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ABSTRACT 
The frequent development of new lifetime distributions is borne of the desire to obtain adequate fits to 
complex data sets across various fields of study. A new one-parameter mixture distribution called Emrem 
distribution is proposed in this study. Mathematical properties of the distribution such as the moments and 
other related measures, the moment generating function, mean absolute deviations, entropy and reliability 
indices are discussed extensively. The pdf of the distribution can have two turning points while the hazard 
rate function has a bathtub shape. The maximum likelihood approach is used to estimate the parameter of 
the Emrem distribution. We have demonstrated the consistency property of the maximum likelihood 
estimate through simulations. Results obtained by comparing the fit of the Emrem distribution and fits of 
the competing distributions to a real data set indicate that the proposed model is capable of outperforming 
well-known and widely used continuous one-parameter distributions in several data analysis cases. 
 
Keywords: Algorithm, bathtub shape; maximum likelihood method, one-parameter mixture distribution;    
turning points. 

1. Introduction 

One-parameter continuous distributions are arguably useful in solving a variety of 
problems that emanate from diverse fields.  For example, the famous exponential distribution 
(Epstein, 1958) is of immense application in queuing theory (Nair, Sreelatha and Ushakumari, 
2021; Soorya and Sreelatha, 2021; Suleiman, Burodo and Ahmed, 2022) and reliability 
engineering (Abboudi, Al–Mashhadani and Salman, 2020; Duan et al., 2021; Zagurskiy et al., 
2023) (Abboudi, Al–Mashhadani and Salman, 2020; Duan et al., 2021; Zagurskiy et al., 2023). 
However, it is not an ideal distribution for data that do not have a constant hazard rate function 
(hrf). 

In lifetime data modelling, distributions possessing the bathtub shaped, upside down 
bathtub shaped, increasing and decreasing hazard rate functions are occasionally needed (Nassar 
and Dobbah, 2020; Sharma, Singh and Shekhawat, 2022; Khan, Bhattacharyya and Mitra, 2023; 
Uwaeme, Akpan and Orumie, 2023). The Lindley distribution (Lindley, 1958), which was initially 
formulated to handle problems in Bayesian statistics, has been adopted as an alternative to the 
exponential distribution. Properties of the distribution have been studied in an extensive manner 
(Ghitany, Atieh and Nadarajah, 2008). Specifically, the distribution is right-skewed and 
leptokurtic. Another interesting thing about it is that it is a one-parameter continuous mixture 
distribution obtained by mixing exponential and gamma distributions.  Other one-parameter 
continuous distributions which are also mixtures of exponential and gamma distributions are in 
statistical science literature. They include Akash distribution (Shanker, 2015), Shambhu 
distribution (Shanker, 2016), Ishita distribution (Shanker and Shukla, 2017), Akshaya distribution 
(Shanker, 2017a), Suja distribution (Shanker, 2017b), Pranav distribution (Shukla, 2018), Odoma 
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distribution (Odom and Ijomah, 2019), Nwikpe distribution (Nwikpe, Isaac and Emeka, 2021), 
Iwueze distribution (Elechi et al., 2022), Juchez distribution (Echebiri and Mbegbu, 2022), Chris-
Jerry distribution ( Onyekwere and Obulezi, 2022). The common properties of these mixture 
distributions are they all positively skewed and leptokurtic. 

A strong motivation for introducing a mixture distribution is to proffer adequate fits to data 
that arise from heterogeneous populations (Szulczewski and Jakubowski, 2018; Bagui, Liu and 
Zhang, 2020). As far as we are aware, none of the existing one-parameter continuous mixture 
distributions has a probability density function (pdf) with two turning points and hazard rate 
function with the bathtub shape. The crux of this paper is to propose a new one-parameter lifetime 
distribution called the Emrem distribution whose probability density function (pdf) and hazard rate 
function, respectively, have two turning points and a bathtub shape, among other notable 
properties. The rest of the paper is arranged as follows. Section 2 is predicated on the basic 
definition of the distribution via its pdf and the associated mathematical properties.  Two 
procedures of estimating the Emrem model parameter are explicated in Section 3.  Numerical 
results corresponding to the Emrem distribution are presented in Section 4, with emphasis on 
simulation results and real life application of the proposed model. Section 5 contains the 
conclusion. 

2. Mathematical Properties of the Emrem Distribution 

We shall begin this section by defining the proposed distribution. Let 𝑋 be a positive 
random variable. Then 𝑋 is said to follow the Emrem distribution with parameter θ if its pdf is 
given by  

   
2 2 3

1 , 0, 0
1 6

xx
f x e x  


  

         (1.1) 

For brevity, whenever 𝑋 has the distribution, we write 𝑋~Emrem (𝜃). 

The Emrem distribution is essentially a mixture of the Exp (𝜃) and Gamma (4, 𝜃) 

distributions with mixing proportions 
1


and 

1

1 
respectively. The pdf of the Emrem 

distribution is graphed in Figure 1 using different values of the parameter. It is obvious that the 
pdf of the distribution can be a decreasing function or non-monotonic function. 
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Figure 1: Plots of the pdf of the Emrem Distribution 

The cdf of the Emrem distribution is 

      
3 3 2 2

0

3 6
( ) 1 1

6 1

x
xx x

F x f u du e   


  
      
       (1.2) 

             The survival function   F x  of the distribution is obtained by subtracting  F x from 1.      

              Hence  
 

3 3 2 23 6
( ) 1

6 1
xx x

F x e   


  
    

  (1.3) 

The hazard rate function of the Emrem distribution is defined by  

    
   

2 4 3

3 3 2 2

6

3 6 6 1

f x x
h x

x x xF x

 
   


 

   
 (1.4) 
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We present Figure 2 to substantiate the possession of the bathtub shaped hazard rate 
function by the Emrem distribution. 

 

 

 

 

 

 

 

 

 

Figure 2: Plots of the hazard rate function of the Emrem Distribution 

In what follows, we derive other important properties of the distribution under 
consideration. 

2.1 Raw Moments and the related measures 

If  ~X Emrem  , the rth raw moment of X is  

 

 

      
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    



 (1.5) 

For the central moments, we obtain 

    
0

1
r

r i r
r r i

i

r
E X

i
    



       
 

  (1.6) 

The mean and variance of X, respectively, are obtained from (15) as  
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For the coefficient of variation for the Emrem distribution, we have 
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 
 

2 14 4

4

V X
CV

E X

 

 

 


. 

It is easy to establish that CV=1 if .2  

In order to describe the dispersion feature of the Emrem distribution, we consider its 
index of dispersion. Symbolically, the index of dispersion is  

 
    

2 14 4

1 4

V X
I

E X

 
  

 
 

 
. 

The distribution is said to be equidispersed if its variance and mean are equal. Equating the 
mean of the distribution to its variance and solving for   gives the condition for equidispersion of 
the distribution as 2 . Consequently, the Emrem distribution  is underdispersed if  2  and 
overdispersed when 2  . 

In the case of the Emrem distribution, the skewness coefficient is given by  

 
 

 
 

3 2

3
3 3

2
2

2 33 9 4

14 4
S

  

  

  
 

 
 (1.7) 

Hence, the Emrem distribution is right-skewed. 

We find the coefficient of kurtosis for the Emrem distribution to be 

 
 
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 

 
 (1.8) 

It can be easily deduced from (1.8) that the Emrem distribution is leptokurtic. 

2.2 Moment generating function and Incomplete Moments 

The moment generating function of the Emrem distribution is  
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 (1.9) 

Incomplete moments are of great importance in statistical theory and applications. For 
example, the first incomplete moment can be used to determine mean deviations and measures of 
inequality like Bonferroni and Lorenz curves. 

The rth incomplete moment of the Emrem distribution is defined as 
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, 

where  ,s x  is the lower incomplete gamma function defined by  

   1

0

,
x

s ys x y e dy    . (1.10) 

2.3 Mean deviations 

Mean deviation about the mean  1 and the mean deviation about the median  2 are two 

measures of dispersion. Let the mean and median of an Emrem distributed random variable X be 
 and X respectively. Then  

       1

0

E X X f x dx  


     

            12 2F J     

    2

0

E X X X X f x dx


      (1.11) 

          12J X    

2.4 Bonferroni and Lorenze curves 

Bonferroni and Lorenz curves are used to study and visualize income inequality (Huang 
and Oluyede, 2014). 

Let p be a probability value. If  1q F p , then the Bonferroni curve for the Emrem 

distribution is  

  
   10

q
tf t dt J q

B p
p p 

 
. (1.12) 

The related Lorenz curve is  

  
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q
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 

 
. (1.13) 
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2.5 Mean residual life function 

The mean residual life function refers to the expected additional lifetime given that a 
component has survived until time t. In accordance with the Emrem distribution, this function is 
defined as 

      1

x

m x F t dt
F x
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   (1.14) 
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It is easy to deduce that  0m  and 

1

)( m . 

3.6 Rényi Entropy 

An entropy measure quantifies the uncertainty inherent in a random variable. Here, we 
obtain the Rényi entropy for the Emrem distribution as 

    
0

1
ln ,

1ER f x dx
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
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3. Estimation  

In this section, two point estimation procedures, namely the method of moments and 
maximum likelihood method are given due consideration. 

3.1 Method of moments 

Method of moments estimator  ̂  of the parameter of the Emrem distribution is obtained by 

equating the first theoretical moment to the corresponding sample moment, leading to the equation 

    
 

4

1
X


 





. 

Solving the equation for  , we obtain the estimator 
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1 1 16
ˆ

2

X X X

X


    
  

3.2 Maximum likelihood method 

Given a random sample 1 2, ,..., nX X X from the Emrem distribution, the log-likelihood 

function is  
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  (1.16) 

The maximum likelihood estimator M̂LE is obtained by solving the following equation for 

  
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2
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i
i i

xn n
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x
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  
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It is worthy of note that only the numerical solution of (1.17) can be obtained. 

4. Numerical Illustrations 
 

4.1 Simulation 

In this section, we use the algorithm below to simulate a random sample  , 1,2,...,iX i n  

of size n  from the Emrem distribution: 
(i) Generate  ~ 0,1 , 1,2,...,iU U i n  

(ii) Generate  ~ , 1,2,...,iV E i n   

(iii) Generate  ~ 4, , 1, 2,...,iW Gamma i n   

(iv)  If 
1iU







, set i iX V . Otherwise set i iX W  

We compute the average estimate (AE), average bias (AB) and mean squared error (MSE) 

that are associated with each parameter value, sample size and 5000 samples. Let ˆ
j  denote the 

maximum likelihood estimate of   corresponding to the jth  sample 1, 2,..., .j N  Then 

(i) 1

ˆ
N

j
jAE
N





; 

(ii) 
 

1

ˆ
N

j
jAB

N

 






; 

(iii)
 

2

1

ˆ
N

j
jMSE

N

 






. 
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Simulation results corresponding to the sample sizes 20,50,100n  and 𝜃 = 1.6 is present 
in the Table 1 so as to illustrate consistency of the maximum likelihood estimate of the parameter 
of Emrem distribution. Obviously, the MSE associated with the parameter estimate decreases as 
the sample size increases, implying the consistency of the estimate. 

Table 1: simulation result 

N AE AB MS 
20 3.1287 0.1287 0.3656 
50 3.0459 0.0459 0.1222 

100 3.0190 0.0190 0.0575 
200 3.0108 0.0108 0.0271 

 

4.2 Real Life Application 

Having obtained some theoretical results on the Emrem distribution, we proceed to 
consider its application using a real data set obtained from (Bekker, Roux and Mosteit, 2000). The 
data, which comprise the survival times (in years) of a group of patients given chemotherapy 
treatment alone are given below:  

0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 
0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863,1.099, 1.219, 1.271, 1.326, 
1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 
3.978, 4.003, 4.033.  

The fit of the distribution to the data is compared to the fit of each exponential, logarithmic 
Lindley, xgamma and weighted xgamma distributions. The popular AIC, BIC, Komogorov-
Smirnov (KS) statistic, Anderson-Darling statistic (A*)  and Cramér-von Mises (W*) statistic are 
used to ensure the effective comparison of the concerned distributions. The distribution that 
correspond to the minimum value of the statistics becomes the most suitable distribution for the 
given data. 

Table 2 contains the maximum likelihood estimate of the parameter of each of the 
distributions and estimated values of the corresponding goodness of fit statistics. 

 
Table 2: Maximum likelihood estimates and the corresponding results for distributions 

fitted to the data 
Distribution Est -I KS A* W* p-value 
E 0.75 -58.23 0.09 0.06 0.44 0.82 
LL 0.97 -58.16 0.10 0.07 0.50 0.70 
XG 1.36 -58.01 0.11 0.08 0.55 0.66 
WXG 2.27 -66.14 0.25 0.72 5.49 0.01 
EMREM 1.59 -57.51 0.08 0.05 0.46 0.91 

The parameter estimates and the goodness of fit statistics for the different models based on 
the data set are presented in Table 2. From the results, the Emrem distribution performed better 
than the competing distributions since it its fit leads to the minimum values of the used goodness 
of fit statistics. 
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5. Conclusion  

In this study, we have introduced and derived properties of a one-parameter distribution 
using a mixture of the exponential and gamma distribution. The pdf of the proposed distribution 
can be a decreasing function or non-monotonic function with two turning points while the related 
hazard rate function can be bathtub shaped. The distribution is positively skewed and leptokurtic. 
It can be underdispersed, equidersed or overdispersed, depending on whether the value of its 
parameter is greater than 2, equal to 2 or less than 2 respectively. We empirically showed that the 
new model can serve as a better distribution for modelling positively skewed data than several 
well-known and widely used one-parameter distributions, including the exponential, logarithmic 
Lindley, xgamma and weighted xgamma distributions. 
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