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ABSTRACT 
A healthy economy depends on rapid economic growth but this can be seriously hampered by an unstable 
inflation rate. Consequently, the purpose of this study is to model and forecast Nigeria's yearly inflation 
rate by taking cognisance of the variation the series exhibited. The methods used are descriptive statistics, 
Fourier Autoregressive (FAR), Autoregressive Integrated Moving Average (ARIMA) and Seasonal 
ARIMA processes. Descriptive statistics outcomes of the series indicated that the mean is 15.85 with a 
standard deviation of 15.03. The time plot showed inflation rate series is non-stationary and exhibited 
seasonal and cyclical variations. The series is stationary during the initial difference, as demonstrated by 
applying the Augmented Dickey-Fuller test. The tentative FAR, ARIMA and SARIMA models were 
determined using autocorrelation and partial autocorrelation functions. The models estimated were chosen 
based on Akaike and Schwarz information criteria values. The adequacy of FAR(1), ARIMA(1,1,2) and 
SARIMA(2,1,1)(2,1,1)ଵଶ models were determined based on Autocorrelation and partial autocorrelation 
function residual plots. The out-sample FAR(1) model forecast captured and exhibited the seasonality and 
periodicity present in the Nigerian yearly inflation rate series which are not attained in the other models. 
Based on the forecast evaluation metrics obtained for the models, FAR(1) is the better model since its 
forecast evaluation metrics are lower. Conclusively, FAR(1) is the better model for forecasting the Nigerian 
inflation rate when the variation exhibited by series is considered. 
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1. Introduction 

Presently, inflation can be seen as the most dreadful economic variable affecting humanity 
globally Ibrahim et al 2022). It is wreaking havoc, surging economic activity, supply-chain 
disruptions, and soaring commodity prices (Nse et al. 2018; Katsaliaki et al. 2022). The sporadic 
rise of prices of commodities and services has become a threat to normal human livelihood and 
this has serious consequences on the purchasing power of citizens in many countries worldwide 
(World Economic Forum, 2021).  Based on the complexity of inflation as an important 
macroeconomic variable which has caused global economic activity to experience a broad-based 
and sharper-than-expected slowdown, with inflation higher than seen in several decades (Wiri and 
lgbudu, 2022). The cost of living crisis and tightening financial conditions in most regions weigh 
heavily on the outlook. The global growth forecast is expected to move from 6.0 per cent in 2021 
to 3.2 per cent in 2022 and 2.7 per cent in 2023 (Al Marhubi, 2021). This is the weakest growth 
profile since 2001 except for the global financial crisis and the acute phase of the COVID-19 
pandemic. Therefore, global inflation is expected to rise from 4.7 per cent in 2021 to 8.8 per cent 
in 2022 but may rise to 6.5 per cent in 2023 (Agarwal and  Kimball, 2023; International Monetary 
Fund, 2023). With this in-depth information, the developing countries which Nigeria is among and 
worst hit by the exponential rise of inflation need to critically monitor and put in place measures 
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to combat the effects (Otu et al. 2014). To do this, future values of inflation must be obtained using 
an appropriate model. In recent years, many time series and economic time series models have by 
used to model and forecast inflation rate. Among these are ARIMA, Seasonal-ARIMA, 
autoregressive distributed lag (ARDL), time series regression, generalized (GARCH) and many 
more. These include the works of Feridun and Adebiyi, 2005; Bokhari and Feridun, 2006; Doguwa 
and Alade, 2013; Kelukume and Salami, 2014; Ikoku and Okany, 2017; Osuolale et al. 2017; 
Adubisi et al. 2018; Nyoni and Nathaniel, 2018; Olalude et al. 2021; Mustapha et al. 2021; Okorie 
et al. 2021; Nadum et al. 2022; Owan et al. 2022; Adenomon and Madu, 2022; Emwinloghosa et 
al. 2023; Awoyemi et al. 2024). Despite the good results obtained by several researchers over the 
years, a critical look at the variation exhibited by inflation rate time series datasets indicated that 
a model that can handle frequent seasonal and periodical changes will be more appropriate. In 
essence, this study will be used to carry out a Fourier autoregressive time series model building 
for the Nigerian inflation rate since this model could decompose time series data that exhibited 
seasonal and periodical variations and also take care of the interdependence between the series and 
its lags. Following the works of (Taiwo et al. 2019; Taiwo et al. 2020), the Fourier Autoregressive 
(FAR) model has four steps, these are identification, estimation, diagnostic and forecasting stages. 
The FAR model efficiency will contrasted with ARIMA and SARIMA models utilising the out-
of-sample projection and forecast assessment metrics.  

 
2. Materials and Methods 

2.1 Fourier Autoregressive (FAR) model 
A FAR approach is determined by assuming that 𝑥௞ఠା௩ =  {𝑥௞ఠା௩ 𝜖 ℤ}  is a 

cyclic stationary random procedure, then 
 

𝑥௞ఠା௩ = 𝜑଴ +  ෍ቂ𝜑௜(𝑣) cos 2𝜋𝑘
𝜔ൗ +  𝜑௜

∗(𝑣) sin 2𝜋𝑘
𝜔ൗ ቃ𝑥௞ఠା௩ି

௣(௩)

௜ୀଵ

+ 𝜇௞ఠା௩               (1) 

 
wherein 𝜑௜(𝑣) is a cyclic autoregressive parameter, ω is a count of periods, 𝜇௞ఠା௩ is the 

residual having mean zero (0) and cyclic variance 𝜎ఌ
ଶ(𝑣) , 𝑣   is a cyclic measure and 𝑘  is the 

season measure. Since autocovariance function and mean are cyclic patterns of time having 
cyclic 𝜔, the processes' initial and subsequent order moments become 
 
         𝐸[𝑥௧] =  𝜇(𝑡) =  𝜇[𝑡 + 𝑘𝜔] and 𝑐𝑜𝑣(𝑥௧𝑥௦) =  𝛾(𝑡, 𝑠) =  𝛾(𝑡 + 𝑘𝜔, 𝑠 + 𝑘𝜔)                 (2) 
 
2.2 Fourier Autoregressive Model Building 

There are four basic steps in time series analysis model building and these are  
 

2.2.1 Identification of FAR model  
Cyclic Autocorrelation (CACF) and Partial Autocorrelation function (CPACF) shall be 
utilised to identify the FAR approach which is to be fitted.  

 
2.2.1.1 Cyclic-ACF 

The CACF  for a cyclic stationary series {𝜇௞ఠା௩} slated in  equation (1), where the residual  is 
presumed independent can be expressed as 
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               𝛾௞ఠା௩(𝑙) =  𝑐𝑜𝑣(𝜇௞ఠା 𝑦௞ఠା௩ି ) = 𝐸[(𝜇௞ఠା௩ −  𝜇௩)(𝜇௞ఠା௩ି௜ −
 𝜇௩ି௟)]                     (3) 
 

For season 𝑣 in retrograde lag, 𝑙 ≥ 0, 𝐶𝐴𝐶𝐹 for time 𝑣 at a retrograde lag 𝑙 ≥ 0 is 
perceived by 
 

                                      𝜌௜(𝑣) =
𝛾௟(𝑣)

ඥ𝛾଴(𝑣)𝛾଴(𝑣 − 𝑙)
൘ ,                         𝑙 ≥ 0                                (4)  

 
where 𝛾଴(𝑣) is the variance for the 𝑣௧௛season. 

 
2.2.1.2. Cyclic- PACF 

The CPACF, ∅௟௟(𝑣) can be pursued for measuring the exact relationship within 𝑥௞௪ା௩ and 
𝑥௞௪ା௩ି௟ eliminating the impact of the previous observations and it is specified for whole numbers, 
𝑙 ≥ 1 as  

∅௟௟ = 𝑐𝑜𝑟𝑟 ቂ𝑥௞ఠା௩ , 𝑥௞ఠା௩ି௟⧸𝑥௞௪ା௩ି , … , 𝑥௞௪ା௩ି௟ାଵቃ 

 
The CPACF is defined as 

                                  𝜑௟௟ =  
𝑐𝑜𝑣[(𝑥௞ఠା௩ − 𝑥ො௞ఠା௩), (𝑥௞ఠା௩ି௟ −  𝑥ො௞ఠା௩ି௟)]

ඥ𝑣𝑎𝑟(𝑥௞ఠା௩ − 𝑥ො௞ఠା௩)ඥ𝑣𝑎𝑟(𝑥௞ఠା௩ି௟ −  𝑥ො௞ఠା௩ି௟)
                        (5) 

 
2.3 Estimation of FAR Model 

 
The FAR coefficient shall be fitted utilising the Ordinary Least Square (OLS) procedure. Using 

the FAR(1) model  

                              𝑥௧ଵ = 𝜑଴ +  𝜑ଵ
ୡ୭ୱ

ଵଶ
𝑥௧ଵିଵ +  𝜑ଵ

∗ ୱ୧୬ ଶ

ଵଶ
𝑥௧ଵିଵ +

𝜇௞ଵିଵ                                       (6)  
By making the error term the subject in (6), this gives 

                    𝜇௞ଵିଵ = 𝑦௧ଵ − 𝜑଴ −  𝜑ଵ

cos 2𝜋

12
𝑥௧ଵିଵ −  𝜑ଵ

∗
sin 2𝜋

12
𝑥௧ଵିଵ                                          (7) 

The residual sum of square of (7) is   

                     ෍( 𝜇௞ଵିଵ)ଶ = ෍( 𝑥௧ଵ − 𝜑଴ −  𝜑ଵ

cos 2𝜋

12
𝑥௧ଵିଵ −  𝜑ଵ

∗
sin 2𝜋

12
𝑥௧ଵିଵ)ଶ               (8) 

By differentiating equation (8) with respect to 𝜑଴, 𝜑ଵ, 𝜑ଵ
∗and set to zero gives 

                               Σ𝑥௧ଵ − 𝑛𝜑଴ −  𝜑ଵΣ ൬
cos 2𝜋

12
𝑥௧ଵିଵ൰ − 𝜑ଵ

∗Σ ൬
sin 2𝜋

12
𝑥௧ଵିଵ൰ = 0                                    (9) 

Σ(𝑥௧ଵ

cos 2𝜋

12
𝑦௧ଵିଵ) − 𝜑଴Σ(

cos 2𝜋

12
𝑥௧ଵିଵ) −  𝜑ଵΣ ൬

cos 2𝜋

12
𝑥௧ଵିଵ൰

ଶ

−  𝜑ଵ
∗Σ ൬

sin 2𝜋

12
𝑥௧ଵିଵ

cos 2𝜋

12
𝑦௧ଵିଵ൰ = 0        (10) 

  Σ ൬𝑥௧ଵ

sin 2𝜋

12
𝑥௧ଵିଵ൰ − 𝜑଴Σ ൬

sin 2𝜋

12
𝑥௧ଵିଵ൰ −  𝜑ଵΣ ൬

sin 2𝜋

12
𝑥௧ଵିଵ

cos 2𝜋

12
𝑥௧ଵିଵ൰ − 𝜑ଵ

∗ ൬
sin 2𝜋

12
𝑥௧ଵିଵ൰

ଶ

= 0       (11) 

By written equations (9) to (11) in matrix form gives 
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൭

𝜑
0

𝜑
1

𝜑
1
∗
൱ =

⎝

⎜
⎛

𝑛                                        Σ ቀ
ୡ୭ୱ ଶగ

ଵଶ
𝑥௧ଵିଵቁ               Σ ቀ

ୱ୧୬ ଶ

ଵଶ
𝑥௧ଵିଵቁ

𝜑
0

Σ(
cos 2𝜋

12
𝑥𝑡1−1)      𝜑

1
Σ ቀ

cos 2𝜋𝑘

12
𝑥𝑡1−1ቁ

2

      𝜑
1
∗ Σ ቀ

sin 2𝜋𝑘

12
𝑥𝑡1−1

cos 2𝜋

12
𝑥𝑡1−1ቁ

𝜑
0

Σ(
sin 2𝜋

12
𝑥𝑡1−1)     𝜑

1
Σ ቀ

sin 2𝜋

12
𝑥𝑡1−1

cos 2𝜋

12
𝑥𝑡1−1ቁ      𝜑

1
∗ Σ ቀ

sin 2𝜋

12
𝑥𝑡1−1ቁ

2

⎠

⎟
⎞

−1

൮

Σ𝑥௧ଵ

Σ(𝑥𝑡1

cos 2𝜋

12
𝑥𝑡1−1)

 Σ ቀ𝑥𝑡1

sin 2𝜋

12
𝑥𝑡1−1ቁ

൲ (12)         

 
The estimated coefficients for the FAR(1) model are 𝜑଴, 𝜑ଵ, and 𝜑ଵ

∗ respectively. 
The cyclic Bayesian and Akaike information criteria modified based on the work of Akaike 

(1974) will be utilised for figuring out the optimal model to be chosen after estimation. These are 
expressed with 

                                                      AIC (C)
= 𝑛 𝐼𝑛 𝜎ෝఌ

ଶ(𝑣) + 2𝐶(𝑣)                                                         (13) 
                                               𝐵𝐼𝐶(𝐶) = 𝐼𝑛 𝜎ෝఌ

ଶ(𝑣)

+
𝑙𝑛𝑁

𝑁
𝐶(𝑣)                                                     (14) 

in which 𝐶(𝑣)is the number of cyclic autoregressive parameters in the season and  𝜎ෝఌ
ଶ(𝑣) is a 

cyclic estimate of 𝜎ఌ
ଶ(𝑣). 

 
2.4 FAR Model Diagnostic Checking 

Upon computation of coefficients, the model's suitability shall be evaluated by assessing if 
the model's presumptions are met. The fundamental presumption thus is {𝜀௧} is noisy. Thus, by 
creating error terms ACF and PACF plots, a thorough examination regarding the fitted error terms 
shall be conducted to determine if the error terms were white noise.  
 
2.5 Forecasting with FAR Model 

Given a FAR(1) model as 
𝑥௧ଵ = 𝛿 + 𝜑ଵ𝑐𝑜𝑠𝑧(𝑥௧ଵିଵ) − 𝜑ଵ

∗𝑠𝑖𝑛𝑧(𝑥௧ଵିଵ) + 𝜇௧ 
                                             (1 − 𝜑ଵ𝑐𝑜𝑠𝑐 − ∅ଵ

∗𝑠𝑖𝑛𝑐)(𝑥௧ଵ − 𝛿)
= 𝜇௧                                                    (15) 

where 𝑐 =
ଶగ௞

ఠ
 and 𝛿 is a fixed variable. 

Equation (15) could be expressed as  
                                            𝑥௧ଵ − 𝛿

= [(∅ଵ𝑐𝑜𝑠𝑐𝑥௧ଵିଵ − ∅ଵ
∗𝑠𝑖𝑛𝑐𝑥௧ଵିଵ) − 𝛿)]                                    (16) 

The forecast formula is provided in a broad context as 
𝑥ො௧ଵ(𝑙) = 𝛿 + [(∅ଵ𝑐𝑜𝑠𝑐𝑥௧ଵ(𝑙 − 1) − 𝛿) + (∅ଵ

∗𝑠𝑖𝑛𝑐𝑥௧ଵ(𝑙 − 1) − 𝛿)] 
                  = 𝛿 + [൫∅ଵ

௟ 𝑐𝑜𝑠𝑐𝑥௧ଵ(𝑙 − 1) − 𝛿) + (∅ଵ
∗௟𝑠𝑖𝑛𝑐𝑥௧ଵ(𝑙 − 1) − 𝛿൯   𝑙 ≥ 1                           (17) 

 
2.5.1 FAR Model Forecast Evaluation  

 After the forecast is produced, it is evaluated to see if the variable forecast's actual 
outcomes match the observations. Mean Absolute Error (MAE),  Root Mean Square Error 
(RMSE), and Mean Absolute Percentage Error (MAPE) are the forecast evaluation metrics that 
are utilised.    
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These are expressed with 

                          𝑅𝑀𝑆𝐸 =     ට
ଵ

௧௩ାଵ
∑ (𝑥ො௧௩ − 𝑥௧௩)ଶ 

௣ିଵ
௧௩ୀଵ                                                            (18)   

                                   𝑀𝐴𝑃𝐸 =    ∑ ቚ
௫ො೟ೡି௫೟ೡ

௫ො೟ೡ
ቚ                                                                                   (19)

௣ିଵ
௧௩ୀଵ  

                                     𝑀𝐴𝐸 =
1

𝑡𝑣 + 1
෍ (𝑥ො௧௩ − 𝑥௧௩)ଶ

௣ିଵ

௧௩ୀଵ

                                                                       (20) 

 
where 𝑡𝑣 = 1, 2, … , 𝑝 − 1.The framework performs more effectively in forecasting when RMSE, 
MAPE, and MAE values are much smaller (Olatayo et al. 2015). 
 
2.6 Augmented Dickey-Fuller Unit Root Test 

The Augmented Dickey-Fuller (ADF) procedure will be utilised for attaining stationarity 
for the series under consideration. This involved the use of associated standard errors as well that 
will be compared with the test statistic using the appropriate values in the Dickey-Fuller table. 
 
2.7 Autoregressive Integrated Moving Average (ARIMA) Model 

This is a univariate time series model that consists of an autoregressive polynomial, an 
order of integration (𝑑) and a moving average polynomial. The usual forms of 𝐴𝑅(𝑝) and 𝑀𝐴(𝑞) 
are written as 

                                      𝑥௧ = ∅ଵ𝑥௧ିଵ + ∅ଶ𝑥௧ିଶ + ⋯ + ∅௣𝑥௧ି௣ + 𝑒௧                                                   (21) 
and 
                                    𝑥௧ = 𝜀௧ + 𝜃ଵ𝜀௧ିଵ + 𝜃ଶ𝜀௧ିଶ + ⋯ + 𝜃௤𝜀௧ି௤                                                        (22) 
 

where ∅ and 𝜃 are the autoregressive and moving average parameters respectively. 𝑥௧ is 
the observed value at time 𝑡 and 𝜀௧ is the value of the random shock at time 𝑡. It is assumed to be 
independently and identically distributed with a mean of zero and a constant variance (𝜎ଶ). ARMA 
(𝑝. 𝑞) model comprised of AR and MA models, in which the current value of the time series is 
defined linearly in terms of its previous values as well as current and previous error series.  
            

The ARMA (𝑝, 𝑞) model is given in equation (23) as 
 

                     𝑥௧ = ∅ଵ𝑥௧ିଵ + ∅ଶ𝑥௧ିଶ + ⋯ + ∅௣𝑥௧ି௣ + 𝜀௧ + 𝜃ଵ𝜀௧ିଵ + 𝜃ଶ𝜀௧ିଶ + ⋯ + 𝜃௤𝜀௧ି௤       (23) 
 
      Equation (23) can be simplified by a backward shift operator 𝐵 to obtain  
 
                                                         (𝐵)∇ௗ𝑥௧

= 𝜃(𝐵)𝑤௧                                                                           (24) 
 

Equation (24) can therefore be expressed as 𝐴𝑅𝑀𝐴(𝑝, 𝑑, 𝑞) where ∇ௗ= (1 − 𝐵)ௗ  with 
∇ௗ𝑦௧ and 𝑑௧௛ consecutive differencing. 
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2.8 Seasonal-ARIMA model 
An expansion of the ARIMA approach created by Box and Jenkins (1970) is the seasonal 

ARIMA put forth by Box et al., (2013). This model is used to reflect and obtain the features of 
seasonal variation in a given time series. 

Generally, the time series {𝑥௧}  utilizes a lag operator 𝐵  to 
process 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃. 𝐷. 𝑄)𝑠. 

A seasonal ARIMA model may be written as: 
                                     ∅௣(𝐵)Φ௉(𝐵ௌ)ௗ(1 − 𝐵ௌ)𝑥௧

= 𝜃௤(𝐵)Θ௤(𝐵ௌ)𝜀௧                                              (25) 
In equation (25), 𝐵 is a lag operator defined as 𝐵௞𝑥௧ = 𝑥௧ି௞; 

                                           ∅௣(𝐵) = 1 − ∅ଵ𝐵 − ∅ଶ𝐵ଶ − ⋯ − ∅௉𝐵௉                                                 (26) 
Φ௣(𝐵ௌ) = 1 − Φ௦𝐵௦ − Φଶ𝐵ଶ௦ − ⋯ − Φ௉𝐵௉௦      

 
Θ௤(𝐵) = 1 − Θଵ𝐵 − Θଶ𝐵ଶ − ⋯ − Θ௤𝐵௉              

 
                                         Θ௤(𝐵ௌ) = 1 − Θ௦𝐵௦ − Θଶ𝐵ଶ௦ − ⋯ − Θ௤𝐵ொ௦                                            (27) 
 
where 𝜙(𝐵)and 𝜃(𝐵)  are polynomials of order 𝑝  and 𝑞  respectively; Φ௣(𝐵ௌ)  and Θ௤(𝐵)  are 
polynomials in 𝐵  of degrees 𝑃  and 𝑄 , respectively; 𝑝  is the order of non-seasonal 
autoregression; 𝑑  is the number of regular differences; 𝑞  is the order of non-seasonal moving 
average; 𝑃 is the order of seasonal autoregression; 𝐷 is the number of seasonal differences; 𝑄 is 
the order of seasonal moving average; and 𝑆  is the length of season.  
 
3. Results and Discussion 
 
3.1 Data Exploration 

The secondary data used was obtained from the National Bureau of Statistics (NBS) E-
library (2022) from 1960 to 2022. The descriptive statistics results of the Nigerian yearly inflation 
rate are given in Table 1 and this indicated 15.85 as the mean with 15.03 as the standard deviation. 
The inflation rate lowest occurrence was in 1967 and the maximum was 72.84 in 1995 respectively. 

The time plot of the Nigerian yearly inflation series is displayed in Figure 1 and this shows 
that the inflation series is non-stationary but exhibits seasonal and cyclical variations as well. 
Therefore, this indicated that the nature of the pattern of series informs the use of the Fourier 
Autoregressive (FAR) model that can handle the variations simultaneously. The augmented 
Dickey-Fuller test was utilised to attain stationarity. Table 2 was utilised to signify that the series 
is not stationary at its level but stationary at the first difference that is I(1) at 1, 5 and 10 percent 
levels of significance respectively.  
 
3.2 Fourier Autoregressive (FAR) model identification and estimation 

An examination of the 𝐶𝐴𝐶𝐹  and 𝐶𝑃𝐴𝐶𝐹 for inflation rate series signified stability of 
𝐶𝐴𝐶𝐹 and a cut-off at lag 2 for 𝐶𝑃𝐴𝐶𝐹.  Based on this result in Figure 2, the chosen tentative 
models for modelling and forecasting Nigerian yearly inflation rate series are FAR(1), FAR(2) and 
FAR(3). The parameters of the FAR(1), FAR(2), and FAR(3) models were obtained using the 
ordinary least square procedure. In light of the lowest possible values of the Cyclic Akaike and 
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Bayesian Information criteria provided in Table 3, the FAR(1) model was determined to be the 
most suitable one.  
 
 

Table 1. Descriptive Statistics of Nigerian yearly Inflation rate 
 

Variable Mean SE Mean St Dev. Minimum Q1 Median Q3 Maximum 
Inflation rate  15.85 1.89   15.03 -3.73   7.44   12.10 17.82    72.84 

 
 
 

 
  
 

Figure 1. Time plot of Nigerian yearly inflation rate from 1960 to October 2022 
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Table 2. Stationarity test results 
  t-Statistic   Prob.* 
ADF  
 

 -6.206344 0.0000 
Test critical values: 1% level -3.548208  
 5% level -2.912631  
 10% level -2.594027  

 

        CACF      CPACF  AC   PAC  Q-Stat  Prob 
       
       

      . |***** |       . |***** | 1 0.635 0.635 26.660 0.000 

      . |**    |       **| .    | 2 0.261 -0.240 31.220 0.000 
      . |*.    |       . |**    | 3 0.177 0.221 33.357 0.000 

      . |*.    |       . | .    | 4 0.167 -0.026 35.298 0.000 

      . |*.    |       . |*.    | 5 0.211 0.184 38.446 0.000 

      . |**    |       . | .    | 6 0.234 0.013 42.377 0.000 

      . |*.    |       .*| .    | 7 0.129 -0.090 43.585 0.000 

      . | .    |       .*| .    | 8 -0.034 -0.128 43.670 0.000 

      .*| .    |       . | .    | 9 -0.084 0.008 44.209 0.000 

      .*| .    |       . | .    | 10 -0.067 -0.055 44.557 0.000 

      .*| .    |       . | .    | 11 -0.075 -0.056 45.000 0.000 

      . | .    |       . |*.    | 12 -0.028 0.091 45.062 0.000 

      . | .    |       . | .    | 13 -0.006 -0.023 45.065 0.000 

      . | .    |       . | .    | 14 -0.047 0.012 45.251 0.000 

      .*| .    |       .*| .    | 15 -0.125 -0.127 46.588 0.000 

      .*| .    |       . |*.    | 16 -0.090 0.128 47.300 0.000 

      . | .    |       . | .    | 17 0.031 0.069 47.388 0.000 

      . | .    |       .*| .    | 18 0.005 -0.154 47.390 0.000 

      . | .    |       . | .    | 19 -0.051 0.016 47.634 0.000 

      .*| .    |       .*| .    | 20 -0.107 -0.122 48.724 0.000 

Figure 2. Cyclic Autocorrelation and Partial autocorrelation for Inflation series 
 
 

Table 3. Information Criteria for Inflation Rate Series 
 

Information Criteria FAR(1) FAR(2) FAR(3) 
PAIC 8.024567 * 8.298955 8.157892 
PBIC 8. 202095 * 8.401009 8.387152 

 
The fitted FAR|(1) model estimated using ordinary least square and chosen based on the 

information criteria is given in equation (28) as 
 

𝑦ூ௡௙௟௔௧௜௢௡ ௥௔௧௘ = 15.75757 − 3.998603 cos ൬
2𝜋𝑘

𝜔
൰ 𝑦௧ିଵ − 0.417016 sin ൬

2𝜋𝑘

𝜔
൰ 𝑦௧ିଵ          (28) 
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3.3. Fourier Autoregressive (FAR) model diagnostics test 
A critical look at the residual 𝐶𝐴𝐶𝐹 and 𝐶𝑃𝐴𝐶𝐹 for fitted FAR(1) in Figure 3 signified 

that the residuals do not have any usual structure and are significant at 𝛼 = 0.05. That is, all the 
points fall within the 5% significance limit. Therefore, the fitted FAR model is considered suitable 
when forecasting the Nigerian yearly inflation rate. 

 
3.4 FAR model forecasting 

The fitted FAR(1) is used to obtain an out-sample forecast for the Nigerian yearly inflation 
rate from 2023 to 2037. The out-sample forecast values and time plot are given in Table 4 and 
Figure 4 respectively. This signified Nigerian inflation rate has continuous periodic variation and 
is a near replica of the original series from 1960 to 2037. In essence, the fitted Fourier 
autoregressive model out-sample forecast signified the model is suitable for handling complex, 
nonlinear dynamics, structural breaks, and uncertainty usually present in Inflation rate time series 
data. 

 
 

CACF       CPACF  AC   PAC  Q-Stat  Prob 
      . |****  |       . |****  | 1 0.569 0.569 21.372 0.000 
      . |*.    |       **| .    | 2 0.184 -0.206 23.648 0.000 
      . |*.    |       . |*.    | 3 0.103 0.145 24.369 0.000 
      . |*.    |       . | .    | 4 0.129 0.045 25.516 0.000 
      . |*.    |       . | .    | 5 0.143 0.056 26.958 0.000 
      . |*.    |       . |*.    | 6 0.180 0.113 29.291 0.000 
      . |*.    |       .*| .    | 7 0.096 -0.107 29.963 0.000 
      . | .    |       .*| .    | 8 -0.038 -0.072 30.073 0.000 
      . | .    |       . | .    | 9 -0.052 0.024 30.276 0.000 
      . | .    |       . | .    | 10 -0.023 -0.041 30.318 0.001 
      .*| .    |       .*| .    | 11 -0.072 -0.094 30.728 0.001 
      . | .    |       . |*.    | 12 -0.040 0.081 30.859 0.002 
      . | .    |       . | .    | 13 0.008 0.001 30.864 0.004 
      . | .    |       . | .    | 14 -0.004 0.005 30.865 0.006 
      .*| .    |       .*| .    | 15 -0.128 -0.168 32.269 0.006 
      .*| .    |       . |*.    | 16 -0.075 0.145 32.755 0.008 
      . | .    |       . | .    | 17 0.049 0.069 32.966 0.011 
      . | .    |       .*| .    | 18 0.036 -0.082 33.086 0.016 
      . | .    |       . | .    | 19 -0.016 -0.009 33.111 0.023 
      .*| .    |       .*| .    | 20 -0.067 -0.071 33.535 0.029 

 
Figure 3. Residual Cyclic Autocorrelation and Partial autocorrelation for Inflation series 
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Table 4. Forecast of Nigerian inflation rate series from 2023 to 2037 

 
           
Year(s)                                                                                                                      FAR ARIMA SARIMA 

2023 11.7590 18.2835 -4.7921 

2024 12.5532 18.2494 34.6072 

2025 16.8538 18.3051 31.7011 

2026 19.5362 18.3910 -9.6853 

2027 14.8583 18.4843 -2.1705 

2028 19.5541 18.5817 32.0356 

2029 14.6394 18.6801 40.0990 

2030 17.8514 18.7787 46.4414 

2031 11.9889 18.8775 54.2959 

2032 11.7483 18.9764 12.5356 

2033 12.6367 19.0752 -1.1249 

2034 17.8194 19.1740 5.06680 

2035 12.1484 19.2729 -8.77490 

2036 12.3839 19.3717 -16.7610 

2037 14.7404 19.4705 -5.89370 

 
 
 
 
 
 

 
 

Figure 4. Time plot of Nigerian inflation rate forecast from 1960 to 2037 (FAR model) 
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3.4. Comparison of FAR, ARIMA and SARIMA models 

The Nigerian yearly inflation rate is stationary at 𝑑 = 1 utilising the Augmented Dickey-
Fuller test results in Table 2. Thereafter, ARIMA and SARIMA models were identified using ACF 
and PACF. The ACF plot tailed off at lag 1 and PACF cut-off after lag 2, hence p = 1, 2 and q = 1 
or p = 2 and q = 1, 2 were picked.  
The tentative models for ARIMA are  

𝐴𝑅𝐼𝑀𝐴(1,1,1), 𝐴𝑅𝐼𝑀𝐴(1,1,2), 𝐴𝑅𝐼𝑀𝐴(2,1,1) 𝑎𝑛𝑑 𝐴𝑅𝐼𝑀𝐴(2,1,2) 
For the SARIMA model,  

𝑆𝐴𝑅𝐼𝑀𝐴(1,1,2) × (1,1,1)ଵଶ, 𝑆𝐴𝑅𝐼𝑀𝐴(2,1,2) × (1,1,2)ଵଶ, 𝑆𝐴𝑅𝐼𝑀𝐴(2,1,1)
× (2,1,1)ଵଶ 𝑎𝑛𝑑 𝑆𝐴𝑅𝐼𝑀𝐴(1,1,2) × (1,1,2)ଵଶ 

were the chosen tentative models. 
The ordinary least square procedure was used to fit the four proposed approaches for 

ARIMA and SARIMA models. Utilising the lowest values of the fitted Schwarz and Akaike 
information criteria, better frameworks for the annual inflation rate were selected. The optimal 
models for the Nigerian yearly inflation rate are 𝐴𝑅𝐼𝑀𝐴(1,1,2) and 𝑆𝐴𝑅𝐼𝑀𝐴(2,1,1) × (2,1,1)ଵଶ  
models. The residuals of these approaches do not have any usual structure and are significant at 
𝛼 = 0.05 . That is, all the points fall within the 5% significance limit based on 𝐴CF  and 
PACF residual plots.  

 To ascertain the reasons while Fourier Autoregressive technique is a better model 
for the Nigerian inflation rate forecast,  ARIMA(1,1,2) and SARIMA(2,1,1)(2,1,1)ଵଶ models 
forecast values given in Table 4 and Figure 4 were compared with that of FAR(1) model. Based 
on the comparison, ARIMA(1,1,2) and SARIMA(2,1,1)(2,1,1)ଵଶ models are not appropriate for 
forecasting the Nigerian inflation rate since the forecasted values from these models could not 
capture and reflect the cyclical and periodicity that is present in the inflation rate series. While 
SARIMA(2,1,1)(2,1,1)ଵଶ model captured and exhibited the seasonality in the Nigerian inflation 
rate series but the periodicity in the series were not resolved. However, the FAR(1) model forecast 
in Table 4 and Figure 4 captured and exhibited the seasonality and periodicity present in the 
inflation rate series. As well, the FAR(1) model showed a continuous periodic movement and close 
reflection to the original series from 2023 to 2037. The values of the forecast evaluation for the 
FAR(1) model in Table 5 showed as well the consistency of the forecast since the values were 
relatively low. Hence, the Fourier Autoregressive model is adequate and suitable for modelling 
and forecasting Nigerian rainfall series. 

The forecast evaluation metrics obtained from FAR(1), ARIMA(1,1,2) and 
SARIMA(2,1,1)(2,1,1)ଵଶ models are displayed in Table 5. The MAE, RMSE and MAPE 
values in Table 5 signified that the FAR(1) model is the better model since its forecast 
evaluation metrics are lower than that of the ARIMA(1,1,2) and 
SARIMA(2,1,1)(2,1,1)ଵଶ models. Therefore, FAR(1) is the better model for forecasting the 
Nigerian inflation rate from 1960 to 2037. 
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Figure 4. Time plot of Nigerian inflation forecast from 2023 to 2037 (ARIMA and 
SARIMA models) 

 
Table 5. Forecast Evaluation metrics for FAR, ARIMA and SARIMA models 

Forecast Evaluation Metrics 𝐹𝐴𝑅(1) 𝐴𝑅𝐼𝑀𝐴(2,1,5) 𝑆𝐴𝑅𝐼𝑀𝐴(2,1,5) × (1,1,1)ଵଶ 

PMAE    4.627743   
PRMSE    5.037131   
PMAPE    22.49446   
MAE     10.480962            6.085470 
RMSE     9.882820            7.497472 
MAPE     32.69064            30.24077 

 
4. Conclusion 
     Several researches have been carried out to analyse and forecast inflation rate in Nigeria 
and globally. However, most researchers do not take into cognisance the presence of cyclical and 
periodic variation in inflation rate time series data. Therefore, FAR, ARIMA and SARIMA models 
were used to analyse and forecast the Nigerian inflation rate to consider stationarity, seasonality 
and periodicity in the series. From the results obtained, the FAR(1) model was identified to be the 
better model since its forecast follows the pattern of previous years and also indicates the situation 
of inflation rate pattern in Nigeria. The forecast evaluation metrics obtained from FAR(1) are lower 
than those of ARIMA(1,1,2) and SARIMA(2,1,1)(2,1,1)ଵଶ models. Therefore, FAR(1) is the 
better model for forecasting the Nigerian inflation rate when the variation exhibited by series is 
considered. The study is used to recommend that measures and policies should be put in place to 
cushion the negative effects of inflation on the economy, there is a need to have an insight into the 
future value of inflation to design appropriate policy measures to cushion the effects of inflation 
on the economy. Future studies on macroeconomic variables should consider the possibility of 
proposing more models that further improve the forecasting of the inflation rate.  
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