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ABSTRACT 
During recent decades several lifetime distributions of one parameter, two-parameter and three-parameter 
have been proposed to model engineering data but due to either theoretical nature or the stochastic nature 
of the distribution, these available distributions are not suitable to model the data. In this paper, an attempt 
has been made to propose a new three-parameter generalized Lindley distribution which includes several 
one parameter and two-parameter continuous distributions including exponential, Lindley, Weibull, 
Power-Lindley and new two-parameter Lindley as particular cases. Descriptive statistical properties 
including hazard function, mean residual life function, moments and order statistics have been derived 
and discussed. Fisher’s information matrix and confidence interval of the proposed distribution have been 
derived. Numerical simulation study has been carried out to know the consistency of maximum likelihood 
estimators. Maximum likelihood estimation for estimating parameters has been explained. Two under-
dispersed real lifetime datasets from the field of engineering have been presented to test the goodness of 
fit of the proposed distribution over other one parameter, two-parameter and three-parameter lifetime 
distributions.   

Keywords: Lindley distribution, Power Lindley distribution, Weibull distribution, Statistical properties, 
Maximum likelihood estimation, Fisher’s information matrix, Applications. 

1. Introduction 

Several statistical distributions have been extensively used for the modelling and analysis 
of survival times (time to event) data, also known as reliability data in engineering and 
biomedical sciences. It has been observed that the datasets from engineering and biomedical 
sciences are either under-dispersed (mean greater than variance) or over-dispersed (mean less 
than variance). The distributions which are derived using the compound of positively skewed 
continuous distributions are in general over-dispersed and the examples includes gamma - 
Lindley distribution by Abdi et al. (2019), gamma-Shanker distribution by Ray and Shanker 
(2023), gamma-Sujatha distribution by Ray and Shanker (2024), some among others, On the 
other hand the distributions derived by compounding the Poisson distribution with positively 
skewed continuous distributions are, in general, over-dispersed and the examples includes 
negative binomial distribution, Poisson-Lindley distribution by Sankaran (1970), quasi Poisson-
Sujatha distribution by Shanker and Shukla (2019), are some among others. 

The probability density function (pdf) and the cumulative density function (cdf) of 
Lindley distribution introduced by Lindley (1958) are given by 
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Lindley distribution, being a convex combination of exponential and gamma distribution, gives 
better fit than exponential distribution and it is more flexible than the exponential distribution. 
The Lindley distribution exhibits the character of a rapid drop-off at zero and a long tail to the 
right, which means that the Lindley distribution is a suitable probability model for non-negative 
right skewed data having monotonically increasing hazard rate. The one of the interesting and 
useful advantages of the Lindley distribution is its ability to capture the effects of covariates or 
explanatory variables meaning that the Lindley distribution can be used in regression modelling 
where it can account for the influence of one or more predictor variables on the distribution of 
the response variable and due to this the Lindley distribution has a lot of applications in 
engineering, epidemiology and finance. Ghitany et al. (2008) have studied many interesting 
properties, estimation of parameter using both the method of moments and the method of 
maximum likelihood, and application of Lindley distribution. Nadarajah et al. (2011) proposed a 
two-parameter generalized Lindley distribution using exponentiated technique and discussed its 
various descriptive and inferential properties, estimation of parameters and applications. 
Bakouch et al. (2012) derived two-parameter extended Lindley distribution and discussed its 
statistical properties, estimation of parameters and applications. Recently, several two-parameter 
Lindley distributions have been introduced by different researchers which are presented in tables 
1 and 2 along with its pdf and introducer.  

Table 1:  Two-parameter Lindley distributions with their pdf and introducers (year) 

Name of the 
distributions 

probability density function(pdf) Introducers 
(years) 

Two-parameter 
Lindley 

distribution-1 
(TPLD-1) 

 

   
2

; , ; 0, 0, 1
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xf x x e x    
 

     


 

 

Shanker and 
Mishra (2013 a) 

Two-parameter 
Lindley 

distribution-2 
(TPLD-II) 
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; , 1 ; 0, 0, 0xf x x e x    
 

    
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Shanker et al 
(2013) 

Quasi Lindley 
distribution (QLD) 

   ; , ; 0, 0, 1
1

xf x x e x     


     


 
Shanker and 

Mishra (2013 b) 

New Quasi Lindley 
distribution 

(NQLD) 

   
2

2
; , ; 0, 0, 0xf x x e x     

 
    


 

Shanker and 
Amanuel (2013) 
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The statistical properties, estimation of parameters and applications of these two-
parameter Lindley distributions are available in the respective papers. Further, during a short 
span of time several three-parameter generalizations of Lindley distribution by different 
researchers have been suggested, which are presented in the following table-2 along with its pdf 
and introducers.  

Table 2:  Three-parameter Lindley distributions with their pdf and introducer (year) 

Name of the 
distributions 

probability density function(pdf) Introducers 
(years) 

A three-parameter 
Lindley distribution 

(ATPLD) 

   
2

; , , xf x x e     
  

 


 

; 0, 0, 0, 0x          

Shanker et al 
(2017) 

Generalized Lindley 
distribution (GLD)      

1 1

; , ,
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 
    
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 
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; 0, 0, 0, 0x        

Zakerzadeh 
and Dolati 

(2009) 

A three-parameter 
Generalized Lindley 

Distribution 
(TPGLD) 

   
2
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Nosakhare 
and Festus 

(2018) 

New generalized 
Lindley distribution 

(NGLD) 
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Ibrahim et al 
(2013) 

The statistical properties, estimation of parameters and applications of these three-
parameter Lindley distributions are available in the respective papers.   
Recently, Shanker and Rahman (2020) introduced a new two-parameter Lindley distribution 
defined (NTPLD) by its pdf and cdf 
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where   is the shape parameter and    is  the scale parameter and    
z

t dttez
0

1,   is the 

lower incomplete gamma function. It can be easily verified that Lindley distribution and 
exponential distribution are the particular cases of NTPLD for 1  and 0  respectively 

The main reason behind proposing  a new three-parameter generalized Lindley 
distribution is that it contains several one parameter and two-parameter classical lifetime 
distributions available in statistics literature and it is expected that the proposed distribution 
would give much better fit than these classical distributions. Statistical properties including 
hazard function, mean residual life function, moments and order statistics have been discussed. 
Maximum likelihood estimation has been discussed for estimating parameters of the proposed 
distribution. Fisher’s information matrix with confidence interval has also been derived. To 
know the consistency of maximum likelihood estimators of parameters, a numerical simulation 
study has been presented. At last, goodness of fit of the proposed distribution and its comparative 
fit with other well-known one parameter, two-parameter and three-parameter lifetime 
distributions are presented with two under-dispersed real lifetime datasets from the engineering 
field.  

 
2. A NEW THREE-PARAMETER GENERALIZED LINDLEY DISTRIBUTION 

 Taking the power transformation 1x y  and following the approach of obtaining the pdf 
of power-Lindley distribution by Ghitany et al. (2013), the pdf and the cdf of the new three-
parameter generalized Lindley distribution (NTPGLD) can be expressed as  

   
   

1 1

; , , ; 0, , , 0
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                            (2.2) 

where  and    are   the  shape  parameters and    is  the scale  parameter,   

   
z

t dttez
0

1,   is the lower incomplete gamma function,   1, t

z

z e t dt


     is the upper 

incomplete gamma function and  1   is the complete gamma function. The particular 

distributions of NTPGLD for different values of parameters are presented in table 3. 
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Table 3: Particular distributions of NTPGLD 

Paramete

r values 

Distribution Pdf of the distribution Introducers 

(year) 

0, 1  
 

Exponential  , ; 0, 0xf x e x       

1, 1  
 

Lindley 
 

2

, (1 ) ; 0, 0
1

xf x x e x 


   


 
Lindley 

(1958) 

0   Weibull   1; , ; 0, 0, 0xf x x e x
            Weibull 

(1951) 

1   Power 

Lindley    2 1 1
; , ; 0, 0, 0

1

xx x e
f x x

   
   



 
   


 

Ghitany et 

al (2013) 

1   NTPLD 
   

 

1

; , ; 0, 0, 0
1

xx e
f x x

  



 
   

 

 
   

 
 

Shanker 

and 

Rahman 

(2020) 

 
  The NTPGLD has a proper density function since  

 lim ; , , 1
x

F x   


              and           lim ; , , 0
x

F x   


  

  Graphs of the pdf and cdf of NTPGLD has been shown in figures 1 and 2 respectively for 
varying values of the parameters ,   and  .  From the figure 1, it is clear that for different 
values of the parameters, the proposed distribution has unimodal, bimodal, positively skewed, 
negatively skewed, leptokurtic, mesokurtic and platykurtic natures. Further, it is also clear that 
NTPGLD exhibits a rapid-off at zero and a long tail to the right. This means that it would be a 
suitable probability model for non-negative right skewed dataset having under-dispersion and 
monotonic increasing hazard rate.  
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Figure 1: pdf plot of NTPGLD for varying values of parameters ,   and   
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Figure 2: cdf plot of NTPGLD for varying values of parameters ,   and   
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3. STATISTICAL PROPERTIES 

In this section, statistical properties including asymptotic behaviour, reliability analysis 
and mean residual life function of NTPGLD has been studied. 

3.1. Asymptotic Behaviour 

The asymptotic behaviour of NTPGLD for 0x  and x  are 

   
 

1 1

0 0
lim ; , , lim 0
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x

x x

x x e
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 

 
  

      

   
 

1 1

lim ; , , lim 0.
1

x

x x

x x e
f x

    



  
  

 

  

 

 
  

      
These results confirm that the proposed distribution has a mode. 

3.2. Reliability Analysis 
  The survival function (or the reliability function) is the probability that a subject survives 
longer than the expected time. The survival function of NTPGLD is given by

                  

       
   

1, 1
; , , 1 ; , , ; 0, , , 0

1

xe x
S x F x x

  



    
        

 

     
    

   
The hazard function (also known as the hazard rate, instantaneous failure rate or force of 

mortality) is the probability to measure the instant death rate of a subject. Suppose X  be a 
continuous random variable with pdf  xf  and cdf  xF . The hazard function of X is defined as  

     
 xF

xf

x

xXxxXP
xh

x 






 1

/
lim

0
 

The corresponding  xh  of NTPGLD can be obtained as 

   
   

 
1 1

; , , ; 0, , , 0
1, 1

x

x

x x e
h x x

e x





    

  

  
     

    

  




  

   
 

The natures of survival function and the hazard function of NTPGLD for varying values 
of parameters are shown graphically in figures 3 and 4, respectively. 
From the figure 3, it is clear that for all values of the parameters, survival function is 
monotonically decreasing over the time. From figure 4, it is clear that for any values of the 
parameters, hazard function has increasing natures. 
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Figure 3: Survival function of NTPGLD for varying values of parameters ,   and  . 
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Figure 4: Hazard function of NTPGLD for varying values of parameters ,   and  . 
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3.3.  Mean Residual Life Function 
 

  The mean residual life function of the NTPGLD can be obtained as 

             1
| 1 ; , ,

1 ; , , x

E X x X x F t dt
F x

  
  



        

                                     
   1

; , ,
; , , x

t f t dt x
S x

  
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

   
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1

1 1
1, 1,

1, 1x

x x

x
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  
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 

     

   
       
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     

 

                           , 

where   1

0

, ; 0, 0, 0
z

yz e y dy y z       is the lower incomplete gamma function.  

  The behaviours of the mean residual life function of NTPGLD for varying values of 

parameters are shown in the figure 5 
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Figure 5: Mean residual life function of NTPGLD for varying values of parameters ,   and  . 
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  From the figure 5, it is clear that for all values of the parameters mean residual life 

function of NTPGLD has decreasing natures. 
 
3.4.  Moments and related measures 

Theorem: If r be the thr  moment about origin of NTPGLD then  

 

1 1

; 1, 2,3,...

1
r r

r r

r





  
 


  

   
        
     
    

                         (3.4.1) 

Proof:  We have 
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 



 

    
        
     

   
 
 

 

                             

 

1 1

; 1,2,3,...

1
r

r r

r





  
 

  

   
        
    
    

 

For 1̀  , it reduces to r
of NTPLD given by  

                                   
   

 

1 1
; 1,2,3,...

1
r r

r r
r





  


  

       
    

 

Taking 4and3,2,1r  in (3.4.1), the first four moments about origin are obtained as 

 
1 1

1 1
1 1

1





  
 


  

   
        
    
    
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 
2 2

2 2
1 1

1





  
 


  

   
        
    
    

 

 
3 3

3 3
1 1

1





  
 


  

   
        
    
    

    

 

 
4 4

4 4
1 1

1





  
 


  

   
        
    
    

 

 
Thus, the variance of NTPGLD can be expressed as 
 

 
   

2

2

2 2 1 2 1

2 2 1 1
1 1 1 1

1 1

 

  

     
   

  
     

          
                     
              

   
               

 

Similarly, using the relationship between central moments and raw moments, other 
central moments can be obtained and hence other statistical constants including coefficient of 
variation, skewness, kurtosis and index of dispersion.  

The conditional mean and variance of NTPGLD can be obtained as  

     
   

1

1 1
1, 1,

1
| ; , ,

; , ,
1, 1x x

x x

E X X x t f t dt
S x

e x


  

  

   
 

  
  

     





   
        
     

      

  

      

   
   

2 2
2

2 2
1, 1,

1
| ; , ,

; , ,
1, 1x x

x x

E X X x t f t dt
S x

e x


  

  

   
 

  
  

     





   
       
       

     

  

Now,      22| | |Var X X x E X X x E X X x           

          

       

2

2 1

2 2 1 1
1, 1, 1, 1,

1, 1 1, 1x x

x x x x

e x e x
 

     

      

       
   

            

          
                    
           

   
                     
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4. DISTRIBUTION OF ORDER STATISTICS 

Let nxxx ,...,, 21 be the random samples from NTPGLD  , ,   . The pdf of thi order 

statistics is given by 

           1

:

!
1

1 ! !

i n i

i n X X X

n
f x f x F x F x

i n i

 
        

 

The pdf of thi  order statistics  iX  of NTGPLD is given by 

     
 

 
   

 

   
 

1
1 1

:

1 1,!

1 ! ! 1 1

1 1,
1

1

i
xx

i n

n i
x

e xx x en
f x

i n i

e x





      

 

  



     

   

   

 


  




     
      
 

   
  
  
 

 

The pdf of the first order statistic  1X  can be expressed as 

   
 

   
 

1
1 1

1:

1 1,
1

1 1

n
xx

n

e xx x e
f x n

       

 

     

   


         

      
   

The pdf of the largest order statistic  nX  can be expressed as 

   
 

   
 

1
1 1

:

1 1,

1 1

n
xx

n n

e xx x e
f x n

       

 

     

   


        

      
 

 

 

5. MAXIMUM LIKELIHOOD ESTIMATION  

  Let nxxx ,...,, 21  be a random sample of size n  from a NTPGLD  , ,   . The log-

likelihood function Lcan be expressed as 
 

                    

      

   
1

1 1 1

ln ; , , ln 1 ln ln 1

1 ln ln

n

i
i

n n n

i i i
i i i

L f x n

x x x



  

       

  



  

        

    



  
 

 

  The maximum likelihood estimates (MLE)  ˆ ˆˆ, ,    of parameters  , ,    of 

NTPGLD are the solutions of the following log- likelihood equations 
 

                        
 

 
2 1

1

1
0

1

n

i
i

nL n
x






  
   






   

      
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  
 

2 1 1

1

1 1 ln
ln 0

1

n
i i

i i

n x xL
n

x

  

 

    
   

 



   
   

     

                       
1 1 1

ln
ln ln 0

n n n
i i

i i i
i i ii

x xL n
x x x

x






 
    


    

    , 

Where,    11 



 


  is the digamma function. 

  These log-likelihood equations seem difficult to solve analytically and thus requires 
statistical software available in R to find the solutions.  
 

  The observed   3 3  matrix of NTPGLD can be expressed as 

 
2 2 2

2

2 2 2

2

2 2 2

2

ˆ

ˆ ~ ,

ˆ

L L L

L L L

L L L

    
 
 

    


    

    
                                                  

 

 
 The inverse of the information matrix results in the well-known variance-covariance 

matrix.  The 3×3 approximate Fisher’s information matrix corresponding to the above  observed 
information matrix is given by 

2 2 2

2

2 2 2
1

2

2 2 2

2

L L L

L L L
I E

L L L

    

    

    



   
      
   

   
     
    
      

 

 
The solution of the Fisher’s information matrix will yield asymptotic variance and 

covariance of the ML estimators for  ˆ ˆˆ, ,   . The approximate  100 1 %  confidence 

intervals for  , ,    respectively are 
2

ˆ ,
n



  

2

ˆ
n



    and  

2

ˆ
n





   where  is 

the upper 100αth percentile of the standard normal distribution. 
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6. NUMERICAL SIMULATION STUDY  

To assess the effectiveness of maximum likelihood estimators for NTPGLD, a simulation 
study has been conducted. The investigation involved examining mean estimates, biases (B), 
mean square errors (MSEs), and variances of the maximum likelihood estimates (MLEs) for 
NTPGLD, utilizing the specified formulas. 

1

1 ˆ
n

i
i

Mean H
n 

  ,  
1

1 ˆ
n

i
i

B H H
n 

  ,  
2

1

1 ˆ
n

i
i

MSE H H
n 

  , 2Variance MSE B   

where  , ,H    and  ˆ ˆˆ ˆ, ,H    . 

 
The simulation results for various parameter values of NTPGLD are outlined in tables 4 

and 5, respectively. The acceptance-rejection method of simulation has been employed to 
generate data. This method is commonly used in simulation studies to produce random samples 
from a target distribution. The acceptance-rejection method of simulation for generating random 
samples from the NTPGLD involves the following steps: 

 
a.  Generate a random variable Y from exp   distribution 

   b. Generates U from Uniform  0,1 distribution  

           c. If 
( )

( )

f y
U

M g y
 , then set X Y (“accept the sample”); otherwise (“reject the 

sample”) and if reject then repeat the process: step (a-c) until getting the required samples. 
Where M is a constant. 
 

Here the sample sizes 20,40,60,80,100n   and the parameter values taken are 
0.5, 1.7, 1.5      and 0.9, 2.6, 1.4      and each sample size has been replicated 

10000 times 
The biases, MSEs, and variances of the MLEs of the parameters are decreasing for 

increasing sample size as evident in Tables 4 and 5. This supports the first-order asymptotic 
theory of MLEs. 

 
Table 4. Descriptive constants of NTPGLD for 0.5, 1.7, 1.5      

Parameters n  Mean Bias MSE Variance 

 

 

0.5   

20 

40 

60 

80 

100 

0.48305 

0.48621 

0.49028 

0.49353 

0.49503 

-0.01694 

-0.01378 

-0.00971 

-0.00646 

-0.00496 

0.00058 

0.00041 

0.00032 

0.00026 

0.00021 

0.00029 

0.00022 

0.00022 

0.00021 

0.00019 
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1.7   

20 

40 

60 

80 

100 

1.68947 

1.69442 

1.69628 

1.69789 

1.69795 

-0.01052 

-0.00557 

-0.00371 

-0.00210 

-0.00204 

0.00043 

0.00030 

0.00024 

0.00021 

0.00019 

0.00032 

0.00027 

0.00022 

0.00020 

0.00019 

 

 

1.5   

20 

40 

60 

80 

100 

1.48951 

1.49473 

1.49681 

1.49725 

1.49815 

-0.01048 

-0.00526 

-0.00318 

-0.00274 

-0.00184 

0.00037 

0.00029 

0.00022 

0.00019 

0.00017 

0.00026 

0.00026 

0.00021 

0.00018 

0.00016 

 

Table 5. Descriptive constants of NTPGLD for 0.9, 2.6, 1.4      

Parameters n  Mean Bias MSE Variance 

 

 

0.9   

20 

40 

60 

80 

100 

0.90306 

0.90304 

0.90180 

0.90150 

0.90126 

0.00306 

0.00304 

0.00180 

0.00150 

0.00126 

 

0.00202 

0.00195 

0.00174 

0.00169 

0.00124 

0.00201 

0.00194 

0.00174 

0.00168 

0.00124 

 

 

2.6   

20 

40 

60 

80 

100 

2.64101 

2.63309 

2.61724 

2.61112 

2.60499 

0.04101 

0.03309 

0.01724 

0.01112 

0.00499 

0.01336 

0.01251 

0.01080 

0.00915 

0.00751 

0.01168 

0.01141 

0.01050 

0.00903 

0.00749 

 

 

1.4   

20 

40 

60 

80 

100 

1.37591 

1.38588 

1.39447 

1.39604 

1.396711 

-0.02408 

-0.01411 

-0.00395 

-0.00328 

-0.00092 

0.00138 

0.00090 

0.00089 

0.00083 

0.00048 

0.00080 

0.00070 

0.00088 

0.00081 

0.00047 

 



A New Three-Parameter Generalized Lindley Probability           Rama Shanker, Mousumi Ray 
Model With Engineering Applications         Hosenur Rahman Prodhani, Umme Habibah Rahman 

19 
 

7. GOODNESS OF FIT 

  A new three-parameter generalized Lindley distribution (NTPGLD) has been fitted to 

two under-dispersed real lifetime datasets from engineering. We present the goodness of fit of 

NTPGLD and compared its goodness of fit with three-parameter generalized Lindley 

distribution(TPGLD), a three-parameter Lindley distribution (ATPLD), new generalized Lindley 

distribution (NGLD), generalized Lindley distribution (GLD),  Weibull distribution (WD), two 

parameter Lindley-1 (TPLD-1), two parameter Lindley-2 (TPLD-2), Quasi-Lindley distribution 

(QLD), new Quasi-Lindley distribution (NQLD), Lindley distribution (LD) and exponential 

distribution (ED). The following dataset has been considered. The descriptive summary of the 

datasets  1 and 2 are given in table 6. The descriptive summary of the datasets show that the 

datasets are 1 and 2 are under-dispesed (mean greater than variance).  
 Dataset-1: The following symmetric data, discussed by Murthy et al (2004), studies 
the failure times of wind shields and the values are as follows 
0.04, 0.3, 0.31, 0.557, 0.943, 1.07, 1.124, 1.248, 1.281, 1.281, 1.303, 1.432, 1.48, 1.51, 1.51, 

1.568, 1.615, 1.619, 1.652, 1.652, 1.757, 1.795, 1.866, 1.876, 1.899, 1.911, 1.912, 1.9141, 

0.981, 2.010, 2.038, 2.085, 2.089, 2.097, 2.135, 2.154, 2.190, 2.194, 2.223, 2.224, 2.23, 2.3, 

2.324, 2.349, 2.385, 2.481, 2.610, 2.625, 2.632, 2.646, 2.661, 2.688, 2.823, 2.89, 2.9, 2.934, 

2.962, 2.964, 3, 3.1, 3.114, 3.117, 3.166, 3.344, 3.376, 3.385, 3.443, 3.467, 3.478, 3.578, 

3.595, 3.699, 3.779, 3.924, 4.035, 4.121, 4.167, 4.240, 4.255, 4.278, 4.305, 4.376, 4.449, 

4.485, 4.570, 4.602, 4.663, 4.694. 

 
Dataset-2: The following moderately skewed to right a set of data, presented by                      

Tahir et al (2015), relates to the service times of 63 Aircraft Windshield (the unit for 
measurement is 1000 hours). The values are:  
 
0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280, 1.794, 
2.819, 0.313, 1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900, 
2.053, 3.102, 0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500, 1.010, 2.141, 3.622, 
1.085, 2.163, 3.665, 1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435, 
4.806, 1.249, 2.464, 4.881, 1.262, 2.543, 5.140. 
 

The total time on test (TTT) plot of the datasets 1 and 2 and the simulated dataset of 
NTPGLD are presented in the figure 6. The upward pattern of the curve indicates that the system 
has decreasing hazard rate (or infant mortality) over the time while the downward pattern of the 
curve indicates that the system has increasing hazard rate over the time. 
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Figure 6: TTT-plot of considered datasets and simulated datasets 

 
 

Table 6. Summary of the dataset 1 and 2 
 
Datasets Minimum 1st 

Quartiles 
Median Mean 3rd 

Quartiles 
Maximum Variance 

1 0.040 1.786 2.367 2.569 3.400 4.694 1.286 
2 0.046 1.122 2.065 2.085 2.820 5.140 1.550 

 
In order to compare lifetime distributions, values of 2 log L , Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), Consistent Akaike Information 
Criterion (CAIC), Hannan-Quinn Information Criterion (HQIC), Kolmogorov-Smirnov (K-S) 
statistics and the corresponding probability value (P-value) for the above datasets has been 
computed. The formulae for computing AIC, BIC, CAIC, HQIC and K-S are as follows:  

 

2 log 2AIC L p   ,  2 log logBIC L p n   , 
2

2log
1

pn
CAIC L

n p
  

 
 

 2log 2 log logHQIC L p n      ,    - | |m oK S Sup F x F x
x

      

where,  p   number of parameters,  n  sample size,  mF x   empirical cdf of considered 

distribution,  oF x   cdf of considered distribution and -2 logL is the maximized value of log 

likelihood function. The ML estimates of the parameters with standard error (SE) of the 
considered distributions for datasets 1 and 2 are presented in the Table 7 and the values of 

2 log L  , AIC, BIC, CAIC, HQIC, K-S and P-value for the datasets 1 and 2 are presented in 
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Table 8 and 9. The confidence interval of the estimated parameters values of NTPGLD are 
presented in the table 10. The fitted plot of the considered distributions, Quantiles-Quantiles 
(Q-Q) plot and Probability-Probability (P-P) plot of the datasets 1 and 2 are presented in the 
figure 7.  

Table 7. MLEs of the parameters of the considered distributions along with the standard 
deviation for dataset 1 and 2 

 
 

Table 8. Goodness of fit measures for the datasets-1 
 

Distributions MLE of the dataset-1 MLE of the dataset-2 

̂
 ˆSE   

̂    ˆSE   ̂  

 ˆSE   

̂  

 ˆSE   

̂  
 ˆSE   

̂  

 ˆSE   

NTPGLD 0.4641 
(0.2059) 

1.8823 
(0.8272) 

1.6773 
(0.1672) 

0.9091 
(0.2736) 

2.6101 
(0.9874) 

1.3616 
(0.0978) 

TPGLD 0.2589 
(0.1026) 

1.2242 
(1.7491) 

1.8746 
(0.2541) 

0.4935 
(0.1805) 

1.5000 
(2.0556) 

1.4343 
(0.2142) 

NGLD 1.4809 
(0.2600) 

3.3086 
(0.5340) 

4.5336 
(1.0751) 

1.2034 
(0.2769) 

1.7409 
(0.3668) 

3.4015 
(1.0243) 

GLD 1.3556 
(0.2101) 

2.4824 
(0.5018) 

38057.6159 
(3424.6348) 

0.9151 
(0.1725) 

0.9084 
(0.3148) 

13.1304 
(18.2595) 

ATPLD 0.7775 
(0.0658) 

0.1000 
(1.2975) 

27.3745 
(34900.2300) 

0.9093 
(0.0958) 

0.2639 
(58.5030) 

2.0742 
(459.7216) 

NTPLD 0.7045 
(0.1385) 

1.3727 
(0.6145) 

… 0.7851 
(0.1564) 

1.1544 
(0.6706) 

… 

WD 0.1000 
(0.0281) 

2.2263 
(0.2098) 

… 0.2556 
(0.0560) 

1.6290 
(0.1683) 

… 

TPLD-1 0.7513 
(0.0776) 

0.1000 
(0.2168) 

… 0.9093 
(0.0958) 

0.1272 
(0.1525) 

 

… 

TPLD-2 0.7772 
(0.0596) 

232.6230 
(2012.7725) 

… 0.9093 
(0.0958) 

 

7.8577 
(9.4216) 

 

… 

QLD 0.7749 
(0.0604) 

0.0100 
(0.0427) 

… 0.9093 
(0.0958) 

0.1157 
(0.1326) 

… 

NQLD 0.7774 
(0.0606) 

216.0758 
(3071.3260) 

 

… 0.9093 
(0.0958) 

7.1459 
(8.9909) 

… 

LD 0.6283 
(0.0492) 

… … (0.4795) 
(0.0604) 

… … 

ED 0.3892 
(0.0414) 

… … 0.7531 
(0.0704) 

… … 

Distributions 2logL  AIC BIC CAIC HQIC K-S P-Value 

NTPGLD 270.51 276.51 279.49 278.01 277.09 0.05 0.97 
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Table 9. Goodness of fit measures for the datasets-2 

 

 

 

  It is obvious from the goodness of fit of the considered distributions in table 8 and 9 that 

NTPGLD provides much better fit than other three-parmeter distributions, two-parameter 

distributions and one-parameter distributions. Figure 7 also justifies that  NTPGLD provides a 

better fit.  

TPGLD 271.82 277.82 280.80 279.32 278.40 0.06 0.90 

NGLD 286.72 292.72 295.70 294.22 293.30 0.20 0.00 
 GLD 287.89 293.89 296.87 295.39 294.47 

 
0.09 0.37 

ATPLD 300.52 306.52 309.50 308.02 307.10 0.17 0.01 

NTPLD 318.94 
 

324.94 327.92 326.44 325.52 0.22 0.00 

WD 274.68 278.68 280.67 279.38 279.06 0.97 0.00 

TPLD-1 302.29 
 

306.29 308.28 306.99 306.67 0.46 0.00 

TPLD-2 300.52 
 

304.52 306.51 305.22 304.90 0.38 0.00 

QLD 300.55 304.55 306.54 305.25 304.93 0.21 0.00 

NQLD 300.52 304.52 306.51 305.22 304.90 0.16 
 

0.04 
 

LD 319.45 321.45 322.44 321.67 321.64 0.24 0.00 
ED 342.04 344.04 345.03 344.26 344.2 0.29 0.00 

Distributions 2log L  AIC BIC CAIC HQIC K-S P-Value 

NTPGLD 196.26 202.26 208.68 202.66 204.78 0.06 0.97 

TPGLD 199.07 205.07 211.49 205.47 207.59 0.09 0.63 

NGLD 203.39 209.39 215.81 209.79 211.91 0.12 0.30 

GLD 204.76 210.76 217.18 211.16 213.28 0.166 0.06 

ATPLD 204.20 210.20 216.62 210.60 212.72 0.13 0.19 

NTPLD 209.09 213.09 217.37 213.29 214.77 0.15 0.08 

WD 200.63 204.63 208.91 204.83 206.31 0.10 0.52 

TPLD-1 204.20 208.20 212.48 208.40 209.88 0.15 0.12 

TPLD-2 204.20 208.20 212.48 208.40 209.88 0.38 0.00 

QLD 204.20 208.20 212.48 208.40 209.88 0.13 0.23 

NQLD 204.20 208.20 212.48 208.40 209.88 0.15 0.10 

LD 218.59 220.59 222.73 220.65 221.43 0.27 0.00 

ED 209.15 211.15 213.29 211.21 211.99 0.14 0.17 
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Table 10:  Confidence interval of the parameters of the NTPGLD for the considered datasets 

Datasets Parameters 90% Confidence interval 

(Lower limit, Upper limit) 

95% Confidence interval 

(Lower limit, Upper limit) 

1   

 
 
 

  

 
 

  

(0.2041, 0.8863) 

(0.6606, 3.4111) 

(1.4452, 2.0145) 

(0.1632, 0.9865) 

(0.3959, 3.7441) 

(1.4091, 2.0995) 

2   

 
 
 

  

 
 


 

(0.5334, 1.4209) 

(1.0559, 4.3173) 

(1.2090, 1.5387) 

(0.4582, 1.5322) 

(0.7655, 4.6659) 

(1.1800, 1.5772) 
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 Figure 7: Fitted plot of considered distributions, Q-Q plot and P-P plot of NTPGLD 

 

 

 

 

8. CONCLUSIONS
 

  A new three-parameter generalized Lindley distribution (NTPGLD) of which one 
parameter Lindley and exponential distributions and two-parameter distributions namely 
Weibull, power Lindley and NTPLD are particular cases, has been proposed. The nature of pdf, 
cdf, survival function, hazard function, mean residual life function has been studied with varying 
values of parameters. Statistical properties including moments based measures and order 
statistics have been studied. The method of maximum likelihood has been discussed for 
estimating parameters. Fisher’s information matrix and confidence intervals of the parameters of 
the proposed distribution have been presented. The goodness of fit of NTPGLD has been 
discussed with two real under-dispersed lifetime datasets from engineering and the fit has been 
found quite satisfactory over the considered one-parameter, two-parameter and three-parameter 
lifetime distributions. Therefore, the proposed distribution can be a suitable probability model for 
modelling under-dispersed datasets from engineering.  
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