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ABSTRACT 
In this paper, specific statistical considerations are typically required in order to select the best model for 
fitting survival data. The new Mixture of Gompertz and Gamma Distribution (MGGD), which gets its name 
from the particular mixing of two distributions, Gompertz and Gamma, is proposed in this study. Also, the 
reliability analysis, statistical properties like stochastic ordering, moments, order statistics, and the 
estimation of parameters using the method of maximum likelihood estimation. Finally, an application of 
the goodness-of-fit criteria to a real cancer data set is shown. It is contrasted with the fit and demonstrates 
that the mixture of the Gompertz and gamma distributions has greater flexibility than the other distributions. 

Keywords: Gamma and Gompertz distribution, Mixture model, Moments, Order Statistics, Maximum 
likelihood Estimation. 

1. Introduction 

Medical research is mostly interested in studying the survival of cancer patients, as applied to 
statistical research. The statistical distributions have been extensively utilized for analyzing time-
to-event data, also referred to as survival or reliability data, in different areas of applicability, 
including medical science. In recent years, an impressive set of new statistical distributions has 
been explored by statisticians. The necessity of developing an extended class of classical 
distribution is analysis, biomedicine, reliability, insurance, and finance. Recently, many 
researchers have been working in this area and have proposed new methods to develop improved 
probability distributions with utility.  
A Gompertz [16] distribution RV X with a parameter 𝜂 > 0 is described by its pdf is defined as 

𝑓(𝑥, 𝜂, 𝛽) = 𝜂𝑒ఉ௫𝑒
ି

ఎ
ఉ

൫ഁೣିଵ൯
, 𝑥 > 0, 𝜂, 𝛽 > 0 

Considering the gamma [12] distribution with parameters  𝛽 = (3, 𝜂)  the pdf can be defined as  

𝑓(𝜂, 𝑥) =
1

2
𝜂ଷ𝑥ଶ 𝑒ିఎ௫   , 𝑥 > 0, 𝜂 > 0 

The concept of a finite mixture of probabilities was pioneered by Newcomb [10] as a model for 
outliers. Weldon [19] provided a mixture technique for analyzing crab morphometric data. 

Pearson [9] introduced a statistical model using finite mixtures of normal distributions and 
also estimated the parameters of the mixture. Fisher [5] introduced the concept of a weighted 
mixture of outcomes and developed the Sib method. He also obtained the properties of the new 
distribution. Lindley [8] introduced the fiducial distribution and Bayes theorem. Rama Shanker 
[14], has introduced a mixture of exponential (θ) and gamma (2, θ) distributions and proposed a 
shanker distribution.  Akash distribution is a two-component mixture of an exponential distribution 
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and gamma distribution with their mixing proportions 
ఏమ

ఏమାଶ
 and 

ଶ

ఏమାଶ
 , Shanker [15]. Proposed a 

Komal distribution with applications in survival analysis, Ramma Shanker [16], the combination 

of exponential (θ) and gamma (2, θ) distribution with mixing proportions 
ఏ(ఏାଵ)

ఏమାఏାଵ
 and 

ଵ

ఏమାఏାଵ
.   

This article is based on a mixture of Gompertz and Gamma distributions in order to create 
the (MGGD) that was proposed. For the remainder of this research work, the presented (pdf) and 
(cdf) functions of the proposed distribution, together with some of its properties, provide an 
approach to the maximum likelihood estimators for estimating the model parameters. Finally, the 
results of fitting the caner survival data with (MGGD) also show the other well-known 
distributions. Throughout this research, the statistical programming language R was used for all 
computations. 

2. New Mixture Distribution 

This section introduces the (MGGD) distribution, which is a new distribution created by 
combining two existing distributions. Let X be a random variable with a mixed distribution. Its 
density function (pdf), 𝑓(𝑥) is expressed as follows: 

𝑓(𝑥) =  𝜔𝑓(𝑥)



ୀଵ

 

 𝑓(𝑥)probability density function for all i 
𝜔 , 𝑖 = 1, … , 𝑛 denote mixing proportions that are non-negative and ∑ 𝜔 = 1

ୀଵ . The  𝑓ଵ(𝑥) ∼ 
gamma (𝜂, 𝛽) with parameters 𝛽 = 3, 𝜂 and 𝑓ଶ(𝑥) ∼ Gompertz (𝜂, 𝛽) two independents random 

variables with 
𝛽

 𝛽ାଵ
𝑎𝑛𝑑 

ଵ

 𝛽ାଵ
respectively. Now the density function of X is given by. 

𝑓(𝑥;  𝜂, 𝛽) =
𝜂

1 + β
ቆ𝑒ఉ௫𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽

2
𝑥ଶ𝑒ିఎ ቇ                                                                                         (1) 

The function defined in (1) represents a probability distribution function 𝑓(𝑥;  𝜂, 𝛽)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 > 0 

𝑓(𝑥;  𝜂, 𝛽) =
𝜂

1 + β
න ቆ𝑒ఉ௫𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽

2
𝑥ଶ𝑒ିఎ௫ቇ 𝑑𝑥

ஶ



 

=
𝜂

1 + β

1 + 𝛽

𝜂
൨ = 1 

The cumulative distribution function cdf is defined as 

𝐹(𝑥;  𝜂, 𝛽) = න
𝜂

1 + β
ቆ𝑒ఉ௭𝑒

ି
ఎ
ఉ

൫ഁିଵ൯
+

𝜂ଶ𝛽

2
𝑧ଶ𝑒ିఎ௭ቇ 𝑑𝑧

௫



 

Simplifying the integration, 

𝐹(𝑥;  𝜂, 𝛽) =
1

𝛽 + 1
ቆ1 − ቆ𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
+ 𝛽 ൭ቆ

𝜂ଶ𝑥

2
+ 1ቇ 𝜂𝑥 + 1൱ 𝑒ିఎ௫ቇ + 𝛽ቇ                                           (2) 
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3. Reliability Analysis 
This section will provide the reliability function, hazard function, reverse hazard function, 

cumulative hazard function, Odds rate and, Mean Residual function for the specified MGG 
distribution. 
3.1 Survival Function 

The survival function of MGG distribution is defined as 

𝑆(𝑥) = 1 − 𝐹(𝑥;  𝜂, 𝛽) = 1 −
1

𝛽 + 1
ቆ1 − ቆ𝑒

−
𝜂
𝛽

൫𝑒𝛽𝑥−1൯
+ 𝛽 ൭ቆ

𝜂2𝑥

2
+ 1ቇ 𝜂𝑥 + 1൱ 𝑒−𝜂𝑥ቇ + 𝛽ቇ 

3.2 Hazard Rate Function 
An important metric for describing life phenomena is the hazard rate function of the MGG 

distribution, which is defined as 
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ℎ(𝑥) =
𝑓(𝑥;  𝜂, 𝛽)

𝟏 − 𝐹(𝑥;  𝜂, 𝛽)
=

𝜂 ൬𝑒𝛽𝑥𝑒
−

𝜂
𝛽൫𝑒𝛽𝑥−1൯

+
𝜂2𝛽

2
𝑥2𝑒−𝜂𝑥൰

(𝛽 + 1) − ቆ1 − ቆ𝑒
−

𝜂
𝛽൫𝑒𝛽𝑥−1൯

+ 𝛽 ቆ൬
𝜂2𝑥

2
+ 1൰ 𝜂𝑥 + 1ቇ 𝑒−𝜂𝑥ቇ + 𝛽ቇ

 

3.3 Revers hazard rate  
The Revers hazard rate of MGG distribution is defined as 

ℎ(𝑥) =
𝑓(𝑥;  𝜂, 𝛽)

𝐹(𝑥;  𝜂, 𝛽)
=

𝜂 ൬𝑒𝛽𝑥𝑒
−

𝜂
𝛽

൫𝑒𝛽𝑥−1൯
+

𝜂2𝛽
2

𝑥2𝑒−𝜂𝑥൰

ቆ1 − ቆ𝑒
−

𝜂
𝛽

(𝑒𝛽𝑥−1)
+ 𝛽 ቆ൬

𝜂2𝑥
2

+ 1൰ 𝜂𝑥 + 1ቇ 𝑒−𝜂𝑥ቇ + 𝛽ቇ

 

3.4 Cumulative hazard function 
The Cumulative hazard function of MGG distribution is defined as 

𝐻(𝑥) = − ln(1 − 𝐹(𝑥;  𝜂, 𝛽))

= ln ቆ
1

𝛽 + 1
ቆ1 − ቆ𝑒

−
𝜂
𝛽

൫𝑒𝛽𝑥−1൯
+ 𝛽 ൭ቆ

𝜂2𝑥

2
+ 1ቇ 𝜂𝑥 + 1൱ 𝑒−𝜂𝑥ቇ + 𝛽ቇ − 1ቇ 

3.5 Odds rate function 
The Odds rate function of MGG distribution is defined as 

𝑂(𝑥) =
𝐹(𝑥;  𝜂, 𝛽)

1 − 𝐹(𝑥;  𝜂, 𝛽)
=

ቆ1 − ቆ𝑒
−

𝜂
𝛽

൫𝑒𝛽𝑥−1൯
+ 𝛽 ቆ൬

𝜂2𝑥
2

+ 1൰ 𝜂𝑥 + 1ቇ 𝑒−𝜂𝑥ቇ + 𝛽ቇ

(𝛽 + 1) − ቆ1 − ቆ𝑒
−

𝜂
𝛽

(𝑒𝛽𝑥−1)
+ 𝛽 ቆ൬

𝜂2𝑥
2

+ 1൰ 𝜂𝑥 + 1ቇ 𝑒−𝜂𝑥ቇ + 𝛽ቇ

 

3.6 Mean Residual function 
The mean residual function of MGG distribution is defined as 

𝑀(𝑥) =
1

𝑆(𝑥)
න 𝑡 

𝜂

1 + β
ቆ𝑒𝛽𝑡𝑒

−
𝜂
𝛽

൫𝑒𝛽𝑡−1൯
+

𝜂2𝛽

2
𝑡2𝑒−𝜂𝑡ቇ 𝑑𝑡 

ஶ

௫

 

Then, using the following geometric series expansion is defined as 

(1 + 𝑥)ି =  ቀ
−𝑛

𝑗 ቁ 𝑥

ஶ

ୀ

 

Then, using the gamma function is defined as, 

Γ(𝑠, 𝑥)  = න 𝑡௦ିଵ𝑒ି௧𝑑𝑡
ஶ

௫

 

Substitute the limits of integration and simplify the expression.  

𝑀(𝑥) =
1

(1 + β)


1

𝛽
 ቀ

−1

𝑗
ቁ

∞

𝑗=0

Γ ൬𝑗 + 1,
𝜂

𝛽
𝑒𝛽𝑥 − 1൰ +

𝛽Γ(4, 𝜂𝑥 )

2𝜂
 

4 STATISTICAL PROPERTIES 

In this section, also derived the structural properties, moments, the moment generating function, 
and the Characteristic function for the MGG distribution of the random variable. Including the 
mean, and variance, investigated.  
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4.1 Moments 
The rth moments of a RV X, is defined as 

𝐸(𝑋) = 𝜇
ᇱ = න 𝑥 

ஶ



𝑓(𝑥;  𝜂, 𝛽) 𝑑𝑥 

𝐸(𝑋) = න 𝑥  
𝜂

1 + β
ቆ𝑒ఉ௫𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽

2
𝑥ଶ𝑒ିఎ௫ቇ 

ஶ



𝑑𝑥 

Then, using the following power series method is defined as,  

ln(𝑥 + 1) = (−1)ାଵ

ஶ

ୀଵ

𝑥

𝑛
 

This series converges for |𝑥| > 1 
This process involves using the multinomial expansion for the power of a series defined as. 

ln(𝑥 + 1) =  𝑎𝑥     𝑤ℎ𝑒𝑟𝑒 𝑎 = (−1)ାଵ
1

𝑛
  

ஶ

ୀଵ

 

Then, (ln(𝑥 + 1)) 

(ln(𝑥 + 1)) = ൭ 𝑎𝑥

ஶ

ୀଵ

൱



 

Expanding (∑ 𝑎𝑥ஶ
ୀଵ )can be done using the Cauchy product for power series.  

Thus, we can express(ln(𝑥 + 1))  

(ln(𝑥 + 1)) =  𝑐𝑥 

ஶ

ୀ

 

where 𝑐  are the coefficients obtained from the Cauchy product of the series 

 𝑎𝑥   

ஶ

ୀଵ

𝑓𝑜𝑟 𝑚 ≥ 1 

Then, using the following gamma function is defined as, 

න 𝑥௭ିଵ𝑒ି௫

ஶ



𝑑𝑥 =
Γ(𝑧)

𝑝௭
 

Substitute the limits of the integration, and the simplified expression becomes 

𝐸(𝑋) =
1

1 + β
൮  𝑐 

ஶ

ୀ

𝜂Γ(𝑚 + 1)

𝛽𝑟+1 ቀ
𝜂
𝛽

ቁ
𝑚+1 +

𝛽Γ(𝑟 + 3)

2𝜂𝑟+2
൲                                                                                  (3) 

Where Γ(. ) Is the gamma function. Subsequently, the mean and variance can be defined by 
substituting 𝑟 = 1,2,3,4 in equation (3) 

𝐸(𝑋) = 𝑴𝒆𝒂𝒏 =
1

1 + β
൮  𝑐 

ஶ

ୀ

𝜂Γ(𝑚 + 1)

𝛽2 ቀ
𝜂
𝛽

ቁ
𝑚+1 +

3𝛽

𝜂3
൲ 𝐸(𝑋ଶ) =

1

1 + β
൮  𝑐 

ஶ

ୀ

𝜂Γ(𝑚 + 1)

𝛽3 ቀ
𝜂
𝛽

ቁ
𝑚+1 +

12𝛽

𝜂4
൲ 
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𝐸(𝑋ଷ) =
1

1 + β
൮  𝑐 

ஶ

ୀ

𝜂Γ(𝑚 + 1)

𝛽4 ቀ
𝜂
𝛽

ቁ
𝑚+1 +

60𝛽

𝜂5
൲ , 𝐸(𝑋ସ) =

1

1 + β
൮  𝑐 

ஶ

ୀ

𝜂Γ(𝑚 + 1)

𝛽5 ቀ
𝜂
𝛽

ቁ
𝑚+1 +

360𝛽

𝜂6
൲ 

Variance = 𝜎ଶ = 𝐸(𝑋ଶ) − ൫𝐸(𝑋)൯
ଶ
 

𝜎ଶ =

⎝

⎜
⎛ 1

1 + β
൮  𝑐 

ஶ

ୀ

𝜂Γ(𝑚 + 1)

𝛽3 ቀ
𝜂
𝛽

ቁ
𝑚+1 +

12𝛽

𝜂4
൲

⎠

⎟
⎞

−

⎝

⎜
⎛ 1

1 + β
൮  𝑐 

ஶ

ୀ

𝜂Γ(𝑚 + 1)

𝛽2 ቀ
𝜂
𝛽

ቁ
𝑚+1 +

3𝛽

𝜂3
൲

⎠

⎟
⎞

ଶ

 

After simplification, 

𝜎ଶ =

⎝

⎜
⎜
⎜
⎜
⎜
⎛(1 + β) ൮∑ 𝑐 ஶ

ୀ
𝜂Γ(𝑚 + 1)

𝛽3 ቀ
𝜂
𝛽

ቁ
𝑚+1 +

12𝛽

𝜂4 ൲ − ൮∑ 𝑐 ஶ
ୀ

𝜂Γ(𝑚 + 1)

𝛽2 ቀ
𝜂
𝛽

ቁ
𝑚+1 +

3𝛽

𝜂3 ൲

2

(1 + β)2

⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

 
4.2 Moment Generating Function 

The MGF of a RV X is denoted by 𝑀(𝑡) and is defined as 

𝑀(𝑡) = 𝐸(𝑒௧௫) = න 𝑒௧௫ 𝑓(𝑥;  𝜂, 𝛽)
ஶ



  𝑑𝑥   , 𝑡𝜖ℛ 

𝑀(𝑡) = න 𝑒௧௫
𝜂

1 + β
ቆ𝑒𝛽𝑥𝑒

−
𝜂
𝛽

൫𝑒𝛽𝑥−1൯
+

𝜂2𝛽

2
𝑥2𝑒−𝜂𝑥ቇ

ஶ



 𝑑𝑥 

To solve the expression, using the power series method is defined as, 

(1 + 𝑥) =  ቀ
𝑛
𝑘

ቁ

ஶ

ୀ

𝑥 

This series converges for |v|>1. 

let’s make a substitution to simply the integral  

𝑀(𝑡) =
𝜂

1 + β
൦

1

𝛽
 ൭

𝑡

𝛽
− 1

𝑘

൱

ஶ

ୀ

Γ(𝑘 + 1)

ቀ
𝜂
𝛽

ቁ
𝑘+1

+
𝜂2𝛽

(𝜂 − 𝑡)3
൪                                                                                  (4) 

The characteristics function (CF) of a RV X, it is denoted by 𝜙(𝑡) and is defined as  

𝜙(𝑡) =
𝜂

1 + β
൦

1

𝛽
 ൭

𝑖𝑡

𝛽
− 1

𝑘

൱

ஶ

ୀ

Γ(𝑘 + 1)

ቀ
𝜂
𝛽

ቁ
𝑘+1

+
𝜂2𝛽

(𝜂 − 𝑖𝑡)3
൪                                                                              (5)    
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5. Hormonic Mean 

If 𝐻 is the harmonic mean (HM) of the RV X, then 

𝐻 = 𝐸 
1

𝑋
൨ 

𝐻. 𝑀 = න
1

𝑥

ஶ



 
𝜂

1 + β
ቆ𝑒𝛽𝑥𝑒

−
𝜂
𝛽

൫𝑒𝛽𝑥−1൯
+

𝜂2𝛽

2
𝑥2𝑒−𝜂𝑥ቇ 𝑑𝑥 

Then, using the following power series expansion is defined as 

(1 + 𝑥)ି =  ቀ
−𝑛

𝑗 ቁ 𝑥

ஶ

ୀ

 

Simplifying, the final results of the integral are 

𝐻. 𝑀 =
𝜂

1 + β

⎣
⎢
⎢
⎡

1

𝛽ଶ
 ൬

−2
𝑗

൰

ஶ

ୀ

Γ(𝑗 + 1)

൬
𝜂
𝛽

൰
𝑗+1

+
𝛽

2

⎦
⎥
⎥
⎤

 

6. Mean  

The Mean deviation (MD) of the RV X, is defined as 
𝐷(𝜇) = 𝐸(|𝑋 − 𝜇|) 

𝐷(𝜇) = න |𝑋 − 𝜇|
ஶ



  𝑓(𝑥;  𝜂, 𝛽)𝑑𝑥 

𝐷(𝜇) = න (𝜇 − 𝑥) 𝑓(𝑥;  𝜂, 𝛽) 𝑑𝑥 + න (𝑥 − 𝜇)  𝑓(𝑥;  𝜂, 𝛽) 𝑑𝑥
ஶ

ఓ

ఓ



 

Simplifying the integration 

𝐷(𝜇) = 2𝜇𝐹(𝜇) − 2 න 𝑥  𝑓(𝑥;  𝜂, 𝛽) 𝑑𝑥
ఓ



 

Then, 

= න 𝑥  𝑓(𝑥;  𝜂, 𝛽) 𝑑𝑥
ఓ



 

= න 𝑥 
𝜂

1 + β
ቆ𝑒ఉ௫𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽

2
𝑥ଶ𝑒ିఎ௫ቇ 𝑑𝑥 

ఓ



 

Then, using the following geometric Series expansion is defined as 

(1 + 𝑥)ି =  ቀ
−𝑛

𝑗 ቁ 𝑥

ஶ

ୀ

 

So, the final expressions for the integral is  

𝐷(𝜇) = 2𝜇
1

𝛽 + 1
ቆ1 − ቆ𝑒

ି
ఎ
ఉ

൫ഁഋିଵ൯
+ 𝛽 ൭ቆ

𝜂ଶ𝜇

2
+ 1ቇ 𝜂𝜇 + 1൱ 𝑒ିఎఓቇ + 𝛽ቇ

− 2
1

1 + β
൦

1

𝛽
 ൬

−1
𝑗

൰

ஶ

ୀ

𝛾 ൬𝑗 + 1,
𝜂

𝛽
𝑒ఉఓ − 1൰ + 𝜂𝛽 − ൭

𝜇ଶ

2
(𝜂𝜇 + 3) +

3

𝜂
൬𝜇 +

1

𝜂
൰൱ 𝑒ିఎఓ +

3

𝜂ଶ
൩൪ 
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7. Median  

The mean deviation from median of the RV X, is defined as  
𝐷(𝑀) = 𝐸(|𝑋 − 𝑀|) 

𝐷(𝑀) = න |𝑋 − 𝑀|
ஶ



 𝑓(𝑥;  𝜂, 𝛽)𝑑𝑥 

𝐷(𝑀) = න (𝑀 − 𝑥)𝑓(𝑥;  𝜂, 𝛽) 𝑑𝑥 + න (𝑥 − 𝑀)𝑓(𝑥;  𝜂, 𝛽) 𝑑𝑥
ஶ

ெ

ெ



 

Simplifying the integration 

𝐷(𝑀) = 𝜇 − 2 න 𝑥 𝑓(𝑥;  𝜂, 𝛽) 𝑑𝑥
ெ



 

Then,  

= න 𝑥  𝑓(𝑥;  𝜂, 𝛽) 𝑑𝑥
ெ



 

= න 𝑥 
𝜂

1 + β
ቆ𝑒ఉ௫𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽

2
𝑥ଶ𝑒ିఎ ቇ 𝑑𝑥 

ெ



 

Then, the final result of the integration is  

𝐷(𝜇) = 𝜇 − 2
1

1 + β
൦

1

𝛽
 ൬

−1
𝑗

൰

ஶ

ୀ

𝛾 ൬𝑗 + 1,
𝜂

𝛽
𝑒ఉெ − 1൰ + 𝜂𝛽 − ൭

𝑀ଶ

2
(𝜂𝑀 + 3) +

3

𝜂
൬𝑀 +

1

𝜂
൰൱ 𝑒ିఎெ +

3

𝜂ଶ
൩൪ 

8. Order Statistics 

The derived pdf of the 𝑖௧ order statistics of the mixture of Gompertz and gamma distribution. 
Let 𝑋ଵ, 𝑋ଶ, … , 𝑋 be a simple random sample from MGG distribution with cdf and pdf given by 
(1) and (2), respectively. Let 𝑋(ଵ:) ≤ 𝑋(ଶ:) ≤ ⋯ ≤ 𝑋(:) denote the order statistics defined from 

this sample. We now given the pdf of 𝑋:, say 𝑓;(𝑥) of 𝑋:, 𝑖 = 1,2, … , 𝑛. The pdf of the 𝑟௧ 

order statistics 𝑋:, 𝑟 = 1, 2, … , 𝑛 is defined as 

𝑓:(𝑥) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
൫𝐹(𝑥;  𝜂, 𝛽)൯

ିଵ
൫1 − 𝐹(𝑥;  𝜂, 𝛽)൯

ି
𝑓(𝑥;  𝜂, 𝛽), 𝑥 > 0, 𝜂, 𝛽 > 0     (6) 

Where 𝐹(. ) and 𝑓(. ) are given by (1) and (2) respectively, 𝑎𝑛𝑑   𝑊 : =
!

(ିଵ)!(ି)!
 

𝑓: =  𝑊 :൫𝐹(𝑥;  𝜂, 𝛽)൯
ିଵ

൫1 − 𝐹(𝑥;  𝜂, 𝛽)൯
ି

𝑓(𝑥;  𝜂, 𝛽) 

Then, using the following binomial series expansion is defined as 

(1 − 𝑧) = (−1) ቀ
𝑎
𝑗 ቁ 𝑧

ஶ

ୀ

 

(𝑎 + 𝑏)௭ =  ቀ
𝑧
𝑗ቁ (𝑎)𝑏௭ି

ஶ

ୀ

 

let’s make a substitution to simplify the expression,  
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𝑓: =  𝑊 :

𝜂

1 + β
       ቀ

𝑛 − 𝑟
𝑠

ቁ ൬
𝑟 + 𝑠 − 1

𝑗
൰ ቀ

𝑗
𝑘

ቁ ቀ
𝑘
𝑙

ቁ ቀ
𝑘 − 𝑙

𝑛
ቁ ቀ

𝑛
𝑞ቁ

ஶ

ୀ

 

ஶ

ୀ

ஶ

ୀ

ஶ

ୀ

ஶ

ୀ

ஶ

ୀ

(−1)௦ା

ቆ−
𝜂𝑙
𝛽

൫𝑒ఉ௭ − 1൯ቇ



𝑚!

ஶ

௦ୀ

 

× ൬
1

𝛽 + 1
൰

𝑟+𝑠−1

 β(𝜂𝑥)𝑒ିఎ(ି)௫   
𝜂

1 + β
ቆ𝑒ఉ௫𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽

2
𝑥ଶ𝑒ିఎ ቇ 

First order statistics 

𝑓ଵ: =  𝑊 ଵ:

𝜂

1 + β
       ቀ

𝑛 − 1
𝑠

ቁ ቀ
𝑠
𝑗ቁ ቀ

𝑗
𝑘

ቁ ቀ
𝑘
𝑙

ቁ ቀ
𝑘 − 𝑙

𝑛
ቁ ቀ

𝑛
𝑞ቁ

ஶ

ୀ

 

ஶ

ୀ

ஶ

ୀ

ஶ

ୀ

ஶ

ୀ

ஶ

ୀ

(−1)௦ା

ቆ−
𝜂𝑙
𝛽

൫𝑒ఉ௭ − 1൯ቇ



𝑚!

ஶ

௦ୀ

 

× ൬
1

𝛽 + 1
൰

𝑠

 β(𝛼𝑥)𝑒ିఈ(ି)௫   
𝜂

1 + β
ቆ𝑒ఉ௫𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽

2
𝑥ଶ𝑒ିఉ௫ቇ 

nth order statistics 

𝑓: =  𝑊 :

𝜂

1 + β
      ൬

𝑛 + 𝑠 − 1
𝑗

൰ ቀ
𝑗
𝑘

ቁ ቀ
𝑘
𝑙

ቁ ቀ
𝑘 − 𝑙

𝑛
ቁ ቀ

𝑛
𝑞ቁ (−1)௦ା

ቆ−
𝜂𝑙
𝛽

൫𝑒ఉ௭ − 1൯ቇ



𝑚!

ஶ

ୀ

 

ஶ

ୀ

ஶ

ୀ

ஶ

ୀ

ஶ

ୀ

ஶ

ୀ

 

× ൬
1

𝛽 + 1
൰

𝑛+𝑠−1

 β(𝜂𝑥)𝑒ିఎ(ି)௫   
𝜂

1 + β
ቆ𝑒ఉ௫𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽

2
𝑥ଶ𝑒ିఎ௫ቇ 

9. Entropies 

In this section, we derive the Rényi entropy, and the Tsallis entropy from the MGG distribution. 
It is well known that entropy and information can be considered measures of uncertainty, or the 
randomness of a probability distribution. It is applied in many fields, such as engineering, finance, 
information theory, and biomedicine. The entropy functionals for probability distribution were 
derived on the basis of a variational definition of uncertainty measure. 
9.1 R�́�nyi Entropy 

Entropy is defined as a random variable X is a measure of the variation of the uncertainty. It is 
used in many fields, such as engineering, statistical mechanics, finance, information theory, 
biomedicine, and economics. The entropy measure is the Rényi of order which is defined as 

𝑅𝛾 =
1

1 − 𝛾
log න [𝑓(𝑥;  𝜂, 𝛽)]𝛾

ஶ



 𝑑𝑥                ; 𝛾 > 0, 𝛾 ≠ 1 

𝑅ఊ =
1

1 − 𝛾
log න ቈ

𝜂

1 + β
ቆ𝑒ఉ௫𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽

2
𝑥ଶ𝑒ିఎ௫ቇ

ఊஶ



 𝑑𝑥       

Using the following Binomial series expansion is defined as 

(𝑎 + 𝑏)௭ =  ቀ
𝑧
𝑗ቁ (𝑎)𝑏௭ି

ஶ

ୀ

 

Then, using the following binomial Series expansion is defined as. 

(1 + 𝑥) =  ቀ
𝑛
𝑘

ቁ 𝑥

ஶ

ୀ

 

So, the final expressions of the integral are  
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𝑅𝛾 =
1

1 − 𝛾
log ൬

𝜂

1 + β
൰

ఊ 1

𝛽
 ቀ

𝑗 − 1

𝑘
ቁ

∞

𝑘=0

ቆ
𝜂2𝛽

2
ቇ

𝛾−𝑗
Γ(𝑗 + 𝑘)

ቀ
𝜂𝑗
𝛽

ቁ
ାା

Γ(2(𝛾 − 𝑗) + 1)

൫𝜂(𝑗 − 𝛾)൯
2(𝛾−𝑗)+1

      

 
9.2 Tsallis Entropy 

The Boltzmann-Gibbs (B-G) statistical properties initiated by Tsallis have received a great deal 
of attention. This generalization of (B-G) statistics was first proposed by introducing the 
mathematical expression of Tsallis entropy (Tsallis, (1988) for continuous random variables, which 
is defined as 

𝑇ఊ =
1

𝛾 − 1
ቈ1 − න [ 𝑓(𝑥;  𝜂, 𝛽)]𝛾

ஶ



 𝑑𝑥                                      ; 𝛾 > 0, 𝛾 ≠ 1 

𝑇ఊ =
1

𝛾 − 1
1 − න ൭

𝜂

1 + β
ቆ𝑒ఉ௫𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽

2
𝑥ଶ𝑒ିఎ ቇ൱

ఊ
ஶ



 𝑑𝑥൩ 

Then, solving the integration and the simplified expression becomes.  

𝑇ఊ =
1

𝛾 − 1

⎝

⎛1 − ൬
𝜂

1 + β
൰

ఊ 1

𝛽
 ቀ

𝑗 − 1
𝑘

ቁ

ஶ

ୀ

ቆ
𝜂ଶ𝛽

2
ቇ

ఊି
Γ(𝑗 + 𝑘)

൬
𝜂𝑗
𝛽

൰
ାା

Γ(2(𝛾 − 𝑗) + 1)

൫𝜂(𝑗 − 𝛾)൯
ଶ(ఊି)ାଵ

⎠

⎞ 

10. Stochastic Ordering 
A crucial technique in reliability and finance for evaluating the relative performance of the 

models is stochastic ordering. Let X and Y be two random variables with pdf, cdf, and reliability 
functions 𝑓(𝑥), 𝑓(𝑦), 𝐹(𝑥), 𝐹(𝑦). 𝑆(𝑥) = 1 − 𝐹(𝑥)𝑎𝑛𝑑 𝐹(𝑦). 

1- Likelihood ratio order (𝑋 ≤ோ  𝑌) if 
(௫; 𝜂,𝛽)

ೊ(௫; 𝜂,𝛽)
 decreases in 𝑥 

2- Stochastic order (𝑋 ≤ௌ்  𝑌) if 𝐹(𝑥; 𝑥;  𝜂, 𝛽) ≥ 𝐹(𝑥;  𝜂, 𝛽) ∀ 𝑥 
3- Hazard rate order (𝑋 ≤ுோ  𝑌) if ℎ(𝑥;  𝜂, 𝛽) ≥ 𝐹(𝑥;  𝜂, 𝛽) ∀  𝑥 
4- Mean residual life order (𝑋 ≤ெோ  𝑌) if 𝑀𝑅𝐿(𝑋) ≤ 𝑀𝑅𝐿(𝑋) ∀  𝑥 

Prove that the mixture of Gompertz and gamma distribution complies with the ordering with 
the highest likelihood (the likelihood ratio ordering). 
Assume that X and Y are two independent Random variables with probability distribution 
function𝑓௫(𝑥; 𝜂, 𝛽)and 𝑓௬(𝑥; 𝜓, 𝛿)If 𝜂 < 𝜓 and 𝛽 < 𝛿, then 

Λ =
𝑓௫(𝑥; 𝜂, 𝛽)

𝑓௬(𝑥; 𝜓, 𝛿)
=

𝜂
1 + β

൬𝑒ఉ௫𝑒
ି

ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽
2

𝑥ଶ𝑒ିఎ௫൰

𝜓
1 + δ

൬𝑒ஔ௫𝑒
ି

ట
ஔ

൫ಌೣିଵ൯
+

𝜓ଶδ
2

𝑥ଶ𝑒ିந௫൰

 

Therefore, 

log[Λ] = log ቈ
𝜂(1 + δ)

𝜓(1 + β)
 + log ቈ𝑒𝛽𝑥𝑒

−
𝜂
𝛽

൫𝑒𝛽𝑥−1൯
+

𝜂2𝛽

2
𝑥2𝑒−𝜂𝑥 − log ቈ𝑒δ𝑥𝑒

−
𝜓
δ

൫𝑒δ𝑥−1൯
+

𝜓2δ

2
𝑥2𝑒−ψ𝑥 

Differentiating with respect to 𝑥, 

∂log[Λ]

𝜕𝑥
=

−𝛽𝑒ఉ௫ 𝜂𝑒ఉ௫𝑒
ି

ఎ
ఉ

൫ഁೣିଵ൯
+ 𝜂ଶ𝛽𝑒ିఎ௫ −

𝜂ଷ𝛽
2

𝑥ଶ𝑒ିఎ௫൨

𝑒ఉ௫𝑒
ି

ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽
2

𝑥ଶ𝑒ିఎ௫൨
−

−𝛿𝑒ஔ௫ 𝜓𝑒ஔ௫𝑒ି
ట
ஔ

൫ಌೣିଵ൯ + 𝜓ଶ𝛿𝑒ିట௫ −
𝜓ଷ𝛿

2
𝑥ଶ𝑒ିట௫൨

𝑒ஔ௫𝑒ି
ట
ஔ

൫ಌೣିଵ൯ +
𝜓ଶδ

2
𝑥ଶ𝑒ିந௫൨
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Hence,  
ப୪୭[ஃ]

డ௫
< 0, if 𝜂 < 𝜓, 𝛽 < 𝛿. 

 
11. Bonferroni and Lorenz Curves  

The Bonferroni and Lorenz curves have been obtained using the MGG distribution in this 
section. The Bonferroni and Lorenz curve is a powerful tool in the analysis of distributions and 
has applications in many fields, such as economies, insurance, income, reliability, and medicine. 
The Bonferroni and Lorenz cures for a 𝑋 be the random variable of a unit and 𝑓(𝑥) be the 
probability density function of x. 𝑓(𝑥)𝑑𝑥 will be represented by the probability that a unit selected 
at random is defined as 

𝐵(𝑝) =
1

𝑝𝜇
න 𝑥 𝑓(𝑥;  𝜂, 𝛽)𝑑𝑥 





 𝑎𝑛𝑑 𝐿(𝑝) =
1

𝜇
න 𝑥 𝑓(𝑥;  𝜂, 𝛽)𝑑𝑥 





 

Where, 𝑞 = 𝐹ିଵ(𝑝);    𝑞𝜖[0,1] and  𝜇 = 𝐸(𝑋) 

𝜇 = 𝐸(𝑋) =
1

1 + β
൮  𝑐 

ஶ

ୀ

𝜂Γ(𝑚 + 1)

𝛽ଶ ൬
𝜂
𝛽

൰
ାଵ +

3𝛽

𝜂ଷ
൲ 

𝐵(𝑝) =
1

𝑝𝜇
න 𝑥 

𝜂

1 + β
ቆ𝑒ఉ௫𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽

2
𝑥ଶ𝑒ିఎ௫ቇ 𝑑𝑥 





 

Then, using the following geometric Series expansion is defined as 

(1 + 𝑥)ି =  ቀ
−𝑛

𝑗 ቁ 𝑥

ஶ

ୀ

 

Using the following lower incomplete gamma function is defined as 

𝛾(𝑠, 𝑥) = න 𝑡௦ିଵ𝑒ି௧𝑑𝑡 
௫



 

Substitute the limits of integration and simplify the expression. 

𝐵(𝑝) =

ቆ∑ ൬
−1

𝑗
൰ஶ

ୀ 𝛾 ൬𝑗 + 1,
𝜂
𝛽

𝑒ఉ − 1൰ + 𝜂𝛽 ቈ− ቆ
𝑞ଶ

2
(𝜂𝑞 + 3) +

3
𝜂

ቀ𝑞 +
1
𝜂

ቁቇ 𝑒ିఎ +
3

𝜂ଶቇ

𝑝 ൮∑ 𝑐 ஶ
ୀ

𝜂Γ(𝑚 + 1)

𝛽ଶ ൬
𝜂
𝛽

൰
ାଵ +

3𝛽
𝜂ଷ ൲

 

𝐿(𝑝) = 𝑝𝐵(𝑝) 

𝐿(𝑝) =

ቆ∑ ൬
−1

𝑗
൰ஶ

ୀ 𝛾 ൬𝑗 + 1,
𝜂
𝛽

𝑒ఉ − 1൰ + 𝜂𝛽 ቈ− ቆ
𝑞ଶ

2
(𝜂𝑞 + 3) +

3
𝜂

ቀ𝑞 +
1
𝜂

ቁቇ 𝑒ିఎ +
3

𝜂ଶቇ

൮∑ 𝑐 ஶ
ୀ

𝜂Γ(𝑚 + 1)

𝛽ଶ ൬
𝜂
𝛽

൰
ାଵ +

3𝛽
𝜂ଷ ൲
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12. Estimations of Parameter 

The MGG distribution parameter's maximum likelihood estimates provided in this section. 
12.1 Maximum Likelihood estimation (MLE)  

Consider 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥 be a random sample of size n from the mixture of Gompertz and 
gamma distribution with parameter 𝜂, 𝛽 the likelihood function, which is defined as 

𝐿 = (𝑥; 𝜂, 𝛽) = ෑ 𝑓(𝑥; 𝜂, 𝛽)



ୀଵ

= ෑ
𝜂

1 + β
ቆ𝑒ఉ௫𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽

2
𝑥

ଶ𝑒ିఎ௫ቇ



ୀଵ

 

Then, the log-likelihood function is 

ℓ = log 𝐿 = 𝑛 log(𝜂) − 𝑛 log(1 + 𝛽) + log  ቆ𝑒ఉ௫𝑒
ି

ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽

2
𝑥

ଶ𝑒ିఎ௫ቇ



ୀଵ

 

Differentiating with respect to 𝜂 𝑎𝑛𝑑 𝛽  

𝜕 log 𝐿

𝜕𝜂
= 𝑛 ൬

1

𝜂
൰ + 

ቆ−
1
𝛽

൫𝑒ఉ௫ − 1൯𝑒
ି

ఎ
ఉ

൫ഁೣିଵ൯
+ 𝛽𝑥

ଶ𝑒ିఎ௫ ൬𝜂 ቀ1 −
𝜂𝑥

2
ቁ൰ቇ

൬𝑒ఉ௫𝑒
ି

ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽
2

𝑥
ଶ𝑒ିఎ௫൰



ୀଵ

= 0                                                                                                                                     (10) 

𝜕 log 𝐿

𝜕𝛽
= −𝑛 ൬

1

𝛽 + 1
൰ + 

ቆ𝑥𝑒
ఉ௫𝑒

ି
ఎ
ఉ

൫ഁೣିଵ൯
ቆ−

𝜂𝑥𝑒ఉ௫

𝛽
+

𝜂൫𝑒ఉ௫ − 1൯

𝛽ଶ ቇ +
𝜂ଶ𝑥

ଶ𝑒ିఎ௫

2
ቇ

൬𝑒ఉ௫𝑒
ି

ఎ
ఉ

൫ഁೣିଵ൯
+

𝜂ଶ𝛽
2

𝑥
ଶ𝑒ିఎ௫൰



ୀଵ

= 0                                                                                                                                     (11) 
 The maximum likelihood estimate of the parameters for the MGG distribution is provided by 
equations (10) and (11). The equation, however, cannot be solved analytically, so we used R 
programming and a data set to solve it numerically.  
The asymptotic normality results are used to derive the confidence interval. Given that if 𝜆መ = (𝜂ො, 𝛽) 
represents the MLE of 𝜆 = (𝜂, 𝛽), the results can be expressed as follows: 
√𝑛൫𝜆መ − 𝜆൯ → 𝑁ଶ(0, 𝐼ିଵ(𝜆)) 
In this case, 𝐼(𝜆)represents Fisher's Information Matrix. 
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13. Applications 

Dat set 1: This data includes the life expectancy (in years) of forty patients with leukemia, a 
blood malignancy, from one of Saudi Arabia's Ministry of Health facilities, as published in [6].  
0.315,0.496,0.616,1.145,1.208,1.263,1.414,2.025,2.036,2.162,2.211,2.370,2.532,2.693,2.805,2.9
10,2.912,3.192,3.263,3.348,3.48,3.427,3.499,3.534,3.767,3.751,3.858,3.986,4.049,4.244,4.323, 
4.381, 4.392,4.397,4.647,4.753,4.929,4.973,5.074,5.381. 

Data set 2: The data under consideration are the life times of 19 leukemia patients who were 
treated by a certain drug [1]. The data are 
1.013,1.034,1.109,1.169,1.226,1.509,1.533,1.563,1.716,1.929,1.965,2.061,2.344,2.546,2.626,2.7
78,2.951,3.413,4.118,5.136. 

Data set 3: [20] The dataset included the survival rates of 121 breast cancer patients with were 
treated at a major hospital to 1929 to 1938 (Lee, 1992). (A1-kadim and Mahdi, 2018) has recently 
used this dataset.  0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3,11.0, 11.8, 12.2, 
12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5,17.9, 19.8, 20.4, 
20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0,31.0, 32.0, 35.0, 
35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0,41.0, 42.0, 43.0, 
43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0,54.0, 55.0, 56.0, 
57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0,78.0, 80.0,83.0, 88.0, 
89.0, 90.0, 93.0, 96.0, 103.0,  105.0, 109.0,  109.0,  111.0, 115.0,  117.0,  125.0,126.0, 127.0,  
129.0,  129.0, 139.0, 154.0. 

The Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), Akaike 
Information Criteria Corrected (AICC), and −2 log 𝐿.are used to compare the goodness of fit of 
the fitted distribution. 

The following formula can be used to determine AIC, BIC, AICC, and −2 log 𝐿.. 

𝐴𝐼𝐶 = 2𝑘 − 2 log 𝐿 , 𝐵𝐼𝐶 = 𝑘 log 𝑛 − 2 log 𝐿  𝑎𝑛𝑑 𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

(𝑛 − 𝑘 − 1)
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Where, 𝑘 = number of parameters, n sample size and −2 log 𝐿 is the maximized value of 
loglikelihood function. 
Table 1. The value of MLE’s and goodness of fit criteria statistics for model selection based on cancer 
dataset. 

Distribution ML Estimates -2𝐥𝐨𝐠 𝑳 AIC BIC AICC 
Mixture of 
Gompertz and 
Gamma 
distribution 

𝜼ෝ = 𝟐. 𝟒𝟒𝟓𝟐𝟗𝟔𝒆 + 𝟎𝟕 
       (𝟒. 𝟎𝟗𝟒𝟑𝟎𝟒𝒆 + 𝟎𝟑) 
𝜷 = 𝟐. 𝟓𝟒𝟐𝟖𝟎𝟏𝒆 − 𝟎𝟏  
       (𝟒. 𝟏𝟓𝟖𝟎𝟏𝟕𝒆 − 𝟎𝟐) 

-3894.226 -3890.266 -3886.896 -3980.5930 

Lindely   𝜃 = 0.2577071 (0.06161721) 156.5028 158.5028 160.1664 158.6080 
Shanker 𝜃 = 0.54972161(0.05806214) 144.7945 155.9545 157.6181 156.0597 
Rama  𝜃 = 1.10146523(0.08055189) 143.3158 154.3158 147.1023 154.4210 

Exponential 𝜃 = 0.31893857(0.05107054) 167.1353 169.1353 170.7988 169.0405 
Aradhana 𝜃 = 0.75060122(0.07108124) 153.1793 155.1793 156.8682 155.2845 
Akash 𝜃 = 0.79998356 (0.0701655) 152.7582 154.7582 156.4471 154.8634 
Ishita 𝜃 = 0.8047911 (0.0642800) 151.6347 153.6347 155.3235 153.7399 

 
Table 2. The value of MLE’s and goodness of fit criteria statistics for model selection based on cancer 
dataset. 

Distribution ML Estimates -2𝐥𝐨𝐠 𝑳 AIC BIC AICC 
Mixture of 
Gompertz and 
Gamma 
distribution 

𝜼ෝ = 𝟐. 𝟎𝟒𝟓𝟗𝟖𝟗𝒆 + 𝟎𝟕 
       (𝟓. 𝟗𝟑𝟏𝟔𝟒𝟐𝒆 + 𝟎𝟑) 
𝜷 = 𝟑. 𝟑𝟒𝟒𝟔𝟎𝟔𝒆 − 𝟎𝟏 
       (𝟕. 𝟗𝟐𝟓𝟗𝟓𝟗𝒆 − 𝟎𝟐) 

-1865.153 -1861.153 -1859.264 -1861.903 

Lindely 𝜃 = 0.7076860    (0.1200725) 64.02158 66.02158 66.96602 66.2438 
Shanker 𝜃 = 0.7124395   (0.10777871) 63.08856 65.08856 66.033 65.3107 
Rama  𝜃 = 1.3784229    (0.1415338) 62.41991 64.41991 65.36435 64.6421 
Exponential 𝜃 = 0.4463246    (0.1023934) 68.65501 70.65501 71.59945 70.8772 
Aradhana 𝜃 = 0.985545      (0.135948) 60.60053 62.60053 63.54497 62.8227 
Akash 𝜃 = 0.0297001    (0.1317933) 62.69158 64.69158 65.63602 64.9138 
Ishita 𝜃 = 0.9975990    (0.1134076) 62.74297 64.74297 65.68741 64.9651 

 
Table 3. The value of MLE’s and goodness of fit criteria statistics for model selection based on cancer 
dataset. 

Distribution ML Estimates -2𝐥𝐨𝐠 𝑳 AIC BIC AICC 
New Mixture 
of Gompertz 
and Gamma 
distribution 

𝜼ෝ = 𝟐. 𝟎𝟒𝟐𝟒𝟐𝟖𝒆 + 𝟎𝟕 
(        𝑵𝒂𝑵) 
𝜷 = 𝟑. 𝟑𝟒𝟒𝟔𝟏𝟐𝒆 − 𝟎𝟏 
 (𝟕. 𝟗𝟐𝟓𝟗𝟕𝟒𝒆 − 𝟎𝟐) 

-1864.954 -1860.954 -1856.109 -1038.8907 

Lindely 𝜃 = 0.042301604   (0.002718848) 1160.863 1162.863 1165.659 1162.8966 

Shanker 𝜃 = 0.043180645     (0.002771516) 1165.784 1167.784 1170.586 1167.8176 
Rama  𝜃 = 0.086335660   (0.003923506) 1241.883 1243.883 1246.679 1243.9166 
Exponential 𝜃 = 0.021597929     (0.001959228) 1170.256 1172.256 1175.051 1172.2896 
Aradhana 𝜃 = 0.042301604   (0.002718848)     1187.828 1162.863 1165.659 1162.8966 
Akash 𝜃 = 0.064664492     (0.003390847) 1193.125 1195.125 1197.121 1195.1586 
Ishita 𝜃 = 0.064904911   (0.003403705) 1201.28 1203.28 1206.076 1203.3136 



A Stochastic Model of Mixture Distribution                M. Sakthivel 
Properties and its Applications                and P. Pandiyan 
      

97 
 

In comparison to the mixture of Gompertz and gamma distribution, Lindely, Shanker, Rama, 
Exponential, Aradhana, Akash, and Ishita distribution, it is evident from table 2,3 and 4 results that 
the (MGG) distribution has smaller AIC, BIC, AICC, and values. This suggests that the new 
mixture distribution fits the data better. Therefore, compared to the other distributions, the mixture 
of Gompertz and gamma distribution (MGGD) provides a better fit. 

14. Conclusion 

In this paper, a two-parameter distribution is called a MGGD, which is a mixture of two known 
distributions, the Gompertz and Gamma distributions. Some statistical properties of the moments, 
the moments-generating function, mean, variance, skewness, and kurtosis have been studied. A 
number of statistical characteristics of the proposed distribution have been derived, including order 
statistics, stochastic ordering, entropies, Bonferroni, and Lorenz curves, and the method of 
maximum likelihood estimation of the parameters has been estimated. The statistical approach of 
the cancer dataset was analyzed. Moreover, the derived distribution is applied to real data sets and 
compared with the other well-known distribution. Show that the result of the mixture of the 
Gompertz and Gamma distributions provides a better fit than other well-known distributions. 
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