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ABSTRACT  
A strategy for accommodating outlying observations, as well as non-representative, suspect, missing, or 
otherwise troubling observations, is described. Each unusual observation is decomposed into the sum of 
two components. One component is the value implied by the trusted observations in the data set. The other 
component is the unusual part. In this way, the fitting of the data set can then proceed, and, additionally, a 
numerical value can be ascribed to the unusual part. The method offers not only an antidote for observations 
with irregular numerical values, which often have the power to contaminate and alter analyses, but also a 
measure of the magnitudes of the unusual components of those observations. Univariate data and ordered 
pairs in least-squares fitting are presented as examples.  
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1. Introduction 

A method for addressing data sets containing outliers is presented. An outlier is an observation 
that is far from the data’s subset in which there is confidence [1, 2, 12]. The method supplies an 
estimate of the size of each outlier, and, simultaneously, the data set is prepared for subsequent 
analyses without any potentially harmful influences of these outliers. All outliers are handled at 
once, not piecemeal, so that identifying and estimating an outlier does not contaminate the 
identifications and estimations of other outliers.    

One of the method’s desirable features is that it can be used when there are suspect observations 
that might not appear to be outliers, but are nonetheless problematical. Another is that it can be 
used for missing observations.  

The main idea of the proposed method is to replace simultaneously each outlier or suspect value 
with its own placeholder, such that, when the altered data set is fitted, each placeholder’s value 
gives a perfect fit and thus has a residual of zero. The difference between each placeholder’s value 
and the actual data value is the size of the discordant or otherwise troubling part of the observation. 
The placeholders’ values can remain in the data set for the next fitting or statistical procedure that 
might be favored for an ongoing analysis. 

The strategy is not limited to a small number of troublesome observations. It does not break 
down, even in the presence of a large number of such observations. Other useful features are that 
it can be implemented without difficulty and be explained straightforwardly to colleagues and 
clients when consulting. It maintains the integrity of the data set. The method does not overwork 
the data. Although it might be difficult to quantify overwork, it is usually apparent when tens or 
hundreds of calculations per observation are performed, so that those computations may be 
deciding the outcome, instead of the data doing so. Also, calculations carry the baggage of round-
off errors and of assumptions about the data, which might not be desirable.  

The preferred way to determine that an observation is an outlier or simply suspect should 
be as simple as possible. Generally, graphical methods supply excellent ways to ascertain that an 
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observation is an outlier. Those allow the observations to speak for themselves with little 
massaging or manipulation. Also, each observation may be separately examined. Besides being a 
potential outlier, an observation may be suspect for many reasons, including the source being 
unreliable or the failure of equipment. 

The strategy for accommodating outlying observations, as well as non-representative, suspect, 
missing, or otherwise troubling observations, can be summarized as follows. Each unusual 
observation is decomposed into the sum of two components. One component is to be given the 
value implied by the trusted observations in the data set along with the probable subsequent or 
planned analyses. The other component is the unusual part. In this way, the follow-up fitting of the 
data set can proceed using the first component, and a numerical value can be ascribed to the 
unusual part using the second component. This fitting and the estimation of the outlying portions 
are performed simultaneously on all suspect observations within one framework. The method 
offers not only an antidote for observations with irregular numerical values, which often have the 
power to contaminate and alter analyses, but also a measure of the magnitudes of the unusual 
components of those observations.  

In Section 2, the relatively simple example of univariate observations introduces many of the 
main ideas. Data pairs are explored in Section 3. Conclusions are in Section 4. Least-squares fitting 
is emphasized, and a data-analysis stance is taken.  

2. Univariate Observations 

Consider a sample containing the 𝑛் + 𝑛ௌ = 𝑛 values  
    𝑥ଵ, 𝑥ଶ, … , 𝑥௡೅

, 𝑥௡೅ାଵ, 𝑥௡೅ାଶ, … , 𝑥௡೅ା௡ೄ
        (1) 

which have been ordered for convenience in such a manner that it is believed that the first 𝑛்  
values can be trusted (hence the subscript 𝑇) as probably sufficiently accurate or precise, but the 
remaining 𝑛ௌ values are suspect (hence the subscript 𝑆). Assume that there are good reasons for 
believing that the suspect data are outliers or problematical. Our basis for that decision might be 
from an examination of a dot diagram or a normal probability plot or from calculations of various 
statistics [5, 9]. There are other grounds for identifying an observation as suspect. For example, 
one is the observation’s source, such as it being from a lab with unsanitary conditions or an 
instrument that might be mistrusted. Such data values may be included as suspect.  

The goal is to estimate the sizes of the outliers and at the same time neutralize those 
observations’ impact on the intended ensuing analyses of the data. There are at least three ways to 
proceed.  

1. Use all 𝑛 observations (1) as one set.  
2. Use only the 𝑛்  trusted observations in (1) and delete the 𝑛ௌ 
    suspect observations. 
3. Use the 𝑛்  trusted observations along with the concordant   
    part of each of the 𝑛ௌ suspect observations. 

 Choice 1 might be dismissed because it ignores that there is information or analyses that show 
that the 𝑛ௌ suspect observations are unusual. Those observations might harm ensuing analyses. For 
example, they could shift the mean and produce a large standard deviation, so that there is less 
precision and clarity. Outlying observations can contaminate, and even render useless, analyses, 
especially those that are least-squares procedures [1, 11, 12]. 

Choice 2 involves the deletion of data, which might be objected to on principle. It offers no 
guidance about putting the deleted observations to use.  



Analysis of Data Containing Outliers       David L. Farnsworth 

 101 

Choice 3 is recommended. Each suspect observation is temporarily replaced by one value 𝑡, 
which is to be determined. Thus, the process uses the set 
     𝑥ଵ, 𝑥ଶ, … , 𝑥௡೅

, 𝑡, 𝑡, … , 𝑡,                     (2) 
containing 𝑛ௌ copies of 𝑡. The criterion for the value of 𝑡 is that the mean of the set (2) is 𝑡. Through 
this process, each value 𝑥௜ among the suspect observations is decomposed into the sum 𝑡 +
(𝑥௜ – 𝑡), where the second addend is a measure of the discordant or outlying component of the 
observation. The first addend remains in the data set. In this way, the observations are set up for 
subsequent fitting and statistical analyses, and the sample size is not reduced beforehand. The 
discordant component is set aside as the outlying portion, i.e., the size of the outlying component 
is fitted thusly. 
Theorem 1. The criterion that the mean is 𝑡 for the set (2), consisting of the 𝑛்  trusted 
observations and the 𝑛ௌ values 𝑡, implies that 𝑡 = 𝑥̅௡೅

, where 𝑥̅௡೅
 is the mean of the 𝑛்  trusted 

values. 
Proof. The criterion is 

𝑛்𝑥̅௡೅
+ 𝑛ௌ𝑡

𝑛் + 𝑛ௌ
= 𝑡, 

whose unique solution is 𝑡 = 𝑥̅௡೅
.   □ 

 
In the set (2), the residual of each of the 𝑛ௌ suspect observations is zero from 𝑡 – 𝑥̅௡೅

= 0. The 
sizes of the outlying components are 𝑥௜ – 𝑥̅௡೅

=  𝑥௜ – 𝑡 for 𝑖 = 𝑛் + 1, 𝑛் + 2, … , 𝑛் + 𝑛ௌ = 𝑛.  
Theorem 1 says that the sample mean of the 𝑛்  trusted values is the center of the set (2) of 𝑛 

values composed of the trusted observations and the non-outlying components of the suspect 
observations. The sample variance of this set of 𝑛 values is 

          𝑠ଶ =
∑ ൫௫೔ – ௫ ഥ ೙೅

൯
మ೙೅

೔సభ
ା ∑ ൫௧ – ௫ഥ ೙೅

൯
మ೙೅శ೙ೄ

೔స೙೅శభ

(௡೅ ା ௡ೄ) – ௡ೄ – ଵ
=

∑ ൫௫೔ – ௫̅೙೅
൯

మ೙೅
೔సభ

௡೅ –ଵ
= 𝑠௡೅

ଶ ,   

where 𝑛ௌ degrees of freedom are subtracted in the denominator, because they have been used in 
the determinations of the outlying components of the 𝑛ௌ observations that had been deemed to be 
suspect. Therefore, in this case of a univariate data set with a least-squares analysis, the sample 
mean and variance of (2) can be computed as if the 𝑛ௌ suspect values have been discarded. 

Statistical analyses can proceed using the 𝑛்  trusted values and 𝑛ௌ values  𝑡 = 𝑥̅௡೅
 as                      

the data set, i.e., (2), while the outliers have been fitted. One degree of freedom is lost for each of 
those fitted values. Thus, the outlying portions of the suspect observations have been estimated 
and can be set aside, leaving values that are the mean value and ready to be part of later analyses. 

Unlike some ways of accommodating suspect data, there are no restrictions on the number 𝑛ௌ, 
except that at least two of the original data values must remain for the succeeding analysis from 
(𝑛் + 𝑛ௌ) –  𝑛ௌ – 1 = 𝑛்  – 1 ≥ 1. The process does not break down when there is a large number 
of defective or unusual values. Of course, a very large number of suspect observations might 
threaten the integrity of an experiment and the usefulness of its statistical analysis. Indeed, if the 
researcher suspects that the data set is formed from a mixture of two or more distributions, 
designating observations as outliers may be incorrect. Designating a datum as suspect could take 
into consideration knowledge about the generation of the observations [3, 15]. The observations 
are not required to be far from the other observations or the mean in order for this process to be 
used, such as for problematic, but not necessarily outlying, values. 
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It is surprising that in this case of univariate observations this procedure gives a framework for 
justifying the deletion of the suspect observations, because the sample mean, sample variance, and 
the degrees of freedom are the same with this procedure and with deletion. 

Investigating the potential causes of the suspect observations and the meanings of their sizes 
may be a follow-up to the procedure. Sometimes, instead of being errors, outliers can reveal 
something interesting and important about the data set or its source. As in any data set, it often 
happens that suspect or nonconforming observations have the most significance and information.  
 

Example 1. Consider the ten values {2.6, 2.8, 2.85, 3.0, 3.2, 3.35, 3.4, 3.6, 6.0, 7.0}, which have 
been ordered for easier viewing. A dot diagram shows that the 6.0 and 7.0 are outliers. Thus, 𝑛் =
8, 𝑛ௌ = 2, 𝑛 = 10, and 𝑥̅௡೅

= (2.6 + 2.8 + ⋯ + 3.6) 8⁄ = 3.1. The estimates of the sizes of the 
outlying components are 6.0 – 3.1 = 2.9 and 7.0 – 3.1 = 3.9. The sample variance is 𝑠ଶ =
((2.6 – 3.1)ଶ + ⋯ + (3.6 – 3.1)ଶ) 7⁄ = 0.118.  

3. Ordered Pairs of Observations  

Consider the set of 𝑛 points (𝑥௜ , 𝑦௜), 𝑖 = 1, 2, … , 𝑛, which is composed of 𝑛்  trusted points for 
𝑖 = 1, 2, … , 𝑛்  and 𝑛ௌ suspect points for 𝑖 = 𝑛் + 1, 𝑛் + 2, … , 𝑛் + 𝑛ௌ = 𝑛. Assume that there 
are no errors in the 𝑥-values. Suppose that, based upon a scatter diagram or some elementary 
analyses [4, 8, 10], the suspect points are believed to be outliers. The least-squares regression line 
for the 𝑛்  trusted points is 

     𝑦 = 𝑏଴ + 𝑏ଵ𝑥.                                                       (3)  
As in Section 2, each suspect point is decomposed, such that the 𝑦-value has two additive 

components. The 𝑥-value is not changed. In many applications, the explanatory 𝑥-value is assumed 
to be known and free of errors. The direction of prediction is parallel to the 𝑦-axis. This is 
analogous to Theorem 1, where the criterion leads to the unique mean for univariate data. Here, 
the unique regression line is 

               𝑦 = 𝑏଴
ᇱ + 𝑏ଵ

ᇱ 𝑥,                       (4) 
which fits the set consisting of the 𝑛்  trusted observations and the 𝑛ௌ suspect points’ concordant 
components. The points associated with the concordant components of the suspect observations 
are 
                             ൫𝑥௡೅ା௜ , 𝑡௜൯            (5) 
for 𝑖 = 1, 2, … , 𝑛ௌ. By design, the residuals for these points are zero. Recall that the residual for an 
observed point is its signed vertical distance from the regression line.  
 
Theorem 2. The criterion that the least-squares regression line (4) fits the 𝑛்  trusted observations 
and the 𝑛ௌ pairs in (5) implies that the line is (3). 
Proof. For the set of 𝑛 pairs, the sum of squares is 

   ෍ ൫𝑦௜  – (𝑏଴
ᇱ + 𝑏ଵ

ᇱ 𝑥௜)൯
ଶ௡

௜ୀଵ
, 

which is 

෍ ൫𝑦௜ – (𝑏଴
ᇱ + 𝑏ଵ

ᇱ 𝑥௜)൯
ଶ௡೅

௜ୀଵ
+ ෍ ቀ𝑡௜ – ൫𝑏଴

ᇱ + 𝑏ଵ
ᇱ 𝑥௡೅ା௜൯ቁ

ଶ

.
௡ೞ

௜ୀଵ
 

Because the concordant portions of the suspect points are required to be on the line, each term 
in the second sum is zero, and this reduces to the minimization over the line’s coefficients that is 
required for the trusted observations alone. Indeed, the criterion says that the concordant 
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components (5) of the suspect points lie on the line, so they have no influence on the fit [4, 6, 9], 
and the line is determined by the trusted points.   □ 

 

As in Section 2, this process supplies 𝑛 points for further fitting and statistical analysis. The 
measurement of the size of each outlying component is 𝑦௜ – 𝑏଴ – 𝑏ଵ𝑥௜, which is the signed vertical 
distance of the suspect point from the line (3). Points with positive (negative) residuals are above 
(below) the line. Because of this fitting of the outlying components, 𝑛ௌ degrees of freedom are 
depleted. 

The sample variance of the slope is the sum of squares of the residuals divided by the sum’s 
degrees of freedom [4, 6]. Because the residuals are zero for the suspect points and the degrees of 
freedom for the set of 𝑛 points is reduced by 𝑛ௌ, the variance of the slope is the same as for the 
slope of regression line for the trusted points,  

𝑠ଶ(𝑏ଵ) =
∑ (𝑦௜ – 𝑏଴ – 𝑏ଵ𝑥௜)

ଶ௡೅
௜ୀଵ

𝑛்  – 2
. 

As is the case for the univariate set in Section 2, there are no restrictions on the number 𝑛ௌ of 
suspect data, except that at least three of the original data values must remain for the succeeding 
analysis from  (𝑛் + 𝑛ௌ) – 𝑛ௌ  – 2 = 𝑛்  – 2 ≥ 1. This process offers a compelling argument for 
deletion of suspect observations in standard least-squares linear regression. 

4. Conclusions 

A procedure to address fitting in the presence of outliers and other discordant observations has 
been offered. It contains a method for assigning values to the outlying components of those 
observations. Univariate data with the mean and bivariate observations with the regression line are 
presented as examples. 

As a first step, the set of observations needs to be examined for outliers and other suspect 
observations and for the suitability of the proposed additive fitting. In each of the examples, 
graphical techniques are favored [16], but many analytical methods are available [2]. For a 
univariate set, an elementary dot diagram may suffice. For bivariate observations, a scatterplot 
may be sufficient. It has been long held that Tukey’s eye-to-paper or eye-smoothing technique for 
sighting along a proposed regression line is reliable [13].  

By using graphical tools, the observations are viewed in a raw state, rather than being 
manipulated, altered, or reformulated. Such manipulations can possess assumptions, especially of 
the probability distribution that generated the data, that have no natural place in the analyses. The 
number of suspect observations is determined by this graphical search and by considerations about 
the quality of the observations, such as their source, instead of by limitations of the methodology 
for finding them or by uninformed guesses [2].  

The core of the fitting procedure is that each outlier is decomposed into a sum of two 
components. One component is a perfectly fitting value that is determined from the trusted subset 
of the observations and the other is the outlying or discordant part of the observation. These two 
fitting procedures are performed concurrently in a complementary fashion. Because all the outliers 
are fitted in one process, instead of sequentially, the analysis of one outlier is not unduly influenced 
by other outliers. 

The method works for any observation that is identified as suspect; it need not be distant from 
the other observations or the final fitted values. In those cases, the discordant parts may not be as 
meaningful as the discordant parts of outliers, but the advantage remains that the process leaves 
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them with little or no weight. The method can accommodate missing values, and it gives a value 
for further fitting [7, 8].  

The method is feasible in the sense that the calculations are not difficult to implement or to 
explain to others. These simple choices and calculations can be performed with statistical 
computing programs in routine ways. 

For cases of fitting a univariate data set with a mean and fitting pairs with a least-squares 
regression line, an additional benefit, which may be surprising, is that this method is equivalent to 
the deletion of the suspect values. 

This method might be expanded to include errors or suspect values in the independent variables, 
such as 𝑥 in Section 3. Research on errors in those values is an active area of inquiry; see [11] and 
[14] and their references. 
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