
Journal of Probability                                        
and Statistical Science  
22(1), 1-15 Sep. 2024 

 Received June 2024, in final form August 2024. 
 Oloyede I. (corresponding author), is affiliated with the Department of Statistics, 

University of Ilorin, Ilorin, Nigeria. 
            oloyede.i@unilorin.edu.ng 

Bayesian Transmuted Normal Distribution With  β and σ 
Parameters Where X' s Are Correlated 

Oloyede I. 
Department of Statistics 

University of Ilorin, Ilorin, Nigeria 

ABSTRACT  

Transmuted distribution emerged as new form of distribution in the literature recently, this is due to influx 
and changing nature of data from the conventional structured to semi and unstructured data. The study 
developed new distribution in practical term by incorporating regression variables into normal distribution 
and direct Bayesian gradient Monte Carlo simulation (DBGMS). The data were subjected to 
multicollinearity in a low dimension with specified 𝜌 and transmuted parameter 𝜆 were specified as 0.3, 
0.6 and 0.9. The outcome of the study pointed to the fact that Bayes estimate and posterior mean of DBGMS 
is superior and more efficient to classical maximum likelihood estimates. The study therefore recommended 
DBGMS when data are multicollinear and transmuted distribution is in use. 
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1. Introduction 

Ayman and Kisten (2013) claimed that most of the distribution nowadays that are used to model 
and fit the data do not provide enough evidence for the precision of estimates and its goodness of 
fit, this may be due to  Balaswamy  (2018) who pointed out that data are generated from various 
sources as a result of advancement in technology. Normal distribution is a general distribution 
belonging to the family of exponential distribution which is often used in econometrics to model 
various forms of regressions. Recently, transmuted probability distribution features in many 
probability and Statistics literature due to advancement and complexity of data collection, 
generation and used. Many fields of studies have begun to adopt transmuted probability 
distribution to solve their complexity problems, Muhammad etal, (2020a). 

Muhammad etal, (2020b) examined the performance of Bayes estimator using different loss 
function with reference to the posterior risk under the mixture of two components of transmuted 
Frechet distribution. In an attempt to derive skewed distribution, quadratic rank transmuted Shaw, 
etal (2009) had been adopted by many literature in many families of distributions. This is done by 
inducing a parameter to the baseline continuous distribution,  Muhammad etal, (2020b). It was 
keenly observed that transmuted distribution is flexible in modelling and analysis of contemporary 
data such as the area of engineering, reliability, survival analysis and many more.  The probability 
density function of a transmuted random variables (𝑋, 𝑦) can be expressed as follow, Muhammad 
etal, (2020b) . 
 
𝑔(𝑋, 𝑦) = 𝑓(𝑋, 𝑦)[(1 + 𝜆) − 2𝜆𝐹(𝑋, 𝑦)]                (1) 

𝐺(𝑋, 𝑦) = (1 + 𝜆)𝐹(𝑋, 𝑦) − 𝜆𝐹(𝑋, 𝑦)ଶ                    (2) 
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where 𝜆 is the transmuted parameter which is set as 0 < 𝜆 ≤ 1 , if  𝜆 = 0, the distribution turns 
out to baseline distribution, X and y are greater than 0, 𝑓(𝑋, 𝑦) and 𝑓(𝑋, 𝑦)  are probability density 
function(pdf)  and cumulative distribution function (cdf) of baseline distribution respectively, 
𝑔(𝑋, 𝑦) and 𝐺(𝑋, 𝑦)  are the transmuted pdf and cdf respectively. Muhammad etal (2020b)  
adopted Bayesian paradigm of the transmuted Pareto distribution using different performance 
metrics and applied it to censored and uncensored data. They made use of Marcov chain Monte 
Carlo simulation to obtain the Bayes estimate due to non-closed form of the model. Shaw and 
Buckley (2009)  adopted quadratic rank transmutation approach to formulate new distribution, this 
is due to the fact that data are generated from various sources such as sensor, network, close circuit 
television, weblog and many more, the data may be structure, semi and unstructured with which 
the existing distribution may not be able to fit well Rahila, etal (2021).  

Yousaf  etal (2019) and Rahila etal (2021) examined transmuted Weibull distribution in a 
Bayesian paradigm  by adopting uniform and informative gamma priors using three different loss 
functions(square error , quadratic and precautionary loss functions) and  the relative importance of 
Bayes estimators using different loss function was examined as in  Ali, (2015), problems of 
selecting appropriate priors and loss function for various sample sizes and concluded that Bayes 
estimates converged to assumed parameter values and observed property of consistency, Yousaf, 
etal (2018). 

Amal etal (2021) observed that Bayes estimates in case of both minimum expected loss function 
when informative prior is used outperformed other estimates in most of the times. From the recent 
development in the transmutation of the distribution, none of the studies have applied it to 
regression modeling. The study aims at adapting Bayesian paradigm in transmuting normal 
distribution with normal-inverse gamma priors. 

2.1 Transmuted Normal Distribution 

The probability density function(pdf) and cumulative distribution function(cdf) are given as equation 3 and 4 
respectively below: 

𝑓(𝑥) =
ଵ

√ଶగఙమ
𝑒

ି
(೤ష೉ഁ)మ

మ഑మ                 (3) 

𝐹(𝑥) = 𝑒𝑟𝑓 ቀ
௬ି௑

√ଶఙమ
ቁ                      (4) 

where 𝜎 is the standard deviation with erf as error function(erf). Thus the pdf and cdf of transmuted distribution can 
be given in equations 5 and 6 respectively. 

𝑔(𝑥) = 𝑓(𝑋)[(1 + 𝜆) − 2𝜆𝐹(𝑋)]           (5) 
𝐺(𝑥) = (1 + 𝜆)𝐹(𝑋) − 𝜆𝐹(𝑋)ଶ                                                                                 (6) 

The random variable X and y are said to have the transmuted normal distribution (TND) with parameters 𝛽, 𝜎, 𝜆 
where 𝜆 parameter ranges −1 ≤ 𝜆 ≤ 1. Thus the regression transmuted normal distribution can be expressed as: 

            𝑔(𝑥, 𝑦) =
ଵ

√ଶగఙమ
𝑒

ି
(೤ష೉ഁ)మ

మ഑మ ቂ(1 + 𝜆) − 2𝜆𝑒𝑟𝑓 ቀ
௬ି௑ఉ

√ଶఙమ
ቁቃ         (7) 

While cumulative distribution function is expressed as : 

            𝐺(𝑥, 𝑦) = (1 + 𝜆)𝑒𝑟𝑓 ቀ
௬ି௑ఉ

√ଶఙమ
ቁ − 𝜆 ቂ𝑒𝑟𝑓 ቀ

௬ି௑ఉ

√ଶఙమ
ቁቃ

ଶ

                                 (8) 

2.2 Likelihood function 

Let 𝑋, 𝑦 be set of observations of size n for transmuted normal distribution of a regression 
equation modeling. 
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             𝐿 = (2𝜋𝜎ଶ)ି
೙

మ𝑒
ି

(೤ష೉ഁ)మ

మ഑మ ቂ(1 + 𝜆) − 2𝜆𝑒𝑟𝑓 ቀ
௬ି௑ఉ

√ଶఙమ
ቁቃ                                  (9) 

Then the log-likelihood is expressed as: 

𝑙𝑜𝑔𝐿 = −
௡

ଶ
𝑙𝑜𝑔(2𝜋) − 𝑛𝑙𝑜𝑔(𝜎) − ∑

(௬ି௑ఉ)మ

ଶఙమ
௡
௜ୀଵ + ∑ 𝑙𝑜𝑔௡

௜ୀଵ ቂ(1 + 𝜆) − 2𝜆𝑒𝑟𝑓 ቀ
௬ି௑ఉ

√ଶఙమ
ቁቃ        (10) 

Then the derivative of logL with respect to 𝛽 is expressed as: 
ௗ௟௢௚௅

ௗఉ
= − ∑

ିଶ௑(௬ି௑ఉ)
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ௗ௟௢௚௅

ௗఉ
= ∑

௑(௬ି௑ఉ)

ఙమ
௡
௜ୀଵ +

∑ [ିଶఒ௙(௫)]೙
೔సభ

∑ ௟௢௚೙
೔సభ ൤(ଵାఒ)ିଶఒ௘௥ ൬

೤ష೉ഁ

ඥమ഑మ
൰൨

                                                                    (12) 

ௗ௟௢௚௅

ௗఉ
=

(௬ି௑ఉ)௑

ఙమ
+

 ଶఒ௘௫௣൬ି
(೤ష೉ഁ)మ

మ഑మ ൰௑√ଶ

√గఙమ൭ଵ ା ఒି ଶఒ௘௥௙൬
(೤ష೉ഁ )√మ)

మඥ഑మ
൰൱

                                                                                     

(13) 
ௗ௟௢௚௅

ௗఙ
= − ∑

(௬ି௑ఉ)మ

ଶఙర
௡
௜ୀଵ +

∑ [ିଶఒ௙(௫)]೙
೔సభ

∑ ௟௢௚೙
೔సభ ൤(ଵାఒ)ିଶఒ௘௥ ൬

೤ష೉ഁ

ඥమ഑మ
൰൨

                                                                 (14) 

ௗ௟௢௚௅

ௗఙ
= −

௡

ఙ
+ 

(௬ି௑ఉ)

ఙయ

ଶ
 +  

ଶఒ௘௫௣(ି
(೤ష೉ഁ)మ

మ഑మ (௬ି௑ఉ)√ଶఙ

√గ(ఙమ)(య/మ)൭ଵ ାఒି ଶఒ௘௥௙൬
(೤ష೉ഁ)√మ

మඥ഑మ
൰൱

                                                                            

(15) 
 

Due to complexity of the model and its non-closed form, the study adopted maximum 
likelihood estimator using Newton Raphson’s algorithm to obtain maximum likelihood estimates 
of 𝛽 and 𝜎.  

3.0 Bayesian Inference 

The study examines the Bayesian analysis of transmuted normal distribution in this section, the 
posterior density is derived under conjugate priors using multivariate normal and inverse-gamma 
distributions. 

The priors are expressed as expressed as follow: 
          

𝑝(𝜎ଶ) =  
௕ೌ

୻(௔)
(𝜎ଶ)ି(௔ାଵ)(−

௕

ఙమ
)                                       (16)  

    

𝑝(𝛽) =   𝑑 (2𝜋|Σ|)ି
భ

మexp (−
ଵ

ଶ
(𝛽 − 𝜇)ᇱ(Σିଵ)(𝛽 − 𝜇))   (17) 

 
𝜇 = exp(𝑋𝛽)    (18) 
  
𝜆 ∼ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1)     

The joint posterior distribution of the parameters 𝛽 and 𝜎 given data 𝑋 and 𝑦 can be expressed 
as : 

𝑝(𝛽, 𝜎|𝑋, 𝑦) ∝ 𝐿(𝑋, 𝑦)𝑝(𝛽)𝑝(𝜎ଶ) 
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The marginal posterior density of parameters 𝛽 and 𝜎 can be obtained 

as∫ ∫ 𝑝(𝛽, 𝜎|𝑋, 𝑦)𝑑𝛽𝑑𝜎
ఙఉ

, it is observed that posterior distribution has no closed form thereby 

the study adopted Direct Gradient Bayesian Monte Carlo simulation(DBGMS) which has superior 
advantage of Markov Chain Monte Carlo Simulation(MCMCS), since there are no need of burn-
in and thinning. 

3. Simulation Study and Data Generation Processes. 

This section presents the outcome of the simulation study that examined the performances of 
Bayesian transmuted normal distribution as compared to classical Maximum Likelihood 
Estimation(MLE) using the slice balance loss function, (Oloyede, 2022) and Quadractic loss 
function, sample size was set as 𝑛 = 30 to capture the problem of small sample size. Random 
variables 𝑋’𝑠 were generated by setting 𝜌 as 0.1 ≤ 𝜌 ≤ 0.9, the covariance matrix 𝑝 with specified 
value of 𝜌 was decomposed with single value decomposition (SVD) and thereafter added to 
randomly generated variables. This ensured the same covariance matrix before and after the data 
had been generated. The study employed this strategy to stabilize the presence of multicollinearity 
in the dataset which serves as data uncertainty. 

4. Data analysis and interpretation 

Table 4.1 showing slice balance loss function 

  Classical  Direct Bayes gradient  
𝜆 𝜌 Monte Bayes Post. mean 

 
 
 
 
 
0.3 

0.1 0.6328 0.0064 0.0076 
0.2 533.65 0.0245 0.0229 
0.3 17.10 0.0076 0.0087 
0.4 5.41 0.0437 0.0407 
0.5 22.672 0.0653 0.0618 
0.6 41.36 0.0309 0.0313 
0.7 68.46 0.0318 0.0329 
0.8 234.78 0.0231 0.0272 
0.9 940.28 0.0258 0.0308 

 
 
 
 
0.6 

0.1 24.55 0.0039 0.0044 
0.2 6.92 0.0224 0.018 
0.3 15.63 0.015 0.0155 
0.4 40.24 0.1404 0.1281 
0.5 1784.24 0.1997 0.183 
0.6 21.81 0.0385 0.0381 
0.7 67.22 0.0597 0.0583 
0.8 35.76 0.0335 0.0371 
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0.9 27.20 0.041 0.0448 
 
 
 
 
0.9 

0.1 8.92 0.0213 0.0204 
0.2 24.17 0.0782 0.0675 
0.3 25.53 0.032 0.0311 
0.4 9.83 0.2033 0.1827 
0.5 44.795 0.2022 0.1845 
0.6 17.72 0.0807 0.076 
0.7 24.17 0.0971 0.0907 
0.8 631.32 0.0416 0.0426 
0.9 218.63 0.0362 0.0397 

In table 4.1 above, it was observed that  DBGMS  outperformed classical maximum likelihood 
estimation Monte Carlo simulation. This is observed based on the choice of transmuted parameter 
and coefficient infused in the data generated. Both Bayes estimate and posterior mean were 
compared with mle estimate under slice balance loss function, Oloyede(2022) which examined the 
precision of the estimate. The outcome of the study is in line with the findings of   Amal etal 
(2021). The efficiency of Bayes estimate and posterior mean are both superior to  classical 
maximum likelihood estimates. 

Table 4.2  showing comparison of classical and Bayesian estimators using quadratic loss function 

  Classical  Direct Bayes gradient 
𝜆 𝜌 Monte Bayes Post. Mean 

 
 
 
 
 
0.3 

0.1 0.6328 0.0149 0.0177 
0.2 533.65 0.0574 0.0537 
0.3 17.10 0.0178 0.0203 
0.4 5.41 0.1022 0.0953 
0.5 22.672 0.1528 0.1446 
0.6 41.36 0.0725 0.0732 
0.7 68.46 0.0745 0.0770 
0.8 234.78 0.0541 0.0638 
0.9 940.28 0.0605 0.0722 

 
 
 
 
0.6 

0.1 24.55 0.0093 0.0103 
0.2 6.92 0.0524 0.042 
0.3 15.63 0.0351 0.0362 
0.4 40.24 0.3287 0.3 
0.5 1784.24 0.4675 0.4284 
0.6 21.81 0.0902 0.0893 
0.7 67.22 0.1398 0.1364 
0.8 35.76 0.0784 0.0869 
0.9 27.20 0.0959 0.1048 

 
 
 
 
0.9 

0.1 8.92 0.0498 0.0477 
0.2 24.17 0.1831 0.158 
0.3 25.53 0.075 0.0728 
0.4 9.83 0.4759 0.4278 
0.5 44.795 0.4733 0.432 
0.6 17.72 0.1888 0.1778 
0.7 24.17 0.2273 0.2124 
0.8 631.32 0.0975 0.0997 
0.9 218.63 0.0848 0.0929 

Table 4.2 showing the comparison of classical and Bayesian gradient estimation using quadratic 
loss function. Quadratic loss function was adopted to compare DBGMS  with respect to Bayes 
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estimate, posterior mean and classical mle, the study found out that DBGMS  is  more superior 
and efficient compare to classical Monte Carlo mle across the 𝜌  and transmuted parameters. 

5. Conclusion  

The study has modeled transmuted normal distribution in a Bayesian framework, the study was 
able to develop transmuted normal distribution and direct Bayesian gradient Monte Carlo 
simulation   using both slice balanced loss function and quadratic loss function to evaluate the 
performance of Bayesian framework and classical mle. The study concluded that Bayes estimate 
and posterior mean of  DBGMCS is superior and efficient to classical maximum likelihood estate 
in a transmuted normal distribution.  
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