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ABSTRACT 
A J-shaped distribution called inverted Topp-Leone (ITL) is discussed in this paper in both one and two 

dimensions. The bivariate inverted Topp-Leone (BITL) distribution is introduced as a shock Model. The 

mathematical properties of ITL   and BITL distributions are discussed. All the characteristic functions for 

both ITL   and BITL distributions are obtained explicitly in compact forms. For the unknown parameters 

maximum likelihood estimation is applied and the exact information matrix is derived. A new two methods 

for constructing bivariate distributions from BITL distribution are discussed in detail. Consequently, 

generalized and exponentiated ITL distributions are defined in both univariate and bivariate cases.  An 

absolutely continuous BITL distribution is also discussed with its properties. A real data set is then re-

analyzed for illustration. 

Keywords: J-shaped distribution; Topp-Leone Distribution; Inverted Topp-Leone Distribution; Generalized     

                  Inverted Topp-Leone; Exponentiated Inverted Topp-Leone, Bivariate Inverted Topp-Leone    

                  Distribution. 

1. Introduction 

One of the most popular distributions in many research areas is the J-shaped distribution. 

Where the non-normal data's probability distributions' shapes display a J-shaped distribution. 

Inverted Topp-Leone (ITL) distribution is a J-shaped distribution that Muhammed (2019b) 

recently introduced with support 𝑥 > 1. Which is useful for modeling lifetime Phenomena. The 

author talked about the mode, median, quantile function, and moments around zero among other 

statistical characteristics for the ITL distribution. Additionally, she obtained hazard, reliability, 

and reversed hazard functions for this distribution as reliability measures. Expressions for order 

statistics such as moments and product moments can also be obtained in closed forms. The MLE 

and confidence intervals are considered for the reliability, hazard, and reversed hazard functions. 

In the next section, a new ITL distribution is defined with wider support that is   𝑥 > 0. 

The analysis of dependent variables is crucial. For instance, in economic studies, 

investigate the relationship between years of education and personal income, personal income and 

expenditure, inflation, and unemployment; in biological studies, investigate the relationship 

between blood pressure and body weight for a patient and the time until kidney failure in the left 

and right kidneys; In engineering studies, the lifespan of a twin-engine plane is examined, along 

with warranty policies based on failure times and warranty servicing times, and various 

applications, such as the shock model, competing risks model, stress model, maintenance model, 

and longevity model. 

Because it discusses all possible outcomes for the random variables (i.e., the first random 

variable is smaller, greater, or equal to the second random variable), the bivariate Marshal-Olkin 
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family is crucial for understanding and analyzing the failure time of two variables interacting with 

one another. The introduction of a bivariate extension of the ITL distribution with marginals that 

match univariate ITL distributions is one of the goals of this paper. It is demonstrated that the 

proposed bivariate models have a structure with a single part. 

The paper is structured as follows: in Section 2, an ITL distribution and its properties are 

introduced, and Section 3 provides a detailed discussion of the ITL's bivariate extension. In Section 

4, it is observed how to obtain MLE and the exact information matrix for the BITL distribution 

parameters. In Section 5, application for a real data set is evaluated. Section 6, talks about a 

simulation study. In Section 7, new techniques for creating bivariate distributions resulting from 

BITL distributions are observed. Section 8 lists the conclusion and unresolved issues. 

2. Univariate ITL Distribution 

Following are the pdf and cdf that define the Topp-Leone distribution, respectively:   

               𝐹(𝑡; 𝛽) = 𝑡𝛽(2 − 𝑡)𝛽           (2.1) 

   

And   𝑓(𝑡; 𝛽) = 𝛽(2 − 2𝑡)(2𝑡 − 𝑡2)𝛽−1                    (2.2) 

For 0 < 𝑡 < 1 and 𝛽 > 0. 
 

Assume 𝑋 =
1

𝑇
− 1, then X's pdf and cdf are provided as follows, respectively. 

  𝑓𝐼𝑇𝐿(𝑥; 𝛽) = 2𝛽𝑥(𝑥 + 1)−2𝛽−1(2𝑥 + 1)𝛽−1         (2.3) 

And    𝐹𝐼𝑇𝐿(𝑥; 𝛽) = 1 − (𝑥 + 1)−2𝛽(2𝑥 + 1)𝛽        (2.4) 

For 0 < 𝑥 < ∞ and 𝛽 > 0. 
 The term "inverted Topp-Leone distribution"  refers to the distribution of X in this situation and 

denoted by 𝐼𝑇𝐿(𝛽). 

 
 

Figure 1: The pdf and  cdf of the ITL Distribution for Some Values of 𝛽 
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The pdf (2.3) can be demonstrated to satisfy the following generalized Pearson differential 

equation system 

𝑓(𝑥)́

𝑓(𝑥)
=

𝑎0+𝑎1𝑥+𝑎2𝑥
2

𝑏0+𝑏1𝑥+𝑏2𝑥2+𝑏3𝑥3
. 

 

Where 𝑎0 = 1, 𝑎1 = 1, 𝑎2 = −2𝛽 − 2,  𝑏0 = 0 , 𝑏1 = 1, 

 𝑏2 = 3 and 𝑏3 = 2. 
 

The IT(𝛽) distribution may be considered as a J- shaped because𝑓(𝑥) > 0, 𝑑𝑓(𝑥)
𝑑𝑥

<0  and for some 

values   𝑑
2𝑓(𝑥)

𝑑𝑥2
> 0. 

The 𝐼𝑇𝐿(𝛽) distribution's mode is as follows 

√
1

2𝛽 + 2
. 

The 𝐼𝑇𝐿(𝛽) distribution's quantiles is as follows 

  𝑥𝑞 = (1 − 𝑞)
−1

𝛽
 
 √1 − (1 − 𝑞)

1

𝛽  . (1 + √1 − (1 − 𝑞)
1

𝛽), 0 < 𝑞 < 1.  

               

The 𝐼𝑇𝐿(𝛽) distribution's median is a special case from the quantile function, when 𝑞 =
1

2
, 

𝑥0.5 = (0.5)
−1

𝛽
 
 √1 − (0.5)

1

𝛽. (1 + √1 − (0.5)
1

𝛽). 

    

Proposition 1: The 𝑘𝑡ℎ- moment about zero denoted by  𝜇𝑘́ for 𝐼𝑇𝐿(𝛽)  distribution is given by 

𝜇𝑘́ = 𝛽∑  (−1)𝑗𝑐(𝑘, 𝑗)Β(j − k + 1 ,
𝑘

2
+ 1)∞

𝑗=0 . 

For 𝑘 = 1. . . 𝑛 and 𝛽 ≠ 1. 

such that 

𝑐(𝑘, 0) = 2𝑘 , 𝑐(𝑘, 1) = 𝑘 2𝑘−1and 𝑐(𝑘, 𝑗) =
𝑘 2𝑘−2𝑗 

𝑗!
 ∏ (𝑘 − 𝑗 − 𝑖), 𝑗 ≥ 2

𝑗−1
𝑖=1   

and Β(. , . )is a beta function. 

Proof. Start with  𝜇𝑘́ = 𝐸(𝑋𝑘) = ∫ 𝑥𝑘
∞

0
 𝑑𝐹(𝑥) 

Use the transformation  𝑈 = 𝐹(𝑋) such that   𝑥 = 𝐹−1(𝑢), 
So, 

𝜇𝑘́ = ∫ [𝑢
−1

𝛽
 
 √1 − 𝑢

1

𝛽  . (1 + √1 − 𝑢
1

𝛽)]𝑘
1

0
 𝑑𝑢            

Using the power series expansion for [1 + √1 − 𝑢
1

𝛽)]𝑘 [see p.49 of Gradshteyn and. 

Ryzhik(1980)7th edition]  

[1 + √1 + 𝑢)]𝑞 = 2𝑞(1 +
𝑞

𝑖!
(
𝑢

2
) +

𝑞(𝑞−3)

2!
(
𝑢

2
)
2

+
𝑞(𝑞−4)(𝑞−5)

3!
(
𝑢

2
)
3

+⋯)        (2.5) 

For any real number q;  |𝑢| < 1. 
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This completes the proof. 

The 𝐼𝑇𝐿(𝛽) distribution's survival function is defined as  

  𝑆𝐼𝑇𝐿(𝑥; 𝛽) = 𝑃(𝑋 > 𝑥) = (𝑥 + 1)−2𝛽(2𝑥 + 1)𝛽     

The probability of surviving until time x is indicated for fixed x. 

The 𝐼𝑇𝐿(𝛽) distribution's hazard function is instantly derived as 

                                 ℎ𝐼𝑇𝐿(𝑥; 𝛽)  = 2𝛽
𝑥

(𝑥+1)(2𝑥+1)
.   

 

 

Figure 2: The Hazard and Survival Functions  of the ITL Distribution for some values of 𝛽 

3. Bivariate Inverted Topp-Leone Distribution 

Suppose that  𝑈𝑖~ 𝐼𝑇𝐿(𝛽𝑖 ), 𝑖 = 1,2,3  such that 𝑈𝑖′𝑠 are mutually independent random 

variables and define 𝑋𝑗 = 𝑚𝑖𝑛 (𝑈𝑗 , 𝑈3 ), 𝑗 = 1,2. Such that; 𝑋𝑗′𝑠 are dependent random variables. 

Consequently, 𝑆𝐵𝐼𝑇𝐿(𝑥1, 𝑥2)  is used to denote the joint survival function of the vector (𝑋1, 𝑋2) and 

it is given as  

𝑆𝐵𝐼𝑇𝐿(𝑥1, 𝑥2) = 𝑆𝐼𝑇𝐿(𝑥1;  𝛽1)𝑆𝐼𝑇𝐿(𝑥2;  𝛽2)𝑆𝐼𝑇𝐿(𝑥3;  𝛽3).                         (3.1) 

= (𝑥1 + 1)
−2𝛽1(2𝑥1 + 1)

𝛽1 . (𝑥2 + 1)
−2𝛽2(2𝑥2 + 1)

𝛽2 . (𝑥3 + 1)
−2𝛽3(2𝑥3 + 1)

𝛽3    

where 𝑥3 = max (𝑥1, 𝑥2). 

The following form can be used to stretch the joint survival function of the BITL 

distribution: 

 𝑆𝐵𝐼𝑇𝐿(𝑥1, 𝑥2) = {

𝑆𝐼𝑇𝐿(𝑥1;  𝛽1)𝑆𝐼𝑇𝐿(𝑥2;  𝛽23),          𝑥1 < 𝑥2 

𝑆𝐼𝑇𝐿(𝑥1;  𝛽13)𝑆𝐼𝑇𝐿(𝑥2;  𝛽2),           𝑥1 > 𝑥2
𝑆𝐼𝑇𝐿(𝑥; 𝛽123),                          𝑥1 = 𝑥2 = 𝑥

 .                          (3.2) 
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Where  𝛽13 = 𝛽1 + 𝛽3 ,  𝛽23 = 𝛽2 + 𝛽3 and 𝛽123 = 𝛽1 + 𝛽2 + 𝛽3. 

The joint pdf of the BITL distribution can therefore be obtained as 

       𝑓𝐵𝐼𝑇𝐿(𝑥1, 𝑥2) = {

𝑓𝐼𝑇𝐿(𝑥1; 𝛽1)𝑓𝐼𝑇𝐿(𝑥2; 𝛽23),                 𝑥1 < 𝑥2 

𝑓𝐼𝑇𝐿(𝑥1; 𝛽13)𝑓𝐼𝑇𝐿(𝑥2; 𝛽2),                 𝑥1 > 𝑥2
𝛽3

𝛽123
𝑓𝐼𝑇𝐿(𝑥;  𝛽123),                              𝑥1 = 𝑥2

  .                                        (3.3) 

3.1 Joint CDF, Joint Hazard and Reversed Hazard Functions 

The BITL distribution's joint cdf is provided as 

 

𝐹𝐵𝐼𝑇𝐿(𝑥1, 𝑥2) = {

𝐹𝐼𝑇𝐿(𝑥1; 𝛽13) − 𝐹𝐼𝑇𝐿(𝑥1; 𝛽1)[1 − 𝐹𝐼𝑇𝐿(𝑥2; 𝛽23)], 𝑥1 < 𝑥2  

𝐹𝐼𝑇𝐿(𝑥2; 𝛽23) − 𝐹𝐼𝑇𝐿(𝑥2; 𝛽2)[1 − 𝐹𝐼𝑇𝐿(𝑥1; 𝛽13)], 𝑥2 < 𝑥1
1 − 𝐹𝐼𝑇𝐿(𝑥;  𝛽123),                                                        𝑥1 = 𝑥2 = 𝑥.

                   (3.4) 

The BITL distribution's joint hazard function is given as 

  

ℎ𝐵𝐼𝑇𝐿(𝑥1, 𝑥2) = {

ℎ𝐼𝑇𝐿(𝑥1;  𝛽1)ℎ𝐼𝑇𝐿(𝑥2;  𝛽23),              𝑥1 < 𝑥2
ℎ𝐼𝑇𝐿(𝑥1;  𝛽13)ℎ𝐼𝑇𝐿(𝑥2;  𝛽2),            𝑥1 > 𝑥2
𝛽3

𝛽123
ℎ𝐼𝑇𝐿(𝑥;  𝛽123),                      𝑥1 = 𝑥2 = 𝑥.

                (3.5) 

3.2 Factorization Property 

Both an absolutely continuous part and a singular part constitute the BITL distribution. It 

is possible to factorize the joint survival function of the BITL distribution into an absolutely 

continuous part and a singular part in the manner shown below. 

𝑆𝐵𝐼𝑇𝐿(𝑥1, 𝑥2) =
𝛽12

𝛽123
 𝑆𝑎(𝑥1, 𝑥2) +

𝛽3

𝛽123
 𝑆𝑠(𝑥3)                                                  (3.6) 

Where  𝑥3 = max(𝑥1, 𝑥2),   𝑆𝑠(𝑥3) = 𝑆𝐼𝑇𝐿(𝑥; 𝛼) , 𝛽123 = 𝛽1 + 𝛽2 + 𝛽3 

and 𝑆𝑎(𝑥1, 𝑥2) =
 𝛽123

𝛽12
𝑆𝐼𝑇𝐿(𝑥1; 𝛽1)𝑆𝐼𝑇𝐿(𝑥2; 𝛽2)𝑆𝐼𝑇𝐿(𝑥3; 𝛽3) −

 𝛽3

𝛽12
𝑆𝐼𝑇𝐿(𝑥; 𝛽123). 

It is obvious that (.,.)sS and  (.,.)aS  represent the parts that are singular and absolutely 

continuous, respectively.  

As a result, the BITL model's pdf can be factored into two parts: an absolutely continuous 

part and a singular part as follows 

𝑓𝐵𝐼𝑇𝐿(𝑥1, 𝑥2) =
𝛽12

𝛽123
 𝑓𝑎(𝑥1, 𝑥2) +

𝛽3

𝛽123
 𝑓𝑠(𝑥3)                 (3.7) 

Where 

𝑓𝑎(𝑥1, 𝑥2) =
 𝛽123
𝛽12

{
𝑓𝐼𝑇𝐿(𝑥1; 𝛽13)𝑓𝐼𝑇𝐿(𝑥2; 𝛽2),   𝑥1 < 𝑥2 

𝑓𝐼𝑇𝐿(𝑥1; 𝛽1)𝑓𝐼𝑇𝐿(𝑥2; 𝛽23),  𝑥1 < 𝑥2
 

and  𝑓𝑠(𝑥3) = 𝑓𝐼𝑇𝐿(𝑥; 𝛽123). 

It is obvious that in this case ),( 21 xxf a and )( 3xf s  are the singular and absolutely 

continuous parts, respectively. 
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Depending on the values of 21 ,  and 3 , the absolutely continuous component of the 

BITL density may be unimodal, that is ),( 21 xxf a  is unimodal and the respective modes are 

[(2𝛽1 + 2)
−1 2⁄ , (2𝛽23 + 2)

−1 2⁄ ]and [(2𝛽13 + 2)
−1 2⁄ , (2𝛽2 + 2)

−1 2⁄ ]. 
 

The absolutely continuous BITL distribution's median is provided as follows. 

(0.5)
−1

𝛽123
 
 √1 − (0.5)

1

𝛽123 . (1 + √1 − (0.5)
1

𝛽123). 

a) (𝛽1, 𝛽2, 𝛽3) = (2,2,2) b) (𝛽1, 𝛽2, 𝛽3) = (0.5, 5, 0.5)  

c) (𝛽1, 𝛽2, 𝛽3) = (0.01, 0.3, 2 ) 

 
 

d) (𝛽1, 𝛽2, 𝛽3) = (1, 0.01, 1 ) 

 

Figure 3: Surface plots of the absolutely continuous part of the joint pdf of the BITL model for different values of 

(𝛽1, 𝛽2, 𝛽3) 
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3.3 Marginal and Conditional Densities 

It is significant to note that the BITL marginal distributions are univariate ITL with the 

corresponding survival and density functions as follows: 

𝑆𝑋𝑖(𝑥𝑖) = 𝑆𝐼𝑇𝐿(𝑥𝑖;  𝛽𝑖3) = (𝑥𝑖 + 1)
−2𝛽𝑖3(2𝑥𝑖 + 1)

𝛽𝑖3 , 𝑖 = 1,2                   (3.8) 

𝑓𝑋𝑖(𝑥𝑖) = 𝑓𝐼𝑇𝐿(𝑥𝑖;  𝛽𝑖3) = 2𝛽𝑖3 𝑥𝑖 (𝑥𝑖 + 1)
−2𝛽𝑖3−1(2𝑥𝑖 + 1)

𝛽𝑖3−1, 𝑖 = 1,2        (3.9) 

Such that  𝛽𝑖3 = 𝛽𝑖 + 𝛽3, 𝑖 = 1,2. 

Moreover, the distribution of the minimum of (𝑋1, 𝑋2) ~ 𝐵𝐼𝑇𝐿(𝛽1, 𝛽2, 𝛽3)is also univariate 

ITL with shape parameter 𝛽123. And the survival and density functions are given  as follows 

𝑆min (𝑋1,𝑋2)(𝑥) = 𝑆𝐼𝑇𝐿(𝑥; 𝛽123) = (𝑥 + 1)−2𝛽123(2𝑥 + 1)𝛽123       (3.10) 

and  

𝑓min (𝑋1,𝑋2)(𝑥) = 𝑓𝐼𝑇𝐿(𝑥; 𝛽123) = 2𝛽123 𝑥 (𝑥 + 1)
−2𝛽123−1(2𝑥 + 1)𝛽123−1      

(3.11) 

where 𝑥 = min (𝑥1, 𝑥2) and 𝛽123 = 𝛽1 + 𝛽2 + 𝛽3. 

 

The conditional density of 𝑋𝑖 given 𝑋𝑗 = 𝑥𝑗 , 𝑖 ≠ 𝑗 is calculated as follows. This is because 

the marginal distributions of the vector ( (𝑋1, 𝑋2) ~ 𝐵𝐼𝑇𝐿(𝛽1, 𝛽2, 𝛽3)  are univariate ITL 

distributions. 

𝑓𝑖 𝑗⁄ (𝑥𝑖 𝑥𝑗⁄ ) =

{
 

 

  

𝑓𝑖 𝑗⁄
(1)(𝑥𝑖 𝑥𝑗⁄ ),       𝑥𝑖 < 𝑥𝑗  

𝑓𝑖 𝑗⁄
(2)(𝑥𝑖 𝑥𝑗⁄ ),       𝑥𝑖 > 𝑥𝑗

𝑓𝑖
(3)(𝑥𝑖),              𝑥𝑖 = 𝑥𝑗

            (3.12) 

Where 

𝑓𝑖 𝑗⁄
(1)(𝑥𝑖 𝑥𝑗⁄ ) = 2𝛽1 𝑥𝑖 (𝑥𝑖 + 1)

−2𝛽1−1(2𝑥𝑖 + 1)
𝛽1−1, 

𝑓𝑖 𝑗⁄
(2)(𝑥𝑖 𝑥𝑗⁄ ) = 2

𝛽13𝛽2 

𝛽23
𝑥𝑖 (𝑥𝑖 + 1)

−2𝛽13−1(2𝑥𝑖 + 1)
𝛽13(𝑥𝑗 + 1)

−2𝛽3 (2𝑥𝑗 + 1)
−𝛽3

, 

and 𝑓𝑖
(3)(𝑥𝑖) =

𝛽3 𝑥𝑖 (𝑥𝑖+1)
−2𝛽123−1(2𝑥𝑖+1)

𝛽123−1

𝛽23 𝑥𝑗 (𝑥𝑗+1)
−2𝛽23−1(2𝑥𝑗+1)

𝛽23−1
. 

3.4 Product Moments 

Since the vectors (𝑋1, 𝑋2) ' marginal distributions are univariate ITL distributions, the 

moments of 1X   and  2X  can be obtained directly from the marginals shown below. 

𝐸(𝑋1
𝑘) =  𝛽13∑  (−1)𝑗 𝑐(𝑘, 𝑗)∞

𝑗=0 𝐵 (𝑗 − 𝑘 + 𝛽13 ,
𝑘

2
+ 1) and 

𝐸(𝑋2
𝑘) =  𝛽23∑  (−1)𝑗 𝑐(𝑘, 𝑗)∞

𝑗=0 𝐵 (𝑗 − 𝑘 + 𝛽23 ,
𝑘

2
+ 1)  

For 𝑘 = 1. . . 𝑛  

Where 𝑐(𝑘, 0) = 2𝑘, 𝑐(𝑘, 1) = 𝑘 2𝑘−1 and 𝑐(𝑘, 𝑗) =
𝑘 2𝑘−2𝑗 

𝑗!
 ∏ (𝑘 − 𝑗 − 𝑖), 𝑗 ≥ 2

𝑗−1
𝑖=1 . 

𝐵(. , . ) is the beta function 

Now, The 
thr  and 

ths  joint moments of (𝑋1, 𝑋2) ~ 𝐵𝐼𝑇𝐿(𝛽1, 𝛽2, 𝛽3) , denoted by 
s,r    can 

be given by the following theorem 

Proposition 2: If (𝑋1, 𝑋2) ~ 𝐵𝐼𝑇𝐿(𝛽1, 𝛽2, 𝛽3) .Then, the 
thr  and 

ths  joint moments of (𝑋1, 𝑋2) 
are given as follows 
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𝜇́𝑟,𝑠 = 𝐸(𝑋1
𝑟𝑋2

𝑠) = ∑ ∑ 𝐾𝑗1𝑗2𝐵 (𝑗1 + 𝑗2 − 𝑠 − 𝑟 + 𝛽123  ,
𝑠

2
+ 1)∞

𝑗2=0
∞
𝑗1=0

   

   . 3𝐹2 (𝑗1 + 𝑗2 − 𝑠 − 𝑟 + 𝛽123 , 𝑗1 − 𝑟 + 𝛽1 ,
−𝑟

2
; 𝑗1 − 𝑟 + 𝛽1 + 1, 𝑗1 + 𝑗2 − 𝑟 −

𝑠

2
+ 𝛽123 ; 1) 

     +∑ ∑ 𝐾̌𝑗1𝑗2𝐵 (𝑗1 + 𝑗2 − 𝑠 − 𝑟 + 𝛽123  ,
𝑟

2
+ 1)∞

𝑗2=0
∞
𝑗1=0

   

   . 3𝐹2 (𝑗1 + 𝑗2 − 𝑠 − 𝑟 + 𝛽123 , 𝑗1 − 𝑠 + 𝛽2 ,
−𝑠

2
; 𝑗1 − 𝑠 + 𝛽2 + 1, 𝑗1 + 𝑗2 − 𝑠 −

𝑟

2
+ 𝛽123 ; 1) 

      + 𝛽123∑  (−1)𝑗 𝑐(𝑟 + 𝑠, 𝑗)∞
𝑗=0 𝐵 (𝑗 − 𝑠 − 𝑟 + 𝛽123 ,

𝑟+𝑠

2
+ 1).       (3.13) 

Where   

𝐾𝑗1𝑗2 =  (−1)𝑗1+𝑗2  
𝑐(𝑟,𝑗1)𝑐(𝑠,𝑗1)

𝑗1−𝑟+𝛽1 
 ,    𝐾̌𝑗1𝑗2 =  (−1)𝑗1+𝑗2  

𝑐(𝑠,𝑗1)𝑐(𝑟,𝑗1)

𝑗1−𝑠+𝛽2 
 , 

𝑐(𝑘, 0) = 2𝑘 , 𝑐(𝑘, 1) = 𝑘 2𝑘−1and 𝑐(𝑘, 𝑗) =
𝑘 2𝑘−2𝑗 

𝑗!
 ∏ (𝑘 − 𝑗 − 𝑖), 𝑗 ≥ 2

𝑗−1
𝑖=1 , 

!0 )(...)(

)(...)(
);,...,;,...,(

1

1

11
i

ui

i c
i

c i

b ib iuccbbF qp
q

P

qP 


=

=   is a hypergeometric function, 

   ,...).2,1,0(
)(

)(
)1)...(1()( =



+
=−++= ib

b

ib
ibbbb i  and p,q are nonnegative integers, 

And   𝐵(. , . ) is the beta function. 

Proof.  beginning with ,...3,2,1,),(),( 2121

0 0

2121 ==  
 

srdxdxxxfxxXXE srsr and substituting for 

),( 21 xxf  from (3.2). 

 Take the following transformations 

𝑈1 = 𝐹(𝑋1)  and 𝑈2 = 𝐹(𝑋2) such that   𝑥1 = 𝐹
−1(𝑢1) and 𝑥2 = 𝐹

−1(𝑢2).  

And use the power series expansion for [1 + √1 − 𝑢
1

𝛽)]𝑘 given in Equation (2.5) 

Then, by using the following relationship  

( ) ),;1;1,(1),( 12

0

11 xF
x

duuu

x

x +−=−= 
−− 





  

where  ),(x    is an  incomplete beta function 

  and the identity ( ) )1;,;,,(),();;,(1 2312

11 
 +=−
−− dcFduudcFuu  

,0cdand0,for −−+  

 Then, the expression for ),( 21

sr XXE  can be derived. 

3.5 Measures of Correlation and the Copula 

This section discusses how copulas can be used to obtain the BITL distribution. Let H be 

a bivariate distribution function with continuous marginals 𝐹1and 𝐹2, as per Sklar (1959). 

Moreover, if 𝐹̅1, 𝐹̅2 and 𝐻̅ are the survival functions that correspond to 𝐹1, 𝐹2 and 𝐻, respectively, 

it is evident that the copula function 𝐶: [0,1]2 → [0,1], which has the property that 𝐻(𝑥1, 𝑥2) =

𝐶(𝐹1(𝑥1), 𝐹2(𝑥2)) exists. It follows from Sklar's theorem that there is a unique function 

𝐶̂: [0,1]2 → [0,1] known as a survival copula such that  𝐻̅(𝑥1, 𝑥2) = 𝐶̂(𝐹̅1(𝑥1), 𝐹̅2(𝑥2)). 
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The (𝑋1, 𝑋2) Marshall Olkin bivariate survival copula is provided by 

𝐶̂(𝑢1, 𝑢2) = 𝑢1𝑢2min(𝑢1
−𝜗1 , 𝑢2

−𝜗2) 

This fulfills the relationship below  

𝑆𝐵𝐼𝑇𝐿(𝑥1, 𝑥2) = 𝐶̂(𝑆𝐼𝑇𝐿(𝑥1;  𝛽13), 𝑆𝐼𝑇𝐿(𝑥2;  𝛽23)). 

This structure results in the copula family indicated by 

𝐶𝜗1,𝜗2(𝑢1, 𝑢2) = min(𝑢1
1−𝜗1𝑢2,  𝑢1𝑢2

1−𝜗2) 

                                                             = {
𝑢1

1−𝜗1  𝑢2            𝑢1
𝜗1 > 𝑢2

𝜗2 

 𝑢1𝑢2
1−𝜗2            𝑢 1

𝜗1 < 𝑢2
𝜗2

 

where 𝜗1 =
𝛽3 

𝛽1 +𝛽3 
 , 𝜗2 =

𝛽3 

𝛽2 +𝛽3 
, 𝑢1 = 𝐹1(𝑥1) and 𝑢2 = 𝐹2(𝑥2) 

It should be mentioned that Marshall-Olkin copulas have both singular and absolutely 

continuous elements. 

𝜕2

𝜕𝑢1𝜕𝑢2
𝐶𝜗1,𝜗2(𝑢1, 𝑢2) = {

𝑢1
−𝜗1              𝑢1

𝜗1 > 𝑢2
𝜗2 

𝑢2
−𝜗2            𝑢 1

𝜗1 < 𝑢2
𝜗2
. 

The curve 𝑢1
𝜗1 = 𝑢2

𝜗2 in [0,1]2 is where the mass of the singular component is 

concentrated. 

A copula offers a practical way to examine and quantify the interdependence of random 

variables. For the Marshall-Olkin BITL model, Spearman's rho 𝜌𝑆(𝐶𝜗1,𝜗2) and Kendall's tau 

𝜏(𝐶𝜗1,𝜗2) are both fairly simple to evaluate as follows 

𝜌𝑆(𝐶𝜗1,𝜗2) = 12∫∫𝐶𝜗1,𝜗2(𝑢, 𝑣)

1

0

1

0

𝑑𝑢𝑑𝑣 − 3 

                                                                    =
3𝜗1𝜗2

2𝜗1+2𝜗2−𝜗1𝜗2
=

3𝛽3

2𝛽1+2𝛽2+3𝛽3
 ,    (3.14) 

and  

𝜏(𝐶𝜗1,𝜗2) = 4∫∫𝐶𝜗1,𝜗2(𝑢, 𝑣)

1

0

1

0

𝑑𝐶𝜗1,𝜗2(𝑢, 𝑣) − 1 

                                                    =
𝜗1𝜗2

𝜗1+𝜗2−𝜗1𝜗2
=

𝛽3

𝛽1+𝛽2+𝛽3
.        (3.15) 

Moreover, Marshall-Olkin copulas have upper tail dependence. Without loss of generality 

assume that 𝜗1 > 𝜗2, gets  

𝜆𝑈 = lim
𝑢→1

1−2𝑢+𝐶(𝑢,𝑢)

1−𝑢
= lim

𝑢→1

1−2𝑢+𝑢2min(𝑢−𝜗1 ,𝑢−𝜗2)

1−𝑢
= 𝜗2 =

𝛽3

𝛽2+𝛽3
.    
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and hence 𝜆𝑈 = min( 
𝛽3

𝛽1+𝛽3
,

𝛽3

𝛽2+𝛽3
) is the BITL model's upper tail dependence coefficient. 

3.6 Absolute Continuous BITL Model 

The Marshal-Olkin BITL distribution will be modified by an absolutely continuous 

bivariate inverted Topp-Leone (𝐵𝐼𝑇𝐿𝑎𝑐 ) distribution by removing the singular part and leaving 

only the absolutely continuous part, according to Block and Basu's concepts from 1974. 

The 𝐵𝐼𝑇𝐿𝑎𝑐  distribution's pdf is given below for the random vector (𝑌1, 𝑌2) 

,
);();(

);();(
.),(

2122311

2132211

21, 21





+

+
=

yyifyfyf

yyifyfyf
cyyf

BITLBITL

BITLBITL

YY




    (3.16)

 

Such that the normalizing constant is   𝑐 =
𝛽1+𝛽2

𝛽1+𝛽2+𝛽3
. 

It is denoted that (𝑌1, 𝑌2) ~𝐵𝐼𝑇𝐿𝑎𝑐(𝛽1, 𝛽2, 𝛽3) if (𝑋1, 𝑋2) has a 

BITL(𝛽1, 𝛽2, 𝛽3) distribution, then (𝑋1, 𝑋2) given 𝑋1 ≠ 𝑋2 has a 𝐵𝐼𝑇𝐿𝑎𝑐 distribution. 

The associated survival function of (𝑌1, 𝑌2) ~𝐵𝐼𝑇𝐿𝑎𝑐(𝛽1, 𝛽2, 𝛽3)is given by 

𝑆𝑌1,𝑌2(𝑦1, 𝑦2) =
𝛽123

𝛽12
𝑆𝐼𝑇𝐿(𝑦1; 𝛽1) 𝑆𝐼𝑇𝐿(𝑦2; 𝛽2)𝑆𝐼𝑇𝐿(𝑦; 𝛽3) −

𝛽3

𝛽12
𝑆𝐼𝑇𝐿(𝑦; 𝛽123);     (3.17) 

Where 𝑦 = max (𝑦1, 𝑦2) and 𝛽123 = 𝛽1 + 𝛽2 + 𝛽3. Additionally, the marginal survival 

functions for 𝑌1 and 𝑌2 are provided respectively, as follows: 

𝑆𝑌1(𝑦1) =
𝛽123
𝛽12

𝑆𝐼𝑇𝐿(𝑦1; 𝛽13)  −
𝛽3
𝛽12

𝑆𝐼𝑇𝐿(𝑦1; 𝛽123) 

𝑆𝑌2(𝑦2) =
𝛽123
𝛽12

𝑆𝐼𝑇𝐿(𝑦1; 𝛽23)  −
𝛽3
𝛽12

𝑆𝐼𝑇𝐿(𝑦2; 𝛽123). 

The following are the corresponding marginal pdfs for 𝑌1 and 𝑌2 respectively 

𝑓𝑌1(𝑦1) = 𝑐𝑓𝐼𝑇𝐿(𝑦1; 𝛽13) − 𝑐
𝛽3
𝛽123

𝑓𝐼𝑇𝐿(𝑦1; 𝛽123),   

and  

𝑓𝑌2(𝑦2) = 𝑐𝑓𝐼𝑇𝐿(𝑦2; 𝛽23)  − 𝑐
𝛽3
𝛽123

𝑓𝐼𝑇𝐿(𝑦2; 𝛽123). 

 

The marginals of the BITLac distribution are not ITL distributions, in contrast to those of 

the BITL distribution. If  𝛽3 → 0+, then  Y1 and Y2will follow ITL distributions and will then be 

independent. 

The Stress- Strength  parameter  for (𝑌1, 𝑌2) ~𝐵𝐼𝑇𝐿𝑎𝑐(𝛽1, 𝛽2, 𝛽3) is provided as;  

𝑅 = 𝑃(𝑌1 < 𝑌2) =
𝛽1

𝛽1 + 𝛽2
 

Moreover,  min(𝑌1, 𝑌2)~ 𝐼𝑇𝐿(𝛽123). 
The product moments of (𝑌1, 𝑌2) ~𝐵𝐼𝑇𝐿𝑎𝑐(𝛽1, 𝛽2, 𝛽3) denoted by 𝜇́𝑟,𝑠 are given by 

𝜇́𝑟,𝑠 = ∑ ∑ 𝐶𝑗1𝑗2𝐵 (𝑗1 + 𝑗2 − 𝑠 − 𝑟 + 𝛽123  ,
𝑠

2
+ 1)∞

𝑗2=0
∞
𝑗1=0

   

   . 3𝐹2 (𝑗1 + 𝑗2 − 𝑠 − 𝑟 + 𝛽123 , 𝑗1 − 𝑟 + 𝛽1 ,
−𝑟

2
; 𝑗1 − 𝑟 + 𝛽1 + 1, 𝑗1 + 𝑗2 − 𝑟 −

𝑠

2
+ 𝛽123 ; 1) 

       +∑ ∑ 𝐶̌𝑗1𝑗2𝐵 (𝑗1 + 𝑗2 − 𝑠 − 𝑟 + 𝛽123  ,
𝑟

2
+ 1)∞

𝑗2=0
∞
𝑗1=0

   

   . 3𝐹2 (𝑗1 + 𝑗2 − 𝑠 − 𝑟 + 𝛽123 , 𝑗1 − 𝑠 + 𝛽2 ,
−𝑠

2
; 𝑗1 − 𝑠 + 𝛽2 + 1, 𝑗1 + 𝑗2 − 𝑠 −

𝑟

2
+ 𝛽123 ; 1)  
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Where  𝐶𝑗1𝑗2 =
𝛽12

𝛽123
 (−1)𝑗1+𝑗2  

𝑐(𝑟,𝑗1)𝑐(𝑠,𝑗1)

𝑗1−𝑟+𝛽1 
  and    𝐶̌𝑗1𝑗2 =

𝛽12

𝛽123
 (−1)𝑗1+𝑗2  

𝑐(𝑠,𝑗1)𝑐(𝑟,𝑗1)

𝑗1−𝑠+𝛽2 
. 

4 Estimation and Exact Information Matrix 

The maximum likelihood estimators (MLEs) of the BITL distribution's unknown 

parameters will be discussed in this section. Assume that )},(,),,{( 212111 nn xxxx   is a sample 

drawn at random from the 𝐵𝐼𝑇𝐿(𝛽1, 𝛽2, 𝛽3)  distribution. Take into account the notation below. 

 

321213212211 },{},;{},;{ IIIIxxxIxxiIxxiI iiiiiii ====== , 

            ,,, 332211 nInInI ===  and  .321 nnnn =++  

The log-likelihood function [𝑙 = 𝑙𝑛 𝐿 (𝛽)] of the sample of size n   is given by 

  
  

++==
1 2 3

)(ln),(ln),(ln)(ln 3212211

Ii Ii Ii

iiiii xfxxfxxfLl 

 

𝑙𝑛 𝐿 (𝛽) ∝ 𝑛1 ln 𝛽1 + 𝑛2 ln 𝛽2 + 𝑛3 ln 𝛽3 + 𝑛1 ln 𝛽23 +𝑛2 ln 𝛽13 − (2𝛽1 + 1)∑ ln(𝑥1𝑖 + 1)𝑖∈𝐼1   

     −(𝛽23 + 1)∑ ln(2𝑥1𝑖 + 1)𝑖∈𝐼1 + (𝛽23 − 1)∑ ln(2𝑥1𝑖 + 1)𝑖∈𝐼1 − (2𝛽13 − 1)∑ ln(𝑥1𝑖 + 1)𝑖∈𝐼2   

       +(𝛽13 − 1)∑ ln(2𝑥1𝑖 + 1)𝑖∈𝐼2 − (2𝛽2 + 1)∑ ln(𝑥2𝑖 + 1)𝑖∈𝐼2 + (𝛽2 − 1)∑ ln(2𝑥2𝑖 + 1)𝑖∈𝐼2   

        −(2𝛽123 − 1)∑ ln(𝑥𝑖 + 1)𝑖∈𝐼3 +(𝛽123 − 1)∑ ln(2𝑥𝑖 + 1)𝑖∈𝐼3 .           (4.1) 

The first derivatives are as follows 

𝜕𝑙

𝜕𝛽1
=
𝑛1
𝛽1
+
𝑛2
𝛽13

− 2 [ ∑ ln(𝑥1𝑖 + 1)

𝑖∈𝐼1∪𝐼2

+∑ln(𝑥𝑖 + 1)

𝑖∈𝐼3

] +∑ln(2𝑥1𝑖 + 1)

𝑖∈𝐼2

+∑ln(2𝑥𝑖 + 1),

𝑖∈𝐼3

 

𝜕𝑙

𝜕𝛽2
=
𝑛2
𝛽2
+
𝑛1
𝛽23

− 2 [∑ln(𝑥1𝑖 + 1)

𝑖∈𝐼1

+∑ln(𝑥2𝑖 + 1)

𝑖∈𝐼2

+∑ln(𝑥𝑖 + 1)

𝑖∈𝐼3

] 

+∑ln(2𝑥2𝑖 + 1)

𝑖∈𝐼1

∑ln(2𝑥2𝑖 + 1)

𝑖∈𝐼2

+∑ln(2𝑥𝑖 + 1)

𝑖∈𝐼3

, 

and 

𝜕𝑙

𝜕𝛽3
=
𝑛3
𝛽3
+
𝑛1
𝛽23

+
𝑛2
𝛽13

− 2 [∑ln(𝑥1𝑖 + 1)

𝑖∈𝐼1

+∑ln(𝑥1𝑖 + 1)

𝑖∈𝐼2

+∑ln(𝑥𝑖 + 1)

𝑖∈𝐼3

] 

+∑ln(2𝑥2𝑖 + 1)

𝑖∈𝐼1

∑ln(2𝑥1𝑖 + 1)

𝑖∈𝐼2

+∑ln(2𝑥𝑖 + 1)

𝑖∈𝐼3

. 
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It is obvious that these three equations cannot be expressed explicitly, so their solutions 

must be numerically obtained using the Newton-Raphson method, as will be seen in Section 6. 

The three equations are simultaneously solved to produce MLEs. 

4.1 Exact Fisher Information Matrix  

This section determines the exact Fisher information matrix for the BITL distribution. And 

utilized for the asymptotic distribution of maximum likelihood estimators (MLEs)  and variance-

covariance matrix derivation. 

The information matrix matrix 𝐼(𝛽)in this instance is a 3 × 3  symmetric matrix with 

elements. 

𝐼𝑖𝑗 (𝛽) = −𝐸[
𝜕2 log 𝑙 (𝛽)

𝜕𝛽𝑖𝜕𝛽𝑗
] 

The 𝐵𝐼𝑇𝐿(𝛽1, 𝛽2, 𝛽3) distribution's exact Fisher information matrix is obtained to be 
  

𝐼11 (𝛽) =
𝑛1

𝛽1
2+

𝑛2

(𝛽1+𝛽3)
2 ,   𝐼22 (𝛽) =

𝑛2

𝛽2
2+

𝑛1

(𝛽2+𝛽3)
2, 𝐼33 (𝛽) =

𝑛1

(𝛽2+𝛽3)
2+

𝑛2

(𝛽1+𝛽3)
2+

𝑛3

𝛽3
2 

𝐼13 (𝛽) =
𝑛2

(𝛽1+𝛽3)
2    𝐼23 (𝛽) =

𝑛1

(𝛽2+𝛽3)
2   and 𝐼12 (𝛽) = 𝐼21 (𝛽) = 0. 

4.2 Confidence Intervals 

We'll present the asymptotic confidence intervals for the BITL distribution's parameters. 

Let  𝛽̂ = (𝛽1̂, 𝛽2̂, 𝛽3̂) be the MLEs of 𝛽 = (𝛽1, 𝛽2, 𝛽3). When the parameters are inside the 

parameter space rather than on the boundary and the regularity conditions are met, we have: 

 

√𝑛 (𝛽̂ − 𝛽)
𝑑
→𝑁3(0, 𝐼

−1(𝛽)).                           (4.2) 

where 𝐼 (𝛽) is the Fisher information matrix. In order to create confidence intervals for the 

model parameters, the multivariate normal distribution with mean vector  0 = (0,0,0) and 

variance-covariance matrix 𝐼−1(𝛽) can be used. In other words, a  (1 − 𝛼)% two-sided 

confidence interval can be introduced for values of 𝛽1, 𝛽2 and 𝛽3 as follows: 

 

𝛽1̂ ± 𝑍𝛼
2
√𝐼𝛽1𝛽1

−1 (𝛽),  𝛽2̂ ± 𝑍𝛼
2
√𝐼𝛽2𝛽2

−1 (𝛽) and 𝛽3̂ ± 𝑍𝛼
2
√𝐼𝛽3𝛽3

−1 (𝛽).           (4.3) 

 

Respectively, where 𝐼𝛽1𝛽1
−1 (𝛽), 𝐼𝛽2𝛽2

−1 (𝛽) and 𝐼𝛽3𝛽3
−1 (𝛽)are diagonal elements of the variance-

covariance matrix and 𝑍𝛼
2
 is the (

𝛼

2
)𝑡ℎpercentile of a standard normal distribution. 
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5. The BITL Model with Real Data 

In this section, one data set will be used to illustrate how the BITL model performs in 

practical situations.  Meintanis (2007) provided the data set, which was used in this study. 

According to him, the data represent football (soccer) games in which at least one goal was 

scored by the home team and at least one goal was scored by any team directly from a penalty 

kick, foul kick, or other direct kick (collectively referred to as "kick goals"). Here, 𝑋1 stands 

for the first goal of any kind scored by any team's first kick in minutes, and 𝑋2 stands for the 

first goal of any kind scored by the visiting team. In this situation, all options are open, such 

as 𝑋1 < 𝑋2 or  𝑋1 > 𝑋2 or  𝑋1 = 𝑋2 = 𝑋. 
Meintanis (2007) used the Marshall-Olkin bivariate exponential model to analyze these 

data, and many other authors have since used it, including Kundu and Gupta (2009), Muhammed 

(2016,2019,2020), who also considered the bivariate generalized exponential model, the bivariate 

inverse Weibull model, the bivariate generalized Burr model and the bivariate generalized inverted 

Kumaraswamy model, respectively.  Here, these data will be applied to the BITL distribution and 

compared to some other bivariate models. 

First, for 𝑋1 , 𝑋2 and min (𝑋1, 𝑋2)  with ITL(4.635), ITL(1.647) and ITL(5.543), the 

Kolmogorov-Smirnov distances between the fitted distribution and the empirical distribution 

function are (0.383), (0.412), and (0.419), respectively. This might suggest that the BITL model 

could be applied to fit the given data set. 

 

The following is the asymptotic variance-covariance matrix for the BITL model parameters 

 

𝐼−1(𝛽)  = ⟨
0.091
0.00044
−0.036

|
0.00044
0.046
0.00631

|
−0.036
−0.00631
0.523

⟩ 

 

Moreover, a 95% confidence intervals of 𝛽1, 𝛽2, 𝛽3are computed and they are as follows;  

(0.659, 0.854), (0.959, 0.821), (3.663,4.129). With correspondence lengths (0.195, 0.138 , 0.466) 

The BITL model can be compared to other bivariate distributions using the Akaike 

information criterion (AIC), Bayesian information criterion (BIC), Consistent Akaike information 

criterion (CAIC), and Hannan-Quinn information criterion (HQIC). These bivariate distributions 

include the bivariate generalized inverted Kumaraswamy (BGIKum) model [Muhammed (2020)], 

bivariate generalized Burr (BGB) model [Muhammed (2019a)], bivariate generalized exponential 

(BGE) model [Kundu and Gupta (2009)] and bivariate exponential (BVE) model [Meintanis 

(2007)] as shown in Table 2. 

It is now obvious that the BITL model can be representing this case based on the confidence 

intervals, log-likelihood values, and Kolmogorov-Smirnov distances. 

6 Simulation Study 

The outcomes of a Monte Carlo simulation study testing the effectiveness of MLE of the 

model Parameters will be presented in this section. For each sample size, the following 

measurements were used to evaluate the MLEs: Average Estimates (AE), Mean Squared Error 

(MSE), Relative Absolute Bias (RAB), and Confidence Interval Length (CIL) are estimated from  

𝑅 = 1000   replications for    𝛽1̂, 𝛽2̂  and 𝛽3̂ the sample size  has been considered  at  𝑛 =
50,100, 150,200  and 300, and some values  for 𝛽1, 𝛽2 and 𝛽3  have been considered.   
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Algorithm to generate from BITL distribution 

Step 1. Generate ,1U  2U  and 3U  from  U(0,1). 

Step 2. Compute Z1 = (1 − 𝑈1)
−1

β1
 
 √1 − (1 − 𝑈1)

1

β1   . (1 + √1 − (1 − 𝑈1)
1

β1) 

Z2 = (1 − 𝑈2)
−1

β2
 
 √1 − (1 − 𝑈2)

1

β2  . (1 + √1 − (1 − 𝑈2)
1

β2) and         Z3 = (1 −

𝑈3)
−1

β3
 
 √1 − (1 − 𝑈3)

1

β3  . (1 + √1 − (1 − 𝑈3)
1

β3)  

Step3. Obtain  𝑋1 = min(Z1, Z3) and 
 
𝑋2 = min(Z2, Z3). 

Step4. Define the indicator functions as  

𝛿1𝑖 = {
1 ;      𝑥1𝑖 < 𝑥1𝑖
0;     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝛿2𝑖 = {
1 ;      𝑥1𝑖 > 𝑥1𝑖
0;     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  𝑎𝑛𝑑  𝛿3𝑖 = {
1 ;      𝑥1𝑖 = 𝑥1𝑖
0;     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 . 

Step5. The corresponding sample size n must satisfy  𝑛 = 𝑛1 + 𝑛2 + 𝑛3  

Such that  𝑛1 = ∑ 𝛿1𝑖
𝑛
𝑖=1 ,       𝑛2 = ∑ 𝛿2𝑖

𝑛
𝑖=1   𝑎𝑛𝑑     𝑛3 = ∑ 𝛿3𝑖.

𝑛
𝑖=1     

The MATHCAD program is used to generate 1000 data sets for various sample size selections in 

order to solve the nonlinear likelihood equations.  Tables 3 through 7 show that the estimates are 

accurate and that MSE and RAB go down as sample size goes up. 

7. Bivariate Distributions Arising from BITL Distribution   

7.1 Bivariate Generating Families 

The logarithm of both the cdf 𝐺(𝑥) and survival function 𝐺(𝑥) of the baseline distribution 

is consequently added to the survival function of the BITL model to produce the joint survival 

function of the new class of distributions, known as the BITL-G class of distributions.  Let G be 

the continuous distribution function of a continuous random variable with support 𝐴 ⊆ 𝑅. 
Now, define the two logits  𝑊1(𝑥) = − log𝐺(𝑥) and 𝑊2(𝑥) = − log(1 − 𝐺(𝑥)). Thus, a 

new class of bivariate distributions  can be obtained by defining the following joint survival 

function:  

 

𝑠𝐵𝐼𝑇𝐿−𝐺(𝑥, 𝑦) = 𝑠𝐵𝐼𝑇𝐿(𝑊(𝑥),𝑊(𝑦))      ∀(𝑥, 𝑦) ∈ 𝐴 × 𝐴 

 

𝑠𝐵𝐼𝑇𝐿−𝐺(𝑥, 𝑦) = 𝑆𝐼𝑇𝐿(𝑊(𝑥); 𝛽1)𝑆𝐼𝑇𝐿(𝑊(𝑦); 𝛽2)𝑆𝐼𝑇𝐿(𝑊(𝑧); 𝛽3)                        (7.1) 

Where 𝑧 = max(𝑥, 𝑦) 

Moreover, 
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𝑆𝐵𝐼𝑇𝐿−𝐺 (𝑥, 𝑦) = {

𝑆𝐼𝑇𝐿(𝑊(𝑥); 𝛽1)𝑆𝐼𝑇𝐿(𝑊(𝑦); 𝛽23),          𝑥 < 𝑦 

𝑆𝐼𝑇𝐿(𝑊(𝑥); 𝛽13)𝑆𝐼𝑇𝐿(𝑊(𝑦); 𝛽2),           𝑥 > 𝑦

𝑆𝐼𝑇𝐿(𝑊(𝑧); 𝛽123),                            𝑥 = 𝑦 = 𝑧

. 

The joint pdf of the new BITL-G class of distributions can be written as 

 𝑓𝐵𝐼𝑇𝐿−𝐺 (𝑥, 𝑦) = {

𝑤(𝑥)𝑤(𝑦)𝑓𝐼𝑇𝐿(𝑊(𝑥); 𝛽1)𝑓𝐼𝑇𝐿(𝑊(𝑦); 𝛽23),                 𝑥 < 𝑦 

𝑤(𝑥)𝑤(𝑦)𝑓𝐼𝑇𝐿(𝑊(𝑥); 𝛽13)𝑓𝐼𝑇𝐿(𝑊(𝑦; 𝛽2),                 𝑥 > 𝑦
𝛽3

𝛽123
𝑤(𝑧)𝑓𝐼𝑇𝐿(𝑊(𝑧);  𝛽123),                                      𝑥 = 𝑦 = 𝑧

. 

Where  𝑤(𝑥) =
𝑑𝑊(𝑥)

𝑑𝑥
. 

Logit 1: when 𝑊1(𝑥) = − log𝐺(𝑥) then Equation (7.1) can be written as  

𝑠𝐵𝐼𝑇𝐿−𝐺(𝑥, 𝑦) = 𝑆𝐼𝑇𝐿(− log 𝐺(𝑥) ; 𝛽1)𝑆𝐼𝑇𝐿(− log𝐺(𝑦) ; 𝛽2)𝑆𝐼𝑇𝐿(− log𝐺(𝑧) ; 𝛽3). 

𝑠𝐵𝐼𝑇𝐿−𝐺(𝑥, 𝑦) = (1 − log𝐺(𝑥))
−2𝛽1 . (1− log𝐺(𝑦))−2𝛽2(1 − log𝐺(𝑧))−2𝛽3 

                                        (1 − 2 log𝐺(𝑥))𝛽1(1 − 2 log 𝐺(𝑦))𝛽2(1 − 2log𝐺(𝑧))𝛽3 .      (7.2) 

Logit 2: when 𝑊1(𝑥) = − log𝐺(𝑥) then Equation (7.1) can be written as  

𝑠𝐵𝐼𝑇𝐿−𝐺(𝑥, 𝑦) = 𝑆𝐼𝑇𝐿(− log 𝐺(𝑥) ; 𝛽1)𝑆𝐼𝑇𝐿(− log𝐺(𝑦) ; 𝛽2)𝑆𝐼𝑇𝐿(− log𝐺(𝑧) ; 𝛽3) 

𝑠𝐵𝐼𝑇𝐿−𝐺(𝑥, 𝑦) = (1 − log𝐺(𝑥))
−2𝛽1 . (1− log𝐺(𝑦))−2𝛽2(1 − log𝐺(𝑧))−2𝛽3 

                                        (1 − 2 log 𝐺(𝑥))
𝛽1
(1 − 2 log 𝐺(𝑦))

𝛽2
(1 − 2log 𝐺(𝑧))𝛽3 .      (7.3) 

Now, some special bivariate distributions created with the suggested generators are shown.  

7.1.1 Bivariate Exponential Distribution  

Let 𝐺(𝑥) = 1 − 𝑒−𝜆𝑥, hence 𝐺(𝑥) = 𝑒−𝜆𝑥 be the cdf and survival function of the 

exponential distribution respectively,  then by taking the exponential distribution as a base 

distribution in Equation (7.3), a new bivariate  exponential distribution is produced in the following 

form 

𝑠𝐵𝐼𝑇𝐿𝐸(𝑥, 𝑦) = (1 + 𝜆𝑥)
−2𝛽1 . (1+𝜆𝑦)−2𝛽2(1 + 𝜆𝑧)−2𝛽3 

                                                          (1 + 2𝜆𝑥)𝛽1(1 + 2𝜆𝑦)𝛽2(1 + 2𝜆𝑧)𝛽3. 

Where 𝜆 > 0. This version of the bivariate exponential distribution is called bivariate 

inverted Topp-Leone exponential  (BITL-E ). 

7.1.2 Bivariate Weibull Distribution  

Let 𝐺(𝑥) = 𝑒−𝜆𝑥
𝛼
be the survival function of the Weibull distribution, which will be used 

as a base distribution in Equation (7.3) to produce a new version of the bivariate Weibull 

distribution in the following form 

𝑠𝐵𝐼𝑇𝐿𝑊(𝑥, 𝑦) = (1 + 𝜆𝑥𝛼)−2𝛽1 . (1+𝜆𝑦𝛼)−2𝛽2(1 + 𝜆𝑧𝛼)−2𝛽3 



 JPSS    Vol. 23 No. 1    August 2025     pp. 27-49 

42 
 

                                                        (1 + 2𝜆𝑥𝛼)𝛽1(1 + 2𝜆𝑦𝛼)𝛽2(1 + 2𝜆𝑧𝛼)𝛽3. 
Where 𝜆 > 0 and 𝛼 > 0. This new Weibull distribution is called bivariate inverted Topp-Leone 

Weibull (BITL-W). 

7.1.3 Bivariate Gumbel Distribution  

Let 𝐺(𝑥) = 1 − exp(−exp(𝑥 − 𝜇)) for 𝑥 ∈ 𝑅 where 𝜇 ∈ 𝑅 is a location parameter, is the 

survival function of the Gumbel distribution, then by using the logit in Equation (7.3) a new 

bivariate Gumbel distribution is produced and called bivariate inverted Topp-Leone Gumbel 

(BITL-G) and can be written in the following form. 

𝑠𝐵𝐼𝑇𝐿−𝐺(𝑥, 𝑦) = (1 + exp(𝑥 − 𝜇))−2𝛽1 . (1+ exp(𝑦 − 𝜇))−2𝛽2(1 + exp(𝑧 − 𝜇))−2𝛽3 

                                    (1 + 2 exp(𝑥 − 𝜇))𝛽1(1 + 2 exp(𝑦 − 𝜇))𝛽2(1 + 2 exp(𝑧 − 𝜇))𝛽3. 

7.1.4 Bivariate Pareto Distribution  

Let 𝐺(𝑥) =
1

𝑥𝛼
 for 𝑥 > 1 and 𝛼 > 0 is the survival function of the Pareto distribution, then 

by using the Pareto distribution as a base distribution in Equation (7.3) another  bivariate Pareto 

distribution is obtained as follows 

𝑠𝐵𝐼𝑇𝐿−𝑃(𝑥, 𝑦) = (1 + 𝛼 log 𝑥)−2𝛽1 . (1+𝛼 log 𝑦)−2𝛽2(1 + 𝛼 log 𝑧)−2𝛽3 

                                                (1 + 2𝛼 log 𝑥)𝛽1(1 + 2𝛼 log 𝑦)𝛽2(1 + 2𝛼 log 𝑧)𝛽3. 

This new distribution is called bivariate inverted Topp-Leone Pareto (BITL-P). 

7.1.5 Bivariate Linear Failure Distribution  

Assume the linear failure rate distribution is taken as a base distribution with the survival 

function  

𝐺(𝑥) = exp(−𝑎𝑥 −
𝑏

2
𝑥2)  for 𝑥 > 0 where 𝑎, 𝑏 > 0 

Then, by using Equation (7.3) a new bivariate linear failure rate distribution is gotten as 

follows 

𝑠𝐵𝐼𝑇𝐿−𝐿𝐹𝑅(𝑥, 𝑦) = (1 + 𝑎𝑥 +
𝑏

2
𝑥2)−2𝛽1 (1+𝑎𝑦 +

𝑏

2
𝑦2)−2𝛽2(1 + 𝑎𝑧 +

𝑏

2
𝑧2)−2𝛽3 

                                             (1 + 2𝑎𝑥 + 𝑏𝑥2)𝛽1(1 + 2𝑎𝑦 + 𝑏𝑦2)𝛽2(1 + 2𝑎𝑧 + 𝑏𝑧2)𝛽3 
This new distribution is called bivariate inverted Topp-Leone linear failure rate (BITL-

LFR).  

7.1.6 Bivariate Lomax Distribution  

If the Lomax distribution with the survival function  𝐺(𝑥) = (1 +
𝑥

𝜆
)−𝛼, 𝑥 > 0, , 𝜆 > 0 . 

Is taken as a base distribution in Equation (7.3), then a new Lomax distribution is produced as 

follows 

𝑠𝐵𝐼𝑇𝐿−𝐿(𝑥, 𝑦) = (1 + 𝛼 log(1 +
𝑥

𝜆
))−2𝛽1 . (1+𝛼 log(1 +

𝑦

𝜆
))−2𝛽2(1 + 𝛼 log(1 +

𝑧

𝜆
))−2𝛽3 

                                  (1 + 2𝛼 log(1 +
𝑥

𝜆
))
𝛽1
(1 + 2𝛼 log(1 +

𝑦

𝜆
))
𝛽2
(1 + 2𝛼 log(1 +

𝑧

𝜆
))𝛽3. 

This new  extension of Lomax distribution is called bivariate inverted Topp-Leone Lomax 

(BITL-L). 



Analysis of Dependent Variables Following Bivariate J-shaped        Hiba Zeyada Muhammed 

Distribution and Methods to Construct New Bivariate Classes 

43 
 

7.1.7 Bivariate Kumaraswamy Distribution  

Let 𝐺(𝑥) = (1 − 𝑥𝛼)𝜃 for  0 <𝑥 < 1 and 𝛼, 𝜃 > 0 is the survival function of the 

Kumaraswamy distribution, then by using the Kumaraswamy distribution as a base distribution in 

Equation (7.3) another  bivariate Kumaraswamy distribution is obtained as follows 

𝑠𝐵𝐼𝑇𝐿−𝐾(𝑥, 𝑦) = (1 − 𝜃 log(1 − 𝑥
𝛼))−2𝛽1 . (1−𝜃 log(1 − 𝑦𝛼))−2𝛽2(1 − 𝜃 log(1 − 𝑧𝛼))−2𝛽3 

                             (1 − 2𝜃 log(1 − 𝑥𝛼))𝛽1(1 − 2𝜃 log(1 − 𝑦𝛼))𝛽2(1 − 2𝜃 log(1 − 𝑧𝛼))𝛽3. 

This new distribution is called bivariate inverted Topp-Leone Kumaraswamy (BITL-K). 

7.1.8 Bivariate Fréchet  Distribution  

Let 𝐺(𝑥) = exp (−(
𝑥

𝛼
)
−𝜆
) , 𝑥 > 0  be the cdf of the Fréchet distribution,  then by taking 

the Fréchet distribution as a base distribution in Equation (7.2), a new bivariate  Fréchet 

distribution is produced in the following form 

𝑠𝐵𝐼𝑇𝐿−𝐹(𝑥, 𝑦) = (1 + (
𝑥

𝛼
)
−𝜆

)−2𝛽1 . (1+ (
𝑦

𝛼
)
−𝜆

)−2𝛽2(1 + (
𝑧

𝛼
)
−𝜆

)−2𝛽3 

                                                   (1 + 2 (
𝑥

𝛼
)
−𝜆
)
𝛽1

(1 + 2 (
𝑦

𝛼
)
−𝜆
)
𝛽2

(1 + 2 (
𝑧

𝛼
)
−𝜆

)𝛽3. 

Where 𝜆, 𝛼 > 0. This version of bivariate Fréchet distribution is called bivariate inverted 

Topp-Leone Fréchet  (BITL-F ). 

7.1.9 Bivariate Generalized Exponential Distribution  

Let 𝐺(𝑥) = (1 − 𝑒−𝜆𝑥)𝜃 , 𝑥 > 0  be the cdf of the generalized exponential distribution,  

then by taking the generalized exponential distribution as a base distribution in Equation (7.2), a 

new bivariate  generalized exponential distribution is produced in the following form 

𝑠𝐵𝐼𝑇𝐿−𝐺𝐸(𝑥, 𝑦) = (1 + 𝜃 log(1 − 𝑒
−𝜆𝑥))−2𝛽1 . (1+𝜃 log(1 − 𝑒−𝜆𝑦))−2𝛽2 

                             (1 + 𝜃 log(1 − 𝑒−𝜆𝑧))−2𝛽3  (1 + 2𝜃 log(1 − 𝑒−𝜆𝑥))
𝛽1

 

                             (1 + 2𝜃 log(1 − 𝑒−𝜆𝑦))
𝛽2
(1 + 2𝜃 log(1 − 𝑒−𝜆𝑧))𝛽3. 

 

Where 𝜃, 𝜆 > 0. This version of the bivariate generalized exponential distribution is called 

bivariate inverted Topp-Leone generalized exponential  (BITL-GE ). 

7.2. Bivariate Semi- parametric families 

  In the next sub-sections, a second parameter is added to the ITL distribution by two ways 

of semi-parametric families and hence bivariate extensions are obtained for both ways.  
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7.2.1 Bivariate Generalized Inverted Topp-Leone Model 

A generalized inverted Topp-Leone distribution is obtained by adding a power parameter 

𝛼 as follows: Assume   𝑇~𝐼𝑇𝐿(𝛽), take  𝑋 = 𝑇
1
𝛼 , then  𝑋 is distributed as generalized inverted 

Topp-Leone (GITL) with parameters (𝛼, 𝛽) and has a survival function given by 

𝑆𝐺𝐼𝑇𝐿(𝑥, 𝛼, 𝛽) = (𝑥𝛼 + 1)−2𝛽(2𝑥𝛼 + 1)𝛽   , 𝛼, 𝛽 > 0  

The GITL distribution is denoted as  𝐺𝐼𝑇𝐿(𝛼, 𝛽 ). Now, a bivariate generalized inverted 

Topp-Leone (BGITL) distribution is defined as follows:  

Assume that  𝑈𝑖~ 𝐺𝐼𝑇𝐿(𝛼, 𝛽𝑖 ), 𝑖 = 1,2,3  such that 𝑈𝑖′𝑠 are mutually independent random 

variables and  define  𝑋𝑗 = 𝑚𝑖𝑛 (𝑈𝑗 , 𝑈3 ), 𝑗 = 1,2. Such that; 𝑋𝑗′𝑠 are dependent random variables. 

Hence the joint survival function of the vector (𝑋1, 𝑋2) denoted by 𝑆𝐺𝐵𝐼𝑇𝐿(𝑥1, 𝑥2) is given as  

𝑆𝐵𝐺𝐼𝑇𝐿(𝑥1, 𝑥2) = 𝑆𝐺𝐼𝑇𝐿(𝑥1; 𝛼, 𝛽1)𝑆𝐺𝐼𝑇𝐿(𝑥2; 𝛼, 𝛽2)𝑆𝐺𝐼𝑇𝐿(𝑥3; 𝛼, 𝛽3).   

= (𝑥1
𝛼 + 1)−2𝛽1(2𝑥1

𝛼 + 1)𝛽1 . (𝑥2
𝛼 + 1)−2𝛽2(2𝑥2

𝛼 + 1)𝛽2 . (𝑥3
𝛼 + 1)−2𝛽3(2𝑥3

𝛼 + 1)𝛽3 (7.4)   

where 𝑥3 = max (𝑥1, 𝑥2). 

The following form can be used to rewrite the joint survival function of the BGITL 

distribution: 

𝑆𝐵𝐺𝐼𝑇𝐿(𝑥1, 𝑥2) = {

(𝑥1
𝛼 + 1)−2𝛽1(2𝑥1

𝛼 + 1)𝛽1  . (𝑥2
𝛼 + 1)−2𝛽23(2𝑥2

𝛼 + 1)𝛽23 ,     𝑥1 < 𝑥2 

(𝑥1
𝛼 + 1)−2𝛽13(2𝑥1

𝛼 + 1)𝛽13 . (𝑥2
𝛼 + 1)−2𝛽2(2𝑥2

𝛼 + 1)𝛽2 ,   𝑥1 > 𝑥2
(𝑥𝛼 + 1)−2𝛽123(2𝑥𝛼 + 1)𝛽123 ,                                               𝑥1 = 𝑥2 = 𝑥

 .             

Where  𝛽13 = 𝛽1 + 𝛽3 ,  𝛽23 = 𝛽2 + 𝛽3 and 𝛽123 = 𝛽1 + 𝛽2 + 𝛽3. 

We can obtain the joint pdf of the BGITL distribution as  𝑓𝐵𝐼𝑇𝐿(𝑥1, 𝑥2) =

{

𝑓𝐺𝐼𝑇𝐿(𝑥1; 𝛼, 𝛽1)𝑓𝐺𝐼𝑇𝐿(𝑥2; 𝛼, 𝛽23),                 𝑥1 < 𝑥2 

𝑓𝐺𝐼𝑇𝐿(𝑥1; 𝛼, 𝛽13)𝑓𝐺𝐼𝑇𝐿(𝑥2; 𝛼, 𝛽2),                 𝑥1 > 𝑥2
𝛽3

𝛽123
𝑓𝐺𝐼𝑇𝐿(𝑥; 𝛼, 𝛽123),                              𝑥1 = 𝑥2

.           (7.5) 

7.2.2 Bivariate Exponentiated Inverted Topp-Leone Model 

The exponentiated inverted Topp-leone (EITL) is obtained by adding a resilience 

parameter to the cdf of the inverted Topp-Leone distribution as follows 

𝐹𝐸𝐼𝑇𝐿(𝑥; 𝛼, 𝛽) = [𝐹𝐼𝑇𝐿(𝑥, 𝛽)]
𝛼, 𝛼 > 0 

                                                                    = [1 − (𝑥 + 1)−2𝛽(2𝑥 + 1)𝛽]𝛼. 

Then,the pdf of the EITL distribution is given as  

𝑓𝐸𝐼𝑇𝐿(𝑥; 𝛼, 𝛽) = 𝛼 [𝐹𝐼𝑇𝐿(𝑥, 𝛽)]
𝛼−1 𝑓𝐼𝑇𝐿(𝑥, 𝛽), 𝛼, 𝛽 > 0 
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Based on the same bivariate idea in the previous sections and by using the maximization 

process a bivariate exponentiated inverted Topp-leone is introduced with the joint cdf and pdf 

respectively, as follows 

𝐹𝐵𝐸𝐼𝑇𝐿(𝑥1, 𝑥2) = [𝐹𝐼𝑇𝐿(𝑥1, 𝛽)]
𝛼1[𝐹𝐼𝑇𝐿(𝑥2, 𝛽)]

𝛼2[𝐹𝐼𝑇𝐿(𝑥3, 𝛽)]
𝛼3,         (7.6) 

such that 𝑥3 = min (𝑥1, 𝑥2) 

     𝑓𝐵𝐸𝐼𝑇𝐿(𝑥1, 𝑥2) = {

𝑓1(𝑥1, 𝑥2),                                  𝑥1 < 𝑥2
𝑓2(𝑥1, 𝑥2),                                  𝑥1 > 𝑥2
𝑓3(𝑥),                                𝑥1 = 𝑥2 = 𝑥

,                  (7.7) 

where 

𝑓1(𝑥1, 𝑥2) = (𝛼1 + 𝛼3)𝛼2𝑓𝐼𝑇𝐿(𝑥1, 𝛽) 𝑓𝐼𝑇𝐿(𝑥2, 𝛽)[𝐹𝐼𝑇𝐿(𝑥1, 𝛽)]
𝛼1+𝛼3−1[𝐹𝐼𝑇𝐿(𝑥2, 𝛽)]

𝛼2−1,  

𝑓2(𝑥1, 𝑥2) = 𝛼1(𝛼2 + 𝛼3)𝑓𝐼𝑇𝐿(𝑥1, 𝛽) 𝑓𝐼𝑇𝐿(𝑥2, 𝛽)[𝐹𝐼𝑇𝐿(𝑥1, 𝛽)]
𝛼1−1[𝐹𝐼𝑇𝐿(𝑥2, 𝛽)]

𝛼2+𝛼3−1 , 

and 𝑓3(𝑥) = 𝛼3𝑓𝐼𝑇𝐿(𝑥) [𝐹𝐼𝑇𝐿(𝑥, 𝛽)]
𝛼1+𝛼2+𝛼3−1. 

8 Conclusions 

In this paper, a new j-shaped distribution called ITL is discussed for both univariate and 

bivariate cases. In the bivariate case, the distribution is called BITL and whose marginals are 

univariate ITL distributions.  There are absolute continuous and singular parts to the BITL 

distribution. This distribution can be used in practice for dependent and non-negative random 

variables because both the joint distribution function and the joint density function are in closed 

forms. Three of the model's parameters are unknown. To test the effectiveness of the MLEs, 

simulations were run using the three unknown parameters' exact information matrix and maximum 

likelihood estimates. One set of data has been investigated for illustration's purpose.  An absolute 

continuous version of the BITL was also obtained based on Block and Basu (1974), and several of 

its properties are presented. It is demonstrated that the Marshall and Olkin survival copula is used 

to derive the BITL distribution, and a tail dependence measure is discussed. A new two methods 

for constructing bivariate distributions from BITL distribution are discussed in details. 

Consequently, generalized and exponentiated ITL distributions are also defined in both univariate 

and bivariate cases. The distribution of sum, product and ratio for two dependent variables follow 

BITL distribution is in progress as a future work. Moreover, the estimation of BITL distribution 

in presence of censored samples is under study and it will be done soon as possible.   
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Table1: UEFA Champions League Data 
 

No. 

 

1x  

 

2x  

 

No. 

 

1x  

 

2x  

1 26 20 20 34 34 

2 63 18 21 53 39 

3 19 19 22 54 7 

4 66 85 23 51 28 

5 4 4 24 76 64 

6 49 49 25 64 15 

7 8 8 26 26 48 

8 69 71 27 16 16 

9 39 39 28 44 6 

10 82 48 29 25 14 

11 72 72 30 55 11 

12 66 62 31 49 49 

13 25 9 32 24 24 

14 41 3 33 44 30 

15 16 75 34 42 3 

16 18 18 35 27 47 

17 22 14 36 28 28 

18 42 42 37 2 2 

19 36 0.52    

 

 

Table 2. logL, AIC, BIC,CAIC and HQIC for different bivariate models 

Model log L AIC BIC CAIC HQIC 

BITL -138.482 144.482 149.315 145.21 146.186 

BGIKum -157.043 167.043 175.098 168.978 169.883 

BGB -43.509 97.018 105.073 98.954 99.858 

BGE -20.59 49.18  48.40   

BE -44.56 96.12 95.46 96.11 97.62 

http://scholar.cu.edu.eg/?q=hibazeyada/publications/bivariate-inverse-weibull-distribution
https://doi.org/10.1016/j.physa.2020.124281
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Table 3: The AE, MSE,RAB and CIL of 𝛽1,
 
𝛽2 and 𝛽3For BITL Distribution with True 

 Parameter Values (𝛽1, 𝛽2, 𝛽3) =  (0.2,0.2,0.9) 

N Parameter AE MSE RAB CIL 

50 𝛽1 0.123 0.0061 0.387 0.024 

𝛽2 0.164 0.0013 0.179 0.032 

𝛽3 0.757 0.020 0.159 0.062 

      

100 𝛽1 0.121 0.0063 0.396 0.012 

𝛽2 0.163 0.0014 0.187 0.016 

𝛽3 0.799 0.010 0.112 0.033 

      

150 𝛽1 0.119 0.0065 0.405 0.0078 

𝛽2 0.159 0.0016 0.203 0.010 

𝛽3 0.789 0.012 0.123 0.0220 

      

200 𝛽1 0.116 0.0070 0.420 0.0058 

𝛽2 0.154 0.0021 0.228 0.0077 

𝛽3 0.811 0.0079 0.099 0.0170 

      

300 𝛽1 0.115 0.0073 0.427 0.0038 

𝛽2 0.153 0.0022 0.237 0.0050 

𝛽3 0.811 0.0079 0.099 0.011 

 

 

Table 4: The AE, MSE,RAB and CIL of 𝛽1,
 
𝛽2 and 𝛽3For BITL Distribution with True 

 Parameter Values (𝛽1, 𝛽2, 𝛽3) =   (0.5, 0.5, 0.9) 

N Parameter AE MSE RAB CIL 

50 𝛽1 0.249 0.063 0.502 0.038 

𝛽2 0.439 0.00376 0.123 0.064 

𝛽3 0.829 0.00501 0.079 0.076 

      

100 𝛽1 0.121 0.00627 0.396 0.012 

𝛽2 0.163 0.0014 0.187 0.016 

𝛽3 0.799 0.01 0.112 0.033 

      

150 𝛽1 0.119 0.00656 0.405 0.0078 

𝛽2 0.159 0.00646 0.203 0.01 

𝛽3 0.789 0.012 0.123 0.022 

      

200 𝛽1 0.116 0.00706 0.42 0.0058 

𝛽2 0.154 0.00208 0.228 0.00771 

𝛽3 0.811 0.00794 0.099 0.017 

      

300 𝛽1 0.115 0.0073 0.427 0.00381 

𝛽2 0.153 0.0022 0.237 0.0050 

𝛽3 0.811 0.0079 0.099 0.011 
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Table 5: The AE, MSE,RAB and CIL of 𝛽1,
 
𝛽2 and 𝛽3For BITL Distribution with True 

 Parameter Values (𝛽1, 𝛽2, 𝛽3) =  (1.5, 1.5, 0.9) 

N Parameter AE MSE RAB CIL 

50 𝛽1 0.554 0.896 0.631 0.067 

𝛽2 1.381 0.014 0.08 0.152 

𝛽3 0.938 0.0014 0.042 0.115 

      

100 𝛽1 0.566 0.872 0.623 0.034 

𝛽2 1.378 0.015 0.081 0.077 

𝛽3 0.952 0.0027 0.058 0.058 

      

150 𝛽1 0.53 0.94 0.646 0.021 

𝛽2 1.225 0.076 0.184 0.046 

𝛽3 0.973 0.00538 0.081 0.038 

      

200 𝛽1 0.516 0.968 0.656 0.016 

𝛽2 1.202 0.089 0.198 0.034 

𝛽3 0.954 0.00293 0.06 0.028 

      

300 𝛽1 0.534 0.934 0.644 0.011 

𝛽2 1.256 0.06 0.163 0.023 

𝛽3 0.949 0.00237 0.054 0.019 

 

Table 6: The AE, MSE,RAB and CIL of 𝛽1,
 
𝛽2 and 𝛽3For BITL Distribution with True 

 Parameter Values  (𝛽1, 𝛽2, 𝛽3) = (1.5, 1.5, 1.5) 

N Parameter AE MSE RAB CIL 

50 𝛽1 0.663 0.701 0.558 0.084 

𝛽2 1.617 0.014 0.078 0.188 

𝛽3 0.91 0.348 0.393 0.105 

      

100 𝛽1 0.65 0.722 0.567 0.041 

𝛽2 1.471 0.000855 0.02 0.086 

𝛽3 0.83 0.449 0.447 0.048 

      

150 𝛽1 0.66 0.706 0.56 0.028 

𝛽2 1.481 0.00038 0.013 0.057 

𝛽3 0.859 0.411 0.427 0.033 

      

200 𝛽1 0.644 0.733 0.571 0.02 

𝛽2 1.427 0.00529 0.048 0.042 

𝛽3 0.837 0.439 0.442 0.024 

      

300 𝛽1 0.635 0.748 0.577 0.013 

𝛽2 1.411 0.00793 0.059 0.027 

𝛽3 0.839 0.437 0.441 0.016 
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Table 7: The AE, MSE,RAB and CIL of 𝛽1,
 
𝛽2 and 𝛽3For BITL Distribution with True 

 Parameter Values (𝛽1, 𝛽2, 𝛽3) =  (1, 2, 1) 

N parameter AE MSE RAB CIL 

50 𝛽1 0.444 0.309 0.556 0.066 

𝛽2 1.2 0.641 0.4 0.124 

𝛽3 0.901 0.0098 0.099 0.103 

      

100 𝛽1 0.444 0.309 0.556 0.033 

𝛽2 1.179 0.674 0.41 0.061 

𝛽3 0.937 0.0041 0.063 0.053 

      

150 𝛽1 0.424 0.332 0.576 0.021 

𝛽2 1.138 0.743 0.431 0.039 

𝛽3 0.943 0.0032 0.057 0.035 

      

200 𝛽1 0.43 0.324 0.57 0.016 

𝛽2 1.161 0.704 0.419 0.03 

𝛽3 0.963 0.00135 0.037 0.027 

      

300 𝛽1 0.411 0.347 0.589 0.01 

𝛽2 1.096 0.817 0.452 0.019 

𝛽3 0.98 0.000395 0.02 0.018 

 

 

 

 

 


