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ABSTRACT 
The discussion revolves around the broader concept of exponential family distributions, 
exploring their applications in survival analysis and reliability engineering. Various 
distributions within this family, such as the Weibull, Rayleigh, and Gompertz distributions, are 
examined in terms of their suitability for modelling different phenomena, including 
instantaneous failure events, independent sums of events, and decreasing processes over time. 
Additionally, a newly derived distribution, termed the Meenakshi’s-Gompertz distribution, is 
introduced, with its parameters interchangeably representing scale and shape properties. 

Keywords: Distribution, mean, variance, moment generating function and MLE. 

1. Introduction 

When we studied the concept of uncertainty, we introduced probability density and its 
distribution function of random variables. In the parametric family of density functions is a 
collection of density functions that is indexed by quantity called a parameter (Mood, A. M., 
Graybill, F. A., & Boes, D. C. (1974). The parameters are introduced in most of the families of 
distributions that are mean, variance, and moments, and also introduced moment generation 
function, characteristics function, cumulant generating function, entropy, survival, and hazard 
function of distribution. The number of potential distribution models is very large; in practice, 
a relatively small number have come to prominence, either because they have desirable 
mathematical characteristics or because they relate particularly well to some slice of reality or 
both. Evans, M., Hastings, N., Peacock, B., & Forbes, C. (2011). 
Example: the family of exponential distribution. If random variable is time between the two 
succeeding events. It is concentrated on occurrence and also follows the memory less nature, 
such distribution is simply called as exponential. It is applicable for various flieds of reliability 
engineering, queuing theory, survival analysis, Telecommunications, Economics and finance, 
renewal processes and statistical inference. 

The generalization of exponential distribution extended to one shape parameter α that 
is called gamma distribution. if random variable follows the interval time between the two 
events which is increasing, decreasing and not constant rate. It is applicable for the field of 
queuing theory reliability engineering, health and medical science, economics and finance, 
traffic engineering, insurance and actuarial science image processing, environmental studies. 
It reduces to erlang where scale parameter at proportion (Eric U., Oti Michael O. Olusola, and 
Francis C. Eze2021). 

A special case of versatile probabilities distribution is Weibull distribution. it is also 
generalization of gamma distribution, were shape parameter as power function of scale 
parameter. It is used for various field of reliability engineering, survival analysis, wind energy, 
material science, medical science, quality control, economics and finance. It is suitable for 
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model designing to the environmental studies of extreme event such as flood, droughts or other 
natural disasters. This distribution is not a universal fit for all situation. When scale parameter 
α=2 (Hadeel S. Klakattawi 2021) 

Another one parameter case of exponential family of distribution such as a random 
variable as sum of independent events peculiar situation of wind speed, power received by 
radar from the scatter surface. The distribution of the random variable is called as Rayleigh. It 
is the particular case of Weibull distribution when shape parameter α=2. It is application for 
the received signal is sum of many independent randomly phased reflections, leading to a 
Rayleigh distribution amplitude. Wide application in real world, that are wireless 
communication, radar systems wind speed modelling, seismology, image processing physics 
and engineering wireless sensor networks. 

Another one of the particular cases of exponential distribution in which variable 
expressed on the curve liners form which is introduced by Benjamin Gompertz in 1825. The 
model for lifetime for systems with increasing failure rate over time. It is applicable for 
modelling of mortality rate in population, survival analysis, actual science, biological and 
medical sciences and reliability engineering.  

Reliability engineering of increasing failure rate. In the Survival analysis, it is suitable 
for scenarios where the hazard rate (instantaneous failure rate) increases exponentially with 
time. In the Actuarial science it is used for modelling mortality rate and analysing the life 
expectancy. In the Biological and medical science, it is used   model the growth of tumours or 
the distribution of lifetimes for certain organisms. It has been used in studies related to aging 
and mortality. The Gompertz distribution is established that the specifics characteristics of the 
data or phenomenon being modelled.  

2. Meenakshi’s Gompertz distribution  

The motivation of the newly derived distribution, which is the situation of 
complications In the biological study, the viral replication processes are rapid change at the 
instantaneous time period, where the count level of the infected patient suddenly decreases. 
The newly derived distribution is suitable for this kind of study. This distribution is exclusively 
characterized by the rapid growth of viral replication. In particular, the exponential distribution 
follows the concept of rate of interval between the events. The generalization of exponentials, 
such as the gamma distribution, which is not a constant rate but either increasing or decreasing 
in nature. In that situation, the specific case of the exponential family of the distribution, namely 
the Weibull distribution, It is suitable for instantaneous failure of the event in the wide-range 
phenomenon. In the particular case of the Weibull distribution, such as the Rayleigh 
distribution, the event over period is a floating and independent sum of events. One of the 
exponential families of the distribution is the Gompertz distribution, the event-decreasing 
nature over time. It is suitable for the count-decreasing nature of the infected patient, but the 
newly derived distribution is suitable for rapid growth of the viral replication process when 
sudden decline of cells. When cell distribution follows, Gompertz (J. A. Adewara, J. S. 
Adeyeye, and C. P. 2019). The newly derived distribution. Interchanging the scale parameter 
as shape parameter and shape parameter as scale parameter, the new distribution is named 
Meenakshi’s-Gompertz (MG) distribution (Nadarajah, S., & Kotz, S. (200). 
 
3.1. The random variable is said to have Meenakshi’s Gompertz distribution and it is given by 
  

𝑓(𝑥, 𝛼, 𝛽) = 𝛼𝛽𝑒൫ఈ௘షഁೣିఉ௫ି ൯                           α, β >  0        … . (1) 
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where α is shape parameter and β is scale parameter  

 
 

3.2. The cumulative distribution function is given by  

𝐹(𝑥) = න 𝛼𝛽𝑒൫ఈ௘షഁೣିఉ௫ିఈ൯

୶

଴

𝑑𝑥 

  = 𝛼𝛽𝑒ିఈ න 𝑒൫ఈ௘షഁೣ൯ ∗ 𝑒ିఉ௫

୶

଴

𝑑𝑥 

Let 
𝑒ିఉ௫ = 𝑧 
−𝛽𝑒ିఉ௫𝑑𝑥 = 𝑧𝑑𝑧 

𝐹(𝑥) = ቂ1 − 𝑒൫ఈൣ௘షഁೣିଵ൧൯ቃ                                                         … . (2) 
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3.3. The mean of the Meenakshi’s-Gompertz distribution is given by  

𝐸[𝑋] = න 𝑥. 𝛼𝛽𝑒൫ఈ௘షഁೣିఉ௫ିఈ൯

ஶ

଴

𝑑𝑥 

𝐸[𝑋] = ෍
𝛼𝛽𝑒ିఈ𝛼௜

𝑖!
൥

𝑔𝑎𝑚𝑚𝑎(2)

൫𝛽(𝑖 + 1)൯
ଶ൩

ஶ

௜ୀ଴

 

Where  

𝑒ఈ௘షഁೣ
= ෍

ൣ𝛼𝑒ିఉ௫൧

𝑖!

ஶ

௜ୀ଴

௜ 

 

 

Table :1 Mean with various values of β 

β 𝐸[𝑥] 

1 1.383257 

2 0.691629 

3 0.461086 

4 0.345814 

5 0.276652 

6 0.230543 

7 0.197608 

8 0.172907 

9 0.153695 

10 0.153695 
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Table :2 Mean with various values of α 

α 𝐸[𝑥] 

0.5 1.383257 

0.6 0.691629 

0.7 0.461086 

0.8 0.345814 

0.9 0.276652 

0.1 0.230543 

0.11 0.197608 

0.12 0.172907 

0.13 0.153695 

0.14 0.138326 
 

3.4. The second raw moment is given  

𝐸[𝑋ଶ] = න 𝑥ଶ. 𝛼𝛽𝑒൫ఈ௘షഁೣିఉ௫ିఈ൯

ஶ

଴

𝑑𝑥 

= 𝛼𝛽𝑒ିఈ න 𝑥ଶ. 𝑒൫ఈ௘షഁೣିఉ௫൯

ஶ

଴

𝑑𝑥 

𝐸[𝑋ଶ] = ෍
𝛼𝛽𝑒ିఈ𝛼௜

𝑖!
∗ ൥

ϒ3

൫𝛽(𝑖 + 1)൯
ଷ൩

ஶ

௜ୀ଴

 

Where  

𝑒ఈ௘షഁೣ
= ෍

ൣ𝛼𝑒ିఉ௫൧

𝑖!

ஶ

௜ୀ଴

௜ 

 

 
3.5. Variance for Meenakshi’s-Gompertz distribution is given by  

𝑉(𝑋) = ෍
𝛼𝛽𝑒ିఈ𝛼௜

𝑖!
∗ ൥

ϒ3

൫𝛽(𝑖 + 1)൯
ଷ൩

ஶ

௜ୀ଴

− ൝෍
𝛼𝛽𝑒ିఈ𝛼௜

𝑖!
൥

ϒ2

൫𝛽(𝑖 + 1)൯
ଶ൩

ஶ

௜ୀ଴

ൡ

ଶ
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Table: 3 Variance for Meenakshi’s-Gompertz distribution with respective α  

𝛼 𝑣(𝑥) 
0.6 0.293818 
0.7 0.626000 
0.8 0.773071 
0.9 0.859352 
0.1 0.916508 
0.11 0.956137 
0.12 0.983655 
0.13 1.002089 
0.14 1.013377 

 
Table: 4 Variance for Meenakshi’s-Gompertz distribution with respective β 

β 𝑣(𝑥) 
1 1.250866e+05 
2 1.146197e+11 
3 1.339073e+17 
4 1.696866e+23 
5 2.227939e+29 
6 2.976803e+35 
7 4.012659e+41 
8 5.430782e+47 
9 7.358091e+53 
10 9.961528e+59 

 
3.6. The moment generating function 
 
The moment generating function is given by  

𝑀௫(𝑡) = 𝐸(𝑒௧௫) = න 𝑒௧௫. 𝛼𝛽𝑒൫ఈ௘షഁೣିఉ௫ିఈ൯

ஶ

଴

𝑑𝑥 

= ෍
ൣ𝛼௜ାଵ𝛽𝑒ିఈ൧

𝑖!

ஶ

௜ୀ଴

ቈ
𝑒ି௫(ఉାఉ௜ି )

−(𝛽 + 𝛽𝑖 − 𝑡)
቉

଴

ஶ

 

𝑀௫(𝑡) = ෍
ൣ𝛼௜ାଵ𝛽𝑒ିఈ൧

𝑖!

ஶ

௜ୀ଴

൤
1

(𝛽 + 𝛽𝑖 − 𝑡)
൨  

Where  

𝑒ఈ௘షഁೣ
= ෍

ൣ𝛼𝑒ିఉ௫൧

𝑖!

ஶ

௜ୀ଴

௜ 
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3.7. The characteristics function  
The characteristics function is given by  

Ϙ௫(𝑡) = 𝐸൫𝑒௝௧௫൯ = ෍
ൣ𝛼௜ାଵ𝛽𝑒ିఈ൧

𝑖!

ஶ

௜ୀ଴

൤
1

(𝛽 + 𝛽𝑖 − 𝑗𝑡)
൨  

 

3.8. The reliability functions  
The reliability function is given by  

𝑅௫(𝑡) = 1 − 𝐹(𝑥)  

= 1 − ቂ1 − 𝑒൫ఈൣ௘షഁೣିଵ൧൯ቃ 

= 𝑒൫ఈൣ௘షഁೣିଵ൧൯ 

 

 
3.9. The Hazard functions  
The Hazard function is given by  

𝐻௫(𝑡) =
𝑓(𝑥)

𝑅௫(𝑡)
 

=
𝛼𝛽𝑒൫ఈ௘షഁೣିఉ௫ିఈ൯

𝑒൫ఈൣ௘షഁೣିଵ൧൯
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The likelihood function is given by   

𝑙(𝑥, 𝛼, 𝛽) = ෑ 𝛼𝛽𝑒൫ఈ௘షഁೣ೔ିఉ௫೔ିఈ൯

௡

௜ୀଵ

 

= (𝛼𝛽)௡𝑒௡ఈ𝑒ିఉ ∑ ௫೔
೙
೔సభ 𝑒

ቀఈ௘ష ∑ ೣ೔
೙
೔సభ ቁ 

Log-likelihood function is given by 
 

log[𝑙(𝑥, 𝛼, 𝛽)] = log ൥ෑ 𝛼𝛽𝑒൫ఈ௘షഁೣ೔ିఉ௫೔ିఈ൯

௡

௜ୀଵ

൩ 

 = log ൤(𝛼𝛽)௡𝑒௡ఈ𝑒ିఉ ∑ ௫೔
೙
೔సభ 𝑒

ቀఈ௘ష ∑ ೣ೔
೙
೔సభ ቁ

൨ 

3.10 Maximum Likelihood Estimation  
  
MLE is given by  

𝜕 log[𝑙(𝑥, 𝛼, 𝛽)]

𝜕𝛼
=

𝜕 log ൤(𝛼𝛽)௡𝑒௡ఈ𝑒ିఉ ∑ ௫೔
೙
೔సభ 𝑒ቀఈ௘ష ∑ ೣ೔

೙
೔సభ ቁ

൨

𝜕𝛼
 

𝜕 log[𝑙(𝑥, 𝛼, 𝛽)]

𝜕𝛽
=

𝜕 log ൤(𝛼𝛽)௡𝑒௡ఈ𝑒ିఉ ∑ ௫೔
೙
೔సభ 𝑒ቀఈ௘ష ∑ ೣ೔

೙
೔సభ ቁ

൨

𝜕𝛽
 

3.11 Order statistics  

𝑓௑𝑘(𝑥) =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
[𝐹௑(𝑥)]௞ିଵ[1 − 𝐹௑(𝑛)]௡ି௞𝑓௑(𝑥) 

=
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
ቂ1 − 𝑒൫ఈൣ௘షഁೣିଵ൧൯ቃ

௞ିଵ

ቂ𝑒൫ఈൣ௘షഁೣିଵ൧൯ቃ
௡ି௞

ቂ𝛼𝛽𝑒൫ఈ௘షഁೣିఉ௫ିఈ൯ቃ 

This expression combines the probabilities associated with the position of 
𝑋௄considering the cumulative probabilities of preceding and succeeding order statistics. 
Understanding this formula provides valuable insights into the distributional properties of order 
statistics, contributing to various statistical applications such as hypothesis testing, reliability 
analysis, and survival studies. 
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4. The simulation studies  
 

It is difficult to formulate MLE so it is calculated by using R software. The R code is 
provided below, a simulation is used to generate artificial or synthetic data that follows a 
particular mathematical model. This synthetic data is then used for the purpose of analysis, 
optimization, and parameter estimation. The algorithm of simulation process is given below: 
 
1.Mathematical Model: (model_function) The model function takes parameters alpha and 
beta, where alpha represents the shape parameter, and beta represents the scale parameter. 
The model function is defined as: 
model_function <- function(x, alpha, beta) { 
  alpha * beta * exp(-alpha * exp(-beta * x)) 
} 
 
2. Simulation of Data: The simulated data is generated using the model function with known 
or "true" values of parameters (alpha_true and beta_true). Additionally, random noise is added 
to the data using rnorm to introduce variability. 
set.seed(123) 
x_sim <- seq(0, 10, length.out = sample_size) 
alpha_true <- 2 
beta_true <- 0.5 
y_sim <- model_function(x_sim, alpha = alpha_true, beta = beta_true) + rnorm(sample_size, 
mean = 0, sd = 0.2) 
simulated_data <- data.frame(x = x_sim, y = y_sim) 
 
3.Analysis with Simulated Data: The simulated data (simulated_data) is then used in the 
optimization process to estimate the parameters (alpha and beta) that would best fit the 
observed data. The optimization is performed using the optim function in R.  
optim_result <- optim(par = initial_params, fn = function(p) -log_likelihood_model(p), method 
= "Nelder-Mead") 
The negative log-likelihood is minimized to find the parameter values (alpha_hat and 
beta_hat) that maximize the likelihood of observing the simulated data. 
 
4. Results and Metrics: 
Various metrics such as AIC and BIC are then calculated based on the estimated parameters. 
The results, including sample size, AIC, BIC, and estimated MLE values, are stored for further 
analysis or interpretation. 
results_model <- lapply(sample_sizes, simulate_and_analyze_model) 
 
 
Model comparison  
 

This study compares the performance of the Meenakshi’s-Gompertz model with the 
traditional Gompertz model across different sample sizes. The Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC) were used as the primary metrics for 
evaluation. These metrics were calculated for sample sizes of 50, 100, 200, and 500.  
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Table :5 
n=50 BIC AIC 

Meenakshi’s-
Gompertz 

20.585 22.4102 

Gompertz 21.166 22.99023 
 

When sample size is n = 50 The Meenakshi’s-Gompertz model yielded a BIC of 20.585 
and an AIC of 22.4102, compared to the Gompertz model's BIC of 21.166 and AIC of 
22.99023. 
 

Table: 6 
n=100 BIC AIC 

Meenakshi’s-
Gompertz 

45.99038 51.20072 

Gompertz 46.75305 51.96339 
 

When sample size n = 100: The Meenakshi’s-Gompertz model had a BIC of 45.99038 
and an AIC of 51.20072, while the Gompertz model had a BIC of 46.75305 and an AIC of 
51.96339. 
 

Table: 7 
n=200 BIC AIC 

Meenakshi’s-
Gompertz 

88.84646 95.4431 

Gompertz 88.9969 95.5936 
 

When sample size is n = 200: The BIC and AIC for the Meenakshi’s-Gompertz model 
were 88.84646 and 95.4431, respectively, compared to 88.9969 and 95.5936 for the Gompertz 
model. 

Table: 8 
n=500 BIC AIC 

Meenakshi’s-
Gompertz 

205.4676 213.896 

Gompertz 206.176 214.012 
 

When sample size is n = 500: The Meenakshi’s-Gompertz model showed a BIC of 
205.4676 and an AIC of 213.896, while the Gompertz model had a BIC of 206.176 and an AIC 
of 214.012. 

Table: 9 MLE of the parameter α and β 
n α β 

50 26.84931 0.003427825 

100 154.8101 0.000621126 

500 231.7015 0.0002144313 

1000 463.6854 0.0004206395 
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The sample size increased, the estimates of the parameters α and β became more stable. 

For instance, the estimate of α ranged from 26.84931 for n = 50 to 463.6854 for n = 1000. 
Similarly, the estimate of β ranged from 0.003427825 for n = 50 to 0.0004206395 for n = 1000. 
This pattern indicates that larger sample sizes lead to more precise estimates of these 
parameters. 

5.Applications 
 

 
Table:10 The  𝐶𝐷ସ

ା𝑇 cells count data obtained from Kaggle (source 10) 
299 551 799 774 324 640 655 493 451 821 406 394
 292 803 698 444 826 440 947 
 

 
 
 

Table :11 Result 
Distribution Parameter 

(MLE) 
AIC BIC AAIC KS 

Statistic 
 
P-value 

α β 

Meenakshi’s-
Gompertz 

2.275 0.457 251.4 249.5 250.6 0.4736842 0.004618 

Gompertz 2.253 0.442 277.9 276.9 277.6 0.579 0.00598 
 

Table 11 shows   the Meenakshi’s-Gompertz model outperforms both the Gompertz and 
Exponential models based on several key metrics. With an AIC of 251.4, BIC of 249.5, and 
AAIC of 250.6, the Meenakshi’s-Gompertz model offers the best fit to the data, as reflected by 
its lower values compared to the Gompertz model, which had an AIC of 277.9, BIC of 276.9, 
and AAIC of 277.6. The Exponential model, on the other hand, showed the poorest fit, with the 
highest AIC (367.8), BIC (375.9), and AAIC (356.5). These findings suggest that the 
Meenakshi’s-Gompertz model is the most suitable for accurately representing the dataset, 
providing a better balance between model complexity and fit than the other models. 

 
Table12: The HIV viral count data obtained from Kaggle (source 10) 

13045 14898 76139 284 7377 320 356 667 704 720 1693 720  
8728 67441 1899 1026 3090 13665 13045 779 6888 

 
 

Table :13 
Distribution Parameter (MLE) AIC BIC AAIC KS 

Statistic 
P value 

α β 

Meenakshi’s-
Gompertz 

2.285728 0.0005461776 493.1301 427.1061 492.4635 0.6666667 1.637602e-
05 

Gompertz 1 0.1 963.0857 897.0617 962.4191 0.7899 1.7899e-05 
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From the above table the comparison of models based on AIC, BIC, and AAIC shows 

that the Meenakshi’s-Gompertz model offers the best fit for the data. It achieves the lowest AIC 
(493.1301), BIC (427.1061), and AAIC (492.4635), indicating a superior balance between 
model complexity and data accuracy. In contrast, the Gompertz model exhibits much higher 
values across these metrics, suggesting a less optimal fit. The Exponential model performs 
better than the Gompertz model but still does not match the effectiveness of the Meenakshi’s-
Gompertz model, making the latter the most suitable choice for this dataset. 
 
6. Conclusion 
 

In this paper, a new distribution called the Meenakshi’s-Gompertz distribution is 
derived, and various statistical properties such as the mean, variance, hazard function, survival 
function, moment generating function, and characteristic function are derived. Simulated and 
real data are fitted to this distribution, and the maximum likelihood estimates (MLE) of the 
parameters α and β are obtained. By comparing the Akaike Information Criterion (AIC), 
Bayesian Information Criterion (BIC), and Adjusted Akaike Information Criterion (AAIC), it 
is demonstrated that this distribution is highly suitable for observing changes in rapid 
occasions. 

From the simulation study the Meenakshi’s-Gompertz model demonstrates stronger 
performance compared to the traditional Gompertz model, particularly with larger datasets. 
The lower AIC and BIC values, along with the stable parameter estimates at larger sample 
sizes, support the adoption of the Meenakshi’s-Gompertz model in similar studies. 

Specifically, in biological studies, particularly in the human immune system, viral 
dynamic processes follow the Meenakshi’s-Gompertz random variable, as illustrated through 
a real dataset. The data are fitted and compared with the exponential distribution and Gompertz 
distribution, revealing that the AIC, BIC, and AAIC values are smaller for the MG distribution, 
indicating its superior fit to the data. 
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