
Journal of Probability                                        
and Statistical Science  
22(1), 1-15 Sep. 2024 

 Received June 2024, in final form August 2024. 
 Abhishek Agarwal (corresponding author) and Himanshu Pandey are affiliated with the 

Department of Mathematics & Statistics, DDU Gorakhpur University, Gorakhpur, INDIA. 
 Arun Kumar Rao is affiliated with the Department of Statistics, MPPG College, Jungle 

Dhusan,Gorakhpur,INDIA. 
abhishek.agarwal014@gmail.com 

Theoretical Bayes Approach to the Parameter Estimation of 
Himanshu Distribution 

Abhishek Agarwal      Himanshu Pandey 
Department of Mathematics & Statistics Department of Mathematics & Statistics 

DDU Gorakhpur University,Gorakhpur,INDIA     DDU Gorakhpur University,Gorakhpur,INDIA 

Arun Kumar Rao 
Department of Statistics 

MPPG College, Jungle Dhusan,Gorakhpur,INDIA 
 

ABSTRACT 
In this paper, Himanshu distribution is considered for Bayesian analysis. The expressions for Bayes 
estimators of the parameter have been derived under squared error, precautionary, entropy, K-loss, Al-
Bayyati’s loss, DeGroot and minimum expected loss functions by using beta prior. 

Keywords: Bayesian method, Himanshu distribution, beta prior, squared error, precautionary, entropy, K-
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1. Introduction 

The Himanshu distribution was first proposed by Abhishek Agarwal & Himanshu Pandey [1]. 
The probability density function of this distribution is given by 
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The joint density function or likelihood function of (1) is given by 
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The log likelihood function is given by 
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Differentiating (3) with respect to   and equating to zero, we get the maximum likelihood 
estimator of   which is given by 
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2. Bayesian method of estimation 

The Bayesian inference procedures have been developed generally under squared error loss 
function 
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The Bayes estimator under the above loss function, say, s


 is the posterior mean, i.e, 

   S E 


 .                 (6)  

Zellner [2], Basu and Ebrahimi [3] have recognized that the inappropriateness of using 
symmetric loss function. Norstrom [4] introduced precautionary loss function is given as 
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The Bayes estimator under this loss function is denoted by P


 and is obtained as
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Calabria and Pulcini [5] points out that a useful asymmetric loss function is the entropy loss 
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Also, the loss function  L   has been used 

in Dey et al. [6] and Dey and Liu [7], in the original form having 1p .  Thus  L   can written 

be as 

    1eL b log ;  b>0.                       (9) 

The Bayes estimator under entropy loss function is denoted by E


 and is obtained by solving 
the following equation 
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Wasan [8] proposed the K-loss function which is given as 
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Under K-loss function the Bayes estimator of θ is denoted by K


 and is obtained as 
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Al-Bayyati [9] introduced a new loss function which is given as 
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Under Al-Bayyati’s loss function the Bayes estimator of θ is denoted by Al


 and is obtained as 
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DeGroot [10] introduced several types of loss functions and he obtains Bayes estimators under 
this loss function. An example of a symmetric loss function is the DeGroot loss function defined 
by 
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Bayes estimator of   under DeGroot  loss function is denoted by DG


  and is obtained as 
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Consider the minimum expected loss function 
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This loss function was used by Zellner [11] for estimating functions of parameters in 
econometric models and by Singh [12] for estimating the unknown parameter and reliability of the 
exponential distribution. Bayes estimator of   under minimum expected loss function is denoted 

by MEl


  and is obtained as 
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Let us consider beta prior distribution of θ to obtain the Bayes estimators. 
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3. Posterior density
 

The posterior density of θ under beta prior, on using (2), is given by 

            

         

1

1

1 1

1
1 1

0

1
1 1

1
1 1

n

i
i

n

i
i

n x a br r r r

n x a br r r r r

B a,b
f x

d
B a,b

   


    





 

 

 


 
  

     

        1

1 1

1

1
1

n

i
i

n a b xr r

n

i
i

 

B n a,b x

  

 
     

 



 
 

  
 


          (20) 



                                                                                     JPSS    Vol. 22 No. 1    September 2024     pp. 69-76 
 

72 
 

Theorem: On using (20), we have 
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Proof.  By definition, 
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From equation (21), for 1c  , we have 
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From equation (21), for 2c  , we have 
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From equation (21), for 1c   , we have 
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From equation (21), for 2c   , we have 
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From equation (21), for 1c c  , we have 
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4. Bayes estimators 

From equation (6), on using (22), the Bayes estimator of θr under squared error loss function is 
given by 
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From equation (8), on using (23), the Bayes estimator of θr under precautionary loss function is 
given by 
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From equation (10), on using (24), the Bayes estimator of θr under entropy loss function is given 
by 
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From equation (12), on using (22) and (24), the Bayes estimator of θr under K-loss function is 
given by 
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From equation (14), on using (21) and (26), the Bayes estimator of θr under Al-Bayyati’s loss 
function is given by 
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From equation (16), on using (22) and (23), the Bayes estimator of θr under DeGroot loss function 
is given by 
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From equation (18), on using (24) and (25), the Bayes estimator of θr under minimum expected 
loss function is given by 
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5. Conclusion: 

In this paper, we have obtained a number of estimators for parameter of Himanshu distribution. 
In equation (4) we have obtained the maximum likelihood estimator of the parameter. In equation 
(27) (28), (29), (30), (31), (32), and (33) we have obtained the Bayes estimators under different 
loss functions using beta prior. In the above equation, it is clear that the Bayes estimators depend 
upon the parameters of the prior distribution. 
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