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ABSTRACT 
We consider interval estimation for the parameters, the Mean Residual Life (MRL) and the Tail Value at 
Risk (TVaR) of the inverse Weibull distribution. We constructed the confidence intervals based on the 
asymptotic normality of the maximum likelihood estimator in addition to intervals based on the asymptotic 
Chi-Square distribution of the likelihood ratio (LR) statistic under Type II Censoring. The performance of 
intervals is investigated and compared using the lower, upper, and total error rates, in addition to expected 
lengths using simulation. We found that LR intervals showed better overall performance and are more 
accurate than confidence intervals based on the asymptotic normality of maximum likelihood estimator.  

Keywords: Likelihood ratio interval; Mean Residual Life; Tail Value at Risk; Inverse Weibull distribution; 
Type II Censoring 

1. Introduction 

In most studies, researchers used confidence intervals based on the asymptotic normal 
distribution theory of the maximum likelihood estimators (MLE) to get the upper and lower 
confidence limits for the distribution parameters and functions of the parameters. However, these 
intervals are generally inaccurate for small sample sizes. For that reason, researchers prefer to use 
confidence intervals based on the likelihood ratio statistic. In this article we will derive and 
investigate the performance of both types of intervals for the parameters and some important 
functions of the parameters of the inverse Weibull distribution. 

The Inverse Weibull (IW) distribution; named sometimes complementary Weibull distribution, 
or reverse Weibull distribution offers a versatile distribution useful to model lifetime data. It was 
introduced by Keller and Kamath (1982) as an appropriate model to explain deterioration 
manifestations of mechanical ingredients of diesel engines like pistons and crankshafts. This 
distribution is found to be useful in several other areas like medical, engineering, industrial and 
social sciences. 

The Inverse Weibull probability density function (pdf) for random variable 𝑋 and two 
parameters, shape (𝛼) and scale (𝜆), is written as: 

                          𝑓(𝑥; 𝛼, 𝜆) = 𝛼𝜆 exp{−𝜆𝑥ିఈ} 𝑥ି(ఈାଵ), 𝑥 > 0 , 𝛼 > 0 , 𝜆 > 0.                             (1) 

The survival function of the Inverse Weibull distribution is defined as: 

                               𝑆(𝑥; 𝛼, 𝜆) = 1 − exp{−𝜆𝑥ିఈ}, 𝑥 > 0 , 𝛼 > 0 , 𝜆 > 0.                                           (2) 
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Several authors have considered inference on the parameters of this distribution under various 
types of data including Sultan et al. (2014); Helu (2015); Kumar and Kumar (2019) and Kazemi 
and Azizpoor (2021). Intervals based on the likelihood ratio statistic has gained a considerable 
attention in the literature. Doganaksoy (2021) used a property of the likelihood ratio statistic to 
obtain a new simple method for finding likelihood ratio confidence interval and explained it using 
the Weibull distribution.  Alsheikh and Baklizi (2022) considered maximum likelihood estimation 
of the parameters, the mean residual life (MRL) and the tail value-at-risk (TVaR) for this model 
with type II censored data. In this paper we derived and studied the performance of the confidence 
intervals for Mean Residual Life (MRL) and Tail Value at Risk (TVaR) of the IW distribution 
based on type II censoring. 

The Mean Residual Life (MRL) is a function of time t. It represents the expected future lifetime 
given that a component has survived until time t. It plays an important role in reliability and life 
testing. This function is an attractive alternative to the survival function or the hazard function of 
a survival time in practice, see Gupta (1981); Tang et al. (1999) and Hall and Wellner (2017).  

The MRL function of IW distribution is derived in Alsheikh and Baklizi (2022) and is given by 

                                𝑚(𝑡) = ∫
௫௙(௫)

ௌ(௧)

ஶ

௧
𝑑𝑥 =

ఒഀషభ
ൣ୻൫ଵିఈషభ൯ି୻൫ଵିఈషభ,ఒ௧షഀ൯൧

ଵିୣ୶୮{ିఒ௧షഀ}
                                        (3) 

The TVaR is a statistical measure of risk associated with the more general value at risk (VaR) 
approach, which measures the maximum amount of loss that is expected with an investment 
portfolio over a specified period, with a degree of confidence. It is a measure of risk important in 
actuarial studies. See Christoffersen et al. (2001).  

The Tail Value-at-Risk with confidence level 𝑝 is defined as: 

                                                     𝑇𝑉𝑎𝑅௣(𝑋) =
∫ ௫௙(௫)ௗ௫

ಮ
ೇೌೃ೛(೉)

ଵି௣
                                                       

Alsheikh and Baklizi (2022) derived the following expression for the Tail Value-at-Risk: 

                           𝑇𝑉𝑎𝑅௣(𝑥) =  ቀ
ିఒ

୪୬
ቁ

ఈషభ

+
ఒഀషభ

ൣ୻൫ଵିఈషభ൯ି୻൫ଵିఈషభ,ି ୪୬ ௣൯൧

ଵି௣
                                             (4) 

 

2. Confidence Intervals Based on the Asymptotic Normality of the MLE 

To find the confidence intervals for MRL and TVaR based on the asymptotic distribution of a 
function of the maximum likelihood estimator with type II censored data (Bhtattachariya, 1985). 
Using the delta method (Lawaless, 2003), the variance of a function of the MLE, say 𝑘൫𝛼ො, 𝜆መ൯ can 
be found as: 

         𝑣𝑎𝑟 ቀ𝑘൫𝛼ො, 𝜆መ൯ቁ = 𝑣𝑎𝑟(𝛼ො) ቀ
డ௞

డఈ
ቁ

ଶ

ฬ
ఈෝ,ఒ෡

+ 2
డ௞

డఈ
ቚ

ఈෝ,ఒ෡

డ௞

డఒ
ቚ

ఈෝ,ఒ෡
𝑐𝑜𝑣൫𝛼ො, 𝜆መ൯ + 𝑣𝑎𝑟൫𝜆መ൯ ቀ

డ௞

డఒ
ቁ

ଶ

ฬ
ఈෝ,ఒ෡

             (5) 

Where 𝛼ො and 𝜆መ are the maximum likelihood estimators (MLEs) of the parameters 𝛼 𝑎𝑛𝑑 𝜆. The 
variances of the parameters MLEs and their covariance are obtained from the inverse of the 
observed information matrix.  
 



Asymptotic Confidence Intervals for MRL and TVaR             Fatima A. Alshaikh  
of the Inverse Weibull Distribution with Type II Censored Data      and Ayman Baklizi 
 

63 
 

To find the first derivative of 𝑀𝑅𝐿 or 𝑇𝑉𝑎𝑅 with respect to the parameters, it is necessary to 
find the derivative of incomplete gamma function for these parameters as the following: 

                                                        
ப୻(ୱ,୶)

ப୶
= −xୱିଵ exp[−x],                                                             

                                               
ப୻(ୱ,୶)

பୱ
= ln x Γ(s, x) + x Τ(3, s, x),                                                  

where the function Τ(3, s, x) is a special case of the Meijer G-function, 

                                          Τ(m, s, x) = G୫ିଵ,୫
୫,  ଴ ቀ

0,0, … ,0
s − 1, −1, … , −1

ቚxቁ. 

To simplify the expressions for the derivatives of the MRL and TVaR, let  

𝑡ଵ = exp[−𝜆𝑡ିఈ], 𝑡ଶ = λఈషభ
, 𝑡ଷ = 𝜆 tି஑ln 𝑡, 𝑡ସ = 𝛼ିଶ, 𝑡ହ = (𝛼𝜆)ିଵ, 𝑡଺ = tି஑, 𝑡଻ =

ିఒ

୪୬ ௣
,  

𝐺 = Γ(1 − 𝛼ିଵ),   𝐺𝐷 = Γᇱ(1 − 𝛼ିଵ),  𝐼𝐺 = Γ(1 − 𝛼ିଵ, λtିఈ),    𝐼𝐺1 = Γ(1 − 𝛼ିଵ, − ln 𝑝),  

 𝑆ℎ𝑎𝑝𝑒𝐼𝐺𝐷 =  
ப୻(ୱ,୶)

ப୶
;  𝑞𝐼𝐺𝐷 =  

ப୻(ୱ,୶)

பୱ
 where 𝑠 = 1 − 𝛼ିଵ 𝑎𝑛𝑑 𝑥 = λtିఈ  , 𝛼 > 1, λ > 0, t > 0,   

 𝑞𝐼𝐺𝐷1 =   
ப୻(ୱ,୷)

ப୷
 ,   𝑤ℎ𝑒𝑟𝑒  𝑦 = − ln 𝑝. 

Then, the first derivatives of MRL with respect to parameters are the following: 

                               
డ௠

డఈ
=

௧మ{(ୋି୍ୋ)[(௧భିଵ)௧ర ୪୬ ఒା௧య௧భ]ା[௧ర(ீ஽ି௤ூீ஽)ା௧యௌ௛௔௣௘ூீ஽](ଵି௧భ)}

(ଵି௧భ)మ
,                        

                                          
డ௠

డఒ
=

௧మ{(ୋି୍ୋ)[(ଵି௧భ)௧ఱି௧ల௧భ]ି௧లௌ௛௔௣௘ூீ஽(ଵି௧భ)}

(ଵି௧భ)మ
,                                      

and the first derivatives of TVaR with respect to parameters are as follows: 

                                 
డ்௏௔ோ

డఈ
= 𝑡ସ ቄ

௧మ

ଵି௣
(𝐺𝐷 − 𝑞𝐼𝐺𝐷1 − 𝑙𝑛 𝜆 [𝐺 − 𝐼𝐺1]) − 𝑡଻

ఈషభ
𝑙𝑛 𝑡଻ቅ,                  

                                                              
డ்௏௔ோ

డఒ
= 𝑡ହ𝑇𝑉𝑎𝑅(𝑝),                                                           

Then 100(1 − 𝛾)% confidence intervals for MRL and TVaR based on MLE can be written as: 

                                                         𝑚ෝ(𝑡) ± 𝑧ஓ ଶ⁄ ට𝑉𝑎𝑟෢ ൫𝑚ෝ(𝑡)൯,                                                       (6) 

                                              𝑇𝑉𝑎𝑅෣ (𝑥) ± 𝑧ஓ ଶ⁄ ට𝑉𝑎𝑟෢ ቀ𝑇𝑉𝑎𝑅෣ (𝑥)ቁ,                                                 (7) 

where 𝑧ஓ ଶ⁄  is the (γ 2⁄ ) quantile of the standard normal distribution, 𝑉𝑎𝑟෢ ൫𝑚ෝ(𝑡)൯ and 

𝑉𝑎𝑟෢ ቀ𝑇𝑉𝑎𝑅෣ (𝑥)ቁ can be obtained by substituting the appropriate quantities in the general 

expression for the asymptotic variance of a function of the MLE given in (5).  
 

3. Likelihood Ratio Intervals 

The likelihood ratio (LR) statistic for θ is given by: 
                                                 𝑊(𝜃)  =  −2[𝑙൫𝜃, 𝜆ሚఏ൯ −  𝑙(𝜃෠, 𝜆መ)]                                                 (8) 

where 𝜃 is the scalar parameter of interest, 𝜆 is vector of 𝜌 nuisance parameters, ൫𝜃෠, 𝜆መ൯ are the 
MLEs of (𝜃, 𝜆), 𝜆ሚఏ is constrained MLE of 𝜆 for a given value of 𝜃, 𝑙(𝜃, 𝜆) is the log-likelihood 
function, 𝑙൫𝜃, 𝜆ሚఏ൯ is the profile log-likelihood function for 𝜃, and 𝑙(𝜃෠, 𝜆መ) is the maximized value 
of the log-likelihood function. 

Assuming the the log-likelihood function is unimodal, the lower and upper 100(1 −  𝛾)% LR 
confidence limits are the two values of 𝜃 that satisfy:  
                                                                   𝑙൫𝜃, 𝜆ሚఏ൯ = 𝜅,                                                                                                 
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where  

                                                          𝜅 = 𝑙൫𝜃෠, 𝜆መ൯ − ቀ
ଵ

ଶ
ቁ 𝜒ଵ;ଵିఊ

ଶ .                                                    

Here 𝜒ଵ;ଵିఊ
ଶ  is the (1 − 𝛾) quantile of the chi-square distribution with one degree of freedom, 

so, 𝜅 is a constant when data are observed.  
Doganaksoy (2021) proposed a new method to construct numerically the confidence limits of 

likelihood ratio intervals. This method is based on the observation that the lower (upper) LR 
confidence limit for θ is the smallest (Largest) value of θ that satisfy 𝑙(θ, 𝜆) = 𝜅. Therefore, the 
lower (upper) limit for θ can be obtained by  
                                                       Min (Max) θ subject to 𝑙(θ, 𝜆) = 𝜅                                           (9) 
with (θ, 𝜆) handled as the optimization variables. 

Equation (9) can be extended to present a formula of LR confidence limits on a function ∅(𝜃, 𝜆) 
of model parameters. The lower (upper) LR confidence limit for ∅(𝜃, 𝜆) can obtained by 
                                                Min (Max) ∅(𝜃, 𝜆) subject to 𝑙(θ, 𝜆) = 𝜅                                     (10) 

This new method is easier to compute numerically than other traditional methods. Note that the 
new method proposed by Doganaksoy (2021) given by (9) and (10), does not include explicit 
calculation of 𝜆ሚఏ. The final solution is achieved at 𝜆 = 𝜆ሚఏ even if this condition is not imposed at 
the beginning.  

Confidence intervals for MRL and TVaR based on likelihood ratio intervals are constructed 
numerically by using the new method in (31) by using the “gosolnp” function of the R package 
“Rsolnp” to solve the nonlinear constrained optimization problems. 

 
4. Simulation Study and Results 

The simulation design is as follows. We used 2000 replications. We used all combinations of 
sample size (𝑛 = 50, 80, 100), the first r failure times (𝑟 =  0.6𝑛 , 0.8𝑛, 𝑛), confidence level  (𝛾 =
0.05 and 0.1), 𝑝 = 0.95 (for TVaR), and time t = 3 (for MRL). We investigated the performance 
of the intervals using the expected lengths and the error rates.  

To judge the accuracy of an interval and to compare competing confidence intervals we will 
use the expected length of the interval (EL) and the lower (LER), upper (UER), total (TER) error 
rates.  

Assuming that we have (𝑁) simulation replications, each resulting in a confidence interval from 
each type, then the simulated value of the expected length is calculated as  

                                                𝐸𝐿 =
∑ (௎௣௣௘௥ ௅௜௠௜௧ି௅௢௪௘  ௅௜௠௜௧)ಿ

೔సభ

ே
            

Intervals with smallest EL are considered the better.  
The lower error rate (LER) is the proportion of times for which the parameter is less than the 

lower limits of its interval (𝐿𝐶𝐼), while the upper error rate (UER) mean that the proportion of 
times in which the parameter is greater than the upper limit of its interval (𝑈𝐶𝐼). The total error 
rate (TER) is the sum of lower and upper error of each interval. 

Formulas used to estimate these errors rate for N intervals of a parameter 𝜃 are: 

                                                              𝐿𝐸𝑅 =
∑ ( ఏழ௅஼ூ)ಿ

೔సభ

ே
                          

                                                              𝑈𝐸𝑅 =
∑ ( ఏவ௎஼ூ)ಿ

೔సభ

ே
                        

                                                              𝑇𝐸𝑅 = 𝐿𝐸𝑅 + 𝑈𝐸𝑅          
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The interval with closer error rates to the nominal ones is considered better. The results are 
given in Tables 1 and 2. 
Table 1. Expected Average Length for LR and AN when 𝛼 = 3,  𝜆 = 1, 𝑡 = 3  and 𝑝 = 0.95 

𝑛  𝑟     𝛾 = 0.05     𝛾 = 0.1   

EL  𝛼  𝜆  𝑀𝑅𝐿  𝑇𝑉𝑎𝑅   𝛼  𝜆  𝑀𝑅𝐿  𝑇𝑉𝑎𝑅  

50 30 LR 1.538 0.531 105.4 9.100  1.18 0.39 79.91 7.34 

  AN 1.709 0.619 71.29 10.52  1.43 0.52 59.24 8.84 

            

 40 LR 1.301 0.510 70.28 7.913  1.02 0.39 56.25 6.35 

  AN 1.463 0.599 51.50 9.423  1.23 0.50 44.23 7.77 

            

 50 LR 1.158 0.512 59.11 7.284  0.92 0.37 48.5 5.90 

  AN 1.338 0.592 44.68 8.757  1.13 0.49 38.80 7.24 

            

80 48 LR 1.120 0.417 58.48 6.891  0.83 0.34 46.27 5.60 

  AN 1.320 0.488 45.14 8.385  1.11 0.41 37.48 6.99 

            

 64 LR 0.937 0.390 43.56 6.033  0.65 0.30 34.89 4.98 

  AN 1.142 0.472 34.86 7.436  0.96 0.40 28.96 6.26 

            

 80 LR 0.847 0.380 38.85 5.550  0.60 0.29 30.83 4.62 

  AN 1.049 0.466 31.62 6.861  0.88 0.39 25.86 5.81 

            

100 60 LR 0.975 0.359 47.08 6.058  0.74 0.29 37.76 5.02 

  AN 1.174 0.436 37.77 7.488  0.98 0.37 31.36 6.32 

            

 80 LR 0.832 0.354 37.13 5.273  0.63 0.26 30.52 4.37 

  AN 1.020 0.421 30.55 6.587  0.86 0.35 25.76 5.54 

            

 100 LR 0.733 0.349 32.09 4.965  0.57 0.26 26.81 4.09 

  AN 0.931 0.418 26.66 6.188  0.78 0.35 22.85 5.17 
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Table 2. Error Rates of likelihood intervals when 𝛼 = 3,  𝜆 = 1,  t = 3 and  𝑝 = 0.95 

𝑛  𝑟     𝛾 = 0.05   𝛾 = 0.1   
 ER  𝛼  𝜆  𝑀𝑅𝐿  𝑇𝑉𝑎𝑅   𝛼  𝜆  𝑀𝑅𝐿  𝑇𝑉𝑎𝑅  

50 30 AN LER 0.0345 0.0125 0 0  0.0635 0.0415 0 0 
   UER 0.0165 0.045 0.0865 0.0425  0.0395 0.0780 0.1135 0.0705 
   TER 0.051 0.0575 0.0865 0.0425  0.1030 0.1195 0.1135 0.0705 
             
  LR LER 0.135 0.1725 0.044 0.0195  0.1995 0.1940 0.0760 0.0385 
   UER 0.0515 0.0695 0.0165 0.0345  0.1045 0.1835 0.0325 0.0715 
   TER 0.1865 0.242 0.0605 0.054  0.3040 0.3775 0.1085 0.1100 
             
 40 AN LER 0.031 0.0165 0 0  0.0620 0.0305 0 0 
   UER 0.023 0.041 0.088 0.031  0.0440 0.0715 0.0930 0.0570 
   TER 0.054 0.0575 0.088 0.031  0.1060 0.1020 0.0930 0.0570 
             
  LR LER 0.1315 0.1615 0.043 0.0225  0.2005 0.1740 0.0720 0.0360 
   UER 0.0555 0.0745 0.018 0.0305  0.1010 0.1565 0.0365 0.0640 
   TER 0.187 0.236 0.061 0.053  0.3015 0.3305 0.1085 0.1000 
             
 50 AN LER 0.028 0.0145 0 0  0.0605 0.0385 0 0.0015 
   UER 0.0225 0.041 0.089 0.0305  0.0385 0.0700 0.1085 0.0555 
   TER 0.0505 0.0555 0.089 0.0305  0.0990 0.1085 0.1085 0.0570 
             
  LR LER 0.136 0.158 0.0355 0.0265  0.1925 0.1970 0.0740 0.0420 
   UER 0.0605 0.0685 0.019 0.0315  0.1125 0.1645 0.0325 0.0645 
   TER 0.1965 0.2265 0.0545 0.058  0.3050 0.3615 0.1065 0.1065 
             
80 48 AN LER 0.035 0.0195 0 0  0.0620 0.0430 0 0.0005 
   UER 0.0195 0.0415 0.0915 0.039  0.0355 0.0635 0.1040 0.0470 
   TER 0.0545 0.061 0.0915 0.039  0.0975 0.1065 0.1040 0.0475 
             
  LR LER 0.1495 0.1575 0.0445 0.028  0.2530 0.2175 0.0655 0.0430 
   UER 0.07 0.089 0.0225 0.041  0.0875 0.1115 0.0365 0.0570 
   TER 0.2195 0.2465 0.067 0.069  0.3405 0.3290 0.1020 0.1000 
             
 64 AN LER 0.031 0.017 0 0  0.0490 0.0450 0.0005 0.0025 
   UER 0.0295 0.0295 0.082 0.021  0.0460 0.0540 0.1095 0.0320 
   TER 0.0605 0.0465 0.082 0.021  0.0950 0.0990 0.1100 0.0345 
             
  LR LER 0.147 0.1515 0.033 0.0255  0.2400 0.2320 0.0540 0.0470 
   UER 0.071 0.0855 0.0255 0.0265  0.1395 0.1165 0.0430 0.0450 
   TER 0.245 0.237 0.0585 0.052  0.3795 0.3485 0.0970 0.0920 
             
 80 AN LER 0.029 0.0165 0 0  0.0490 0.0430 0.0045 0.0015 
   UER 0.022 0.031 0.071 0.026  0.0435 0.0550 0.1065 0.0330 
   TER 0.051 0.0475 0.071 0.026  0.0925 0.0980 0.1110 0.0345 
             
  LR LER 0.1765 0.1615 0.0325 0.0185  0.2190 0.2310 0.0505 0.0445 
   UER 0.067 0.079 0.018 0.0355  0.1530 0.1270 0.0410 0.0490 
   TER 0.2435 0.2405 0.0505 0.054  0.3720 0.3580 0.0915 0.0935 

 

Table 1 presents results of expected length (EL) for likelihood ratio intervals (LR) and 
confidence intervals depending on the asymptotic normality of the MLE (AN). The results show 
that the expected length for LR tend to be less than AN in all cases except for MRL where the 
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expected length results of AN are less than those of LR, especially with small sample size. When 
the sample size increases, the expected length values decreases for all cases. 

The results in Table 2 show that error rates for confidence intervals depending on MLE for the 
parameters are symmetric and attain the nominal rates in almost all simulations. However, AN 
intervals for the MRL and TVaR are highly asymmetric. Moreover, the intervals for the TVaR are 
highly conservative in the sense that the actual error rates are considerably less than the nominal 
rates. On the other hand, LR intervals for the parameters are generally highly anticonservative, 
especially for small sample sizes. However, for the MRL and TVaR, the intervals tend to be 
symmetric and attain nominal error rates.  

 
5. Conclusion and Suggestions for Further Research 

In this paper, confidence intervals for the parameters, the Mean Residual Life (MRL) and the 
Tail Value at Risk (TVaR) of  the Inverse Weibull distribution based on type II censored data are 
derived and their performance is studied. The intervals are compared using the lower, upper, total 
error rate, and the expected length using simulation. 

The conclusion we get from this paper is that LR intervals give more accurate results than 
confidence intervals depending on MLE (AN) under for MRL and TVaR. However, for the 
parameters themselves the AN intervals appear to perform better. 

A suggestion for further research is to explore the LR and AN intervals for different types of 
censoring data like hybrid censoring or progressive type II censoring and to see how they compare 
and give recommendations on their use in these situations. 
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