୀଵ

+ 𝑛𝛼𝜃 ෍ 𝑒𝑥𝑝൫−𝛼𝑥௜
ఉ൯ 𝑥௜

ఉ𝑙𝑛(𝑥௜)
ଶ

௡

௜ୀଵ

 ൫1 − 𝛼𝑥௜
ఉ൯           

+𝛼 ෍
𝑒𝑥𝑝൫−𝛼𝑥௜

ఉ൯ 𝑥௜
ఉ𝑙𝑛(𝑥௜)ଶ ቂ1 − 𝛼𝑥௜

ఉ − 𝑒𝑥𝑝൫−𝛼𝑥௜
ఉ൯ ቀ1 − 𝛼 𝑥௜

ఉ + 𝛼ଶ𝑥௜
ఉ𝑙𝑛(𝑥௜)ቁቃ

(1 − 𝑒𝑥𝑝(−𝛼𝑥௜
ఉ))ଶ

,

௡

௜ୀଵ
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∂ଶℒ

∂𝜃ଶ
= −

2𝑛

𝜃ଶ
−

𝑛  𝑒𝑥𝑝(𝜃)൫1 + 𝜃 − 𝑒𝑥𝑝(𝜃)൯

൫1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)൯
ଶ  

𝜕ଶℒ

𝜕𝛼𝜕𝛽
= 𝑛 ෍ 𝑥௜

ఉ𝑙𝑛(𝑥௜)

௡

௜ୀଵ

+ 2𝜃 ෍ 𝑒𝑥𝑝൫−𝛼𝑥௜
ఉ൯ 𝑥௜

ఉ𝑙𝑛(𝑥௜)൫1 − 𝛼𝑥௜
ఉ൯

௡

௜ୀଵ

    

+ ෍
𝑒𝑥𝑝൫−𝛼𝑥௜

ఉ൯ 𝑥௜
ఉ𝑙𝑛(𝑥௜) ቀ1 − 𝛼𝑥௜

ఉ − 𝑒𝑥𝑝൫−𝛼𝑥௜
ఉ൯ቁ

(1 − 𝑒𝑥𝑝(−𝛼𝑥௜
ఉ))ଶ

௡

௜ୀଵ

, 

𝜕ଶℒ

𝜕𝛼𝜕𝜃
= −𝑛 ෍ 𝑒𝑥𝑝൫−𝑥௜

ఉ൯,

௡

௜ୀଵ

       

and 

𝜕ଶℒ

𝜕𝛽𝜕𝜃
= −𝑛 ෍ 𝑒𝑥𝑝൫−𝛼𝑥௜

ఉ൯ 𝑥௜
ఉ𝑙𝑛(𝑥௜)

௡

௜ୀଵ

, 

respectively.  
The asymptotic multivariate normal 𝑁ଷ(0, 𝐼௡(𝛩)ିଵ) distribution can be used to construct the 
approximate confidence intervals and confidence region of individual parameters for the Poly 
exponential Weibull distribution. We can compute the maximum likelihood values to find 
likelihood ratio (LR) statistics for testing the PEW distribution against other lifetime distributions. 
For testing the hypothesis, we formulate the null hypothesis 𝐻଴: 𝛩 = 𝛩଴ versus 𝐻஺: 𝛩 ≠ 𝛩଴ can be 
performed for LR statistics to compare the PEW distribution with other lifetime distributions, as 
𝛬 = 2൛𝑙൫𝛼ො, 𝛽መ , 𝜃෠൯ − 𝑙൫𝛼෤, 𝛽෨ , 𝜃෨൯ൟ, where 𝛼ො, 𝛽መ and 𝜃෠ are the MLEs under 𝐻஺ and α෥, β෨ , θ෨  are the 
estimates under 𝐻଴. 

5. Entropies and Mean Deviation 

The entropy of a random variable 𝑋 with probability density 𝑓(𝑥) is a measure of the 
variation of the uncertainty. A large value of entropy indicates greater uncertainty in the data. The 
Rényi entropy [8] is defined as 

𝐼ோ(𝜌) =
ଵ

ଵିఘ
𝑙𝑜𝑔൛∫ 𝑓(𝑥)ఘ𝑑𝑥

ஶ

଴
ൟ,                                                      (13) 

where 0 and 1 . The integral in )(RI  of the 𝑃𝐸𝑊(𝑥; 𝛼, 𝛽, 𝜃) can be defined as  

න 𝑓(𝑥)ఘ𝑑𝑥
ஶ

଴

= 𝛼ఘ𝛽ఘ𝜃ଶఘ𝑤ఘ 

× න 𝑥ఘ(ఉିଵ)𝑒𝑥𝑝 ቀ−𝛼𝜌𝑥ఉ − 𝜃𝜌𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁ ൫1 − 𝑒𝑥𝑝൫−𝛼𝑥ఉ൯൯
ఘ

 
ஶ

଴

𝑑𝑥, 

The above integral reduces to 

         න 𝑓(𝑥)ఘ𝑑𝑥
ஶ

଴

= ෍ 𝒰ఏ,ఉ,஡,𝒿

ஶ

𝒿,௞ୀ଴

 
(−1)𝒿,ା௞(𝜃𝜌)௞

𝑘!
න 𝑥ఘ(ఉିଵ)𝑒𝑥𝑝 ൫−(𝜌 + 𝒿 + 𝑘)𝛼𝑥ఉ൯

ஶ

଴

𝑑𝑥, 

where 

𝒰ఏ,ఉ,஡,𝒿 = ቀ
ρ
𝒿ቁ

𝛼ఘ𝛽ఘ𝜃ଶఘ 𝑒𝑥𝑝(𝜃𝜌)

൫1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)൯
ఘ. 

   
 

 න 𝑓(𝑥)ఘ𝑑𝑥
ஶ

଴

= ෍ 𝒰ఏ,ఉ,஡,𝒿

ஶ

𝒿,௞ୀ଴

  
(−1)𝒿,ା௞(𝜃𝜌)௞{𝛼(𝜌 + 𝒿 + 𝑘)}

ିఘା
ఘ
ఉ

ାఉିଵ

𝑘!
Γ ൜𝜌 −

𝜌

𝛽
− 𝛽 + 2ൠ,   
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(14) 
Finally, we obtain the Rényi entropy as 

𝐼ோ(𝜌) =
൬

𝜌
𝛽

+ 𝛽 − 1൰

1 − 𝜌
log(𝛼) − log(𝛽) +

2𝜌

1 − 𝜌
log(𝜃) +

1

1 − 𝜌
log 

ቐ ෍ ቀ
𝜌
𝒿ቁ

(−1)𝒿,ା௞(𝜃𝜌)௞ 𝑒𝑥𝑝(𝜃𝜌) (𝜌 + 𝒿 + 𝑘)
ିఘା

ఘ
ఉ

ାఉିଵ

൫1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)൯
ఘ

𝑘!
Γ ൜𝜌 −

𝜌

𝛽
− 𝛽 + 2ൠ

ஶ

𝒿,௞ୀ଴

ቑ.                  (15) 

The 𝑞-(or 𝛼 entropy) was introduced by Havrda and Charvat [9] and Ullah [10] stated that  𝑞-(or α 
entropy) measures are the monotonic functions of the Rényi entropy and is defined as 

𝐼ு(𝑞) =
ଵ

௤ିଵ
൛1 − ∫ 𝑓(𝑥)௤ஶ

଴
𝑑𝑥ൟ,                                                      (16) 

where 𝑞 > 0 and 𝑞 ≠ 1. The integral in 𝐼ு(𝑞) of the PEW distribution can be defined as  

න 𝑓(𝑥)௤𝑑𝑥
ஶ

଴

= 𝛼௤𝛽௤𝜃ଶఘ𝑤௤ 

× න 𝑥௤(ఉିଵ)𝑒𝑥𝑝 ቀ−𝛼𝑞𝑥ఉ − 𝜃𝑞𝑒𝑥𝑝൫−𝛼𝑥ఉ൯ቁ ൫1 − 𝑒𝑥𝑝൫−𝛼𝑥ఉ൯൯
௤

 
ஶ

଴

𝑑𝑥, 

 
Using (16), the above integral reduces to 

න 𝑓(𝑥)௤
ஶ

଴

𝑑𝑥 = 

෍ ቀ
𝑞
𝒿ቁ

ஶ

𝒿,௞ୀ଴

  
(−1)𝒿,ା௞𝛼௤𝛽௤𝜃ଶ௤ 𝑒𝑥𝑝(𝜃𝑞) (𝜃𝑞)௞{𝛼(𝑞 + 𝒿 + 𝑘)}

ି௤ା
௤
ఉ

ାఉିଵ

൫1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)൯
௤

𝑘!
Γ ൜𝑞 −

𝑞

𝛽
− 𝛽 + 2ൠ. 

Finally, we can write  𝐼ு(𝑞) as 

𝐼ு(𝑞) =
1

𝑞 − 1

⎩
⎪
⎨

⎪
⎧ 1 − ෍ ቀ

𝑞
𝒿ቁ

𝛼௤𝛽௤𝜃ଶ௤ 𝑒𝑥𝑝(𝜃𝑞)

൫1 − (1 − 𝜃)𝑒𝑥𝑝(𝜃)൯
௤

ஶ

𝓂ୀ଴

 

(−1)𝒿,ା௞(𝜃𝑞)௞{𝛼(𝑞 + 𝒿 + 𝑘)}
ି௤ା

௤
ఉ

ାఉିଵ

𝑘!
Γ ൜𝑞 −

𝑞

𝛽
− 𝛽 + 2ൠ

⎭
⎪
⎬

⎪
⎫

.      (17) 

  
The degree of scatter in a population is calculated by the totality of deviations from the mean and 
median. If 𝑋 has the  𝑃𝐸𝑊(𝑥; 𝛼, 𝛽, 𝜃), then we derive the mean deviation about the mean and 
about the median M can be obtained from the following equations  

𝛿ଵ = 2[𝜇 𝐹(𝜇) − 𝜓(𝜇)]      and      𝛿ଶ = 𝜇 − 2𝜓(M)                              (18)      
where 𝜓(𝑞) can be obtained from (9) by substituting 𝑘 = 1  

𝜓(𝑞) = ෍ 𝛵𝒾,ଵ,ଵ,ఉ,ఏ

ஶ

𝒾ୀ଴

𝛾 ൬
1

𝛽
+ 1, 𝛼(𝒾 + 1)𝑞ఉ൰ + ෍ 𝛵𝒾,ଶ,ଵ,ఉ,ఏ 

ஶ

𝒾ୀ଴

𝛾 ൬
1

𝛽
+ 1, 𝛼(𝒾 + 2)𝑞ఉ൰.      (19) 

                    
The quantity 𝜓(𝑞) can also be used to determine the Bonferroni and Lorenz curves which have 
applications in insurance, econometrics and finance. For a given probability 𝑃, they are given by 

𝐵(𝑃) =
𝜓(𝑞)

𝑃𝜇
                  and              𝐿(𝑃) =

𝜓(𝑞)

𝜇
,   

respectively, where  PQq   follows from the quantile function. 
Table 1 presents an analysis of the Rényi and q entropies for the Poly Exponential Weibull 
distribution. The distribution is characterized by three parameters α, β, and θ. The entropies are 
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computed for selected parameter values, and the focus is on two different measures: Rényi entropy 
with parameter ρ (ρ=2 and ρ=3), and q entropy with parameter q (q=2 and q=3). Table 1 illustrates 
the effect of parameters on Rényi and q entropies for the Poly Exponential Weibull distribution. 
As observed from the results, varying the parameters α, β, and θ has a notable impact on both 
Rényi and q entropies. Different parameter combinations lead to different entropy values, 
indicating the sensitivity of entropy measures to distribution parameters. In terms of comparative 
analysis, the values of Rényi and q entropies provide insights into the distribution's uncertainty 
and variability. Comparative analysis between different parameter sets can help in understanding 
the distribution's behaviour under various conditions.  These entropy measures can be valuable in 
applications such as risk assessment, information theory, and reliability analysis. The choice of ρ 
and q parameters allows for tailoring the analysis to specific requirements. 
 

 
Table 1: Rényi and 𝑞 entropies of selected parameter values for PEW distribution 

       
𝛼 𝛽 𝜃 𝐼ோ(𝜌 = 2) 𝐼ோ(𝜌 = 3) 𝐼ு(𝑞 = 2) 𝐼ு(𝑞 = 3) 
0.5 0.5 1 1.3988 1.2924 0.9601 0.4987 
  1.5 1.4698 1.3748 0.9661 0.4991 
  2 1.5302 1.4464 0.9705 0.4994 
  3 1.6273 1.5568 0.9764 0.4996 
       
1 1 1 0.5249 0.4882 0.7014 0.4472 
  1.5 0.5419 0.5059 0.7129 0.4513 
  2 0.5552 0.5194 0.7215 0.4543 
  3 0.5734 0.5376 0.7329 0.4579 
       
1 2 1 0.1784 0.1476 0.3369 0.2466 
  1.5 0.1754 0.1441 0.3323 0.2425 
  2 0.1710 0.1391 0.3254 0.2366 
  3 0.1596 0.1269 0.3075 0.2213 
       
2 1.5 1 0.1216 0.0901 0.2441 0.1698 
  1.5 0.1248 0.0930 0.2498 0.1743 
  2 0.1259 0.0938 0.2517 0.1754 
  3 0.1238 0.0909 0.2481 0.1710 
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6. Application: Cement sheath data 

 This section provides the data analysis to assess the goodness-of-fit of the PEW 
distribution and compare this model with three different Weibull family of lifetime distributions 
for modelling the reliability of hardness measurements of cement sheath performance data. when 
various thermal cements were cured at 35 °C and then heated to 230 °C. The data set consists of 
50 observations, which were originally reported by Jon. M and Karen. L [11]. In this study, I fitted 
the Poly-exponential Weibull (PEW), Exponentiated Weibull (EW), New Generalized Weibull 
(NGW), Additive Weibull (AW), Generalized Power Weibull (GPW), and Weibull (W) 
distributions by the method of maximum likelihood. The analysis of Maximum Likelihood 
estimates and information criteria for different distributions applied to cement sheath data provides 
insights into the goodness of fit and model complexity. The NGW and PEW distributions appear 
to be competitive models based on the presented information, with the NGW distribution 
demonstrating particularly favorable results. Further investigation and model refinement may be 
warranted to ensure the selected model accurately represents the underlying data distribution. 

The required numerical evaluations are implemented using the R language [12]. The MLEs 
and the values of maximized log-likelihoods for Poly EW, EW, NGW, GPW, AW, and Weibull 
distributions are displayed in Table 2.  Table 2 gives the MLEs of the unknown parameters (with 
their standard errors) and the AIC (Akaike Information Criterion), BIC (Bayesian information 
criterion), and the HQIC (Hannan-Quinn information criterion) goodness of fit tests. The NGW 
distribution exhibits lower AIC, BIC, and HQIC compared to the AW distribution, suggesting that 
the NGW model provides a better fit to the data. The GPW distribution has a relatively high AIC 
and BIC, indicating that the model may be less preferable in terms of goodness of fit and model 
complexity. The PEW distribution's parameter estimates are provided in Table 2, making it a 
reliable and better model fit for the hardness measurements of cement sheath data. For the PEW 
model, its AIC, BIC, and HQIC values are relatively low, suggesting a competitive fit. 
 

 

Table 2: MLEs of the Parameters for the cement sheath data, the Corresponding SEs  
(in parenthesis) with the AIC, BIC and HQIC measures. 

Distribution Parameter Estimates AIC BIC HQIC 
𝛼ො 𝛽መ  𝜃෠ 𝜂̂ 

NGW 10.5933 
(8.6378) 

0.0563 
(0.0778) 

0.0306 
(0.0220) 

1.5227 
(0.1468) 

321.08 328.72 323.99 

AW 0.2886 
(0.1751) 

0.2216 
(0.1258) 

0.2708 
(0.1521) 

0.2008 
(0.3612)  

587.24 594.89 590.16 

PEW 
 

EW 
 

GPW 

0.0156 
(0.0077) 
12.3750 
(3.9623) 
3.6649 

(11.0749) 

1.6515 
(0.1325) 
1.7112 

(0.1098) 
0.0678 

(0.2050) 

17.0136 
(6.3305) 
0.0115 

(0.0047) 
- 

- 
 
- 
 
- 

317.03 
 

318.34 
 

509.58 

322.77 
 

324.07 
 

513.41 

319.22 
 

320.52 
 

511.04 
 

W 0.6649 
(0.0523) 

0.0768 
(0.0151) 

- - 390.23 394.05 391.68 
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            Figure 3: Plots of fitted Poly-exponential Weibull model for the reliability of hardness 
                                      measurements of cement sheath data. 
 
Comparing five distributions with the Poly-Exponential Weibull distribution using the AIC, BIC, 
and HQIC indicates that the PEW distribution provides a better fit for the reliability of hardness 
measurements of cement sheath performance data. The graphical goodness of fit displayed in 
Figure 3 indicates that the PEW distribution provides a better fit than the other five distributions. 
Using the maximum likelihood estimates of the unknown parameters for cement sheath data, we 
obtain the approximately 95% two-sided confidence interval for the parameters 𝛼, 𝛽 and 𝜃 are 
[0.0001, 0.0311], [1.3852, 1.9178], and [4.2920, 29.7352], respectively. 
 

7. Concluding Remarks 
This article discusses the theoretical properties of the Poly exponential Weibull distribution 

and examines the potential usefulness of this model with application to the reliability of hardness 
measurements of cement sheath data. The PEW distribution has increasing, decreasing, and 
upside-down bathtub shapes with different choices of parameters. We derive the explicit 
expressions for the incomplete moments, moment generating function, quantile functions, Renyi, 
Shannon, and q-entropies, mean deviation, Bonferroni, and Lorenz curves. Based on the three 
goodness-of-fit measures, the PEW distribution provides a better fit than the other five lifetime 
distributions. The importance of the PEW model is illustrated by means of a real-life application.  
This research concludes that the poly-exponential transformation provides more flexibility in the 
PEW distribution for modelling the hardness measurements of cement sheath data.         
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