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ABSTRACT 
We examine the problem of accommodating outliers in 𝑟 × 𝑐 tables of measurement data when there are no 
replications. The suggested strategy for the determination of the cells that contain outliers and for handling 
them analytically is easily understood and implemented in practice and presented in even the most 
elementary statistics course along with the course’s ANOVA material.  

1. Introduction 

Outliers are persistent problems in statistics. They are characterized as being far from the other 
observations [1, 2, 8]. For the univariate set {2,2,2,2,12}, where it is believed that the 12 is in error, 
the sample mean 4 is double the typical value 2. The 12 has a huge influence on the mean. One 
remedy is to use the median, which is 2. Often, these kinds of examples are shown in class. As the 
observations’ structure becomes more complicated, identifying and dampening the influence of 
outlying values becomes more difficult. We present a way to do that for two-factor tables of 
measurement data with no replications. The goal is to show how the method, which is in Sections 
7 and 8, can be presented in classes. The method is easily understood and implemented, even in 
the most elementary statistics course, perhaps being presented along with the course’s ANOVA 
material. 

The straightforward examples of Tables 1 and 3 are the main ones that we employ to illustrate 
the ideas. Table 3 was created by adding 18 to the entry in cell (1,1) of Table 1, thereby causing 
an outlier to appear there. That analysis is in Sections 2–7. Another example is presented in Section 
8. For pedagogical reasons, the tables contain integers and the factors’ levels are arranged for visual 
simplicity. Especially for computer-lab sessions, we favor sets of real data, but here more 
instructional clarity is reached when the observations are integers.  

The notation for mean-based additive fitting of a table is: 

The observations, that is, the table’s entries, are 𝑥௜௝ for 𝑖 = 1, 2, … , 𝑟 and 
 𝑗 = 1, 2, … , 𝑐. 

The overall effect 𝐸 is the mean or numerical average of all the table’s entries. 

The row effect 𝑅௜ for 𝑖 = 1, 2, … , 𝑟 is the 𝑖௧௛ row mean minus the overall  

effect, that is, 𝑅௜ =  
∑ 𝑥௜௝

௖
௝ୀଵ

𝑐ൗ  –  𝐸. 

The column effect 𝐶௝ for 𝑗 = 1, 2, … , 𝑐 is the 𝑗௧௛ column mean minus the overall  

effect, that is, 𝐶௝ =  
∑ 𝑥௜௝

௥
௜ୀଵ

𝑟ൗ  –  𝐸. 

The fitted value for cell (𝑖, 𝑗) is 𝑓௜௝ = 𝐸 + 𝑅௜ + 𝐶௝. 

The residual for cell (𝑖, 𝑗) is 𝑟௜௝ = 𝑥௜௝  – 𝑓௜௝ . 
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Each table entry is additively decomposed as  
 

𝑥௜௝ = 𝑓௜௝ + 𝑟௜௝ = 𝐸 + 𝑅௜ + 𝐶௝ + 𝑟௜௝. 
 

Additive fitting is performed for Table 1 in Table 2. Table 1 is seen to be exactly additive, 
because the fitted values are the same as the original entries, that is, the residuals are all zero. 

 

The analysis is in two parts. First, outliers need to be identified. Second, if there are outliers, 
they should be removed or neutralized, so that they do not contaminate the table’s fitting or 
statistical analyses, such as ANOVA. A deleterious effect of an outlier’s contamination is displayed 
in Section 4. 

 

Table 3 is employed as the main example to introduce the graphical display in Section 2 
and to discuss and compare analyses methods for tables with outliers, which appear in Sections 3–
7. Another table, which contains two outliers, is presented in Section 8. The relatively new and 
recommend method for the analysis the outliers, which is our Method 4, is introduced in Section 
7. The conclusions are in Section 9. 

 
 

Table 1. An exactly additive table 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Additive fitting of Table 1 is performed 

   Second  
Factor 

  
Row 

 
Row 

  1 2 3 Mean Effect, 𝑹𝒊 
 1 16     11 9             12  4 

First Factor 2 12 7 5 8  0 
 3 8 3 1 4 –4 

Column Mean 12 7 5 Overall Mean = 8  
Column Effect, 𝑪𝒋 4 –1 –3  Overall Effect, E = 8 

 
 
 
 
 
 
 
 

xij   Second  
Factor 

 

  1 2 3 
 1 16 11 9 

First Factor 2 12 7 5 
 3 8 3 1 
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Table 3. An outlier has been introduced into cell (1,1) of Table 1 by adding 18 

 
 

 
 
 
 
 
 
 
 

2. Identifying outliers graphically 

In order to identify outliers, if any, we recommend using a graph of the 𝑟𝑐 points ൫𝑖, 𝑗, 𝑥௜௝൯. The 
graph should be rotatable in order to see the points, so that points cannot be masked, that is, hidden, 
by other points. At the same time, the structure of all the observations can be examined to 
determine whether some procedure is required, such a transformation of the dependent variable 
that yields the entries, to make the observations closer to planar for the suitability of linear fitting 
and statistical analyses. This graphical technique has the advantage that the user is looking directly 
at the observations, instead of a set of derived numbers that might hide outliers or falsely claim 
that some non-outlying observations are outliers [1]. Additionally, assumptions that may not be 
necessary or warranted can be embedded in formulas. 

Figure 1 contains the diagnostic graph for Table 3. Clearly, there is just one outlier, which is at 
(1, 1, 34), representing cell (1,1). The other points appear to be close to a plane. 
 
 

 
 

Figure 1. Diagnostic graph for Table 3, showing one outlier and planarity otherwise 
 

xij   Second  
Factor 

 

  1 2 3 
 1 34 11 9 

First Factor 2 12 7 5 
 3 8 3 1 
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3. Analysis of outlying observations 
We want a procedure for finding an 𝑟 × 𝑐 table’s fitted values 𝑓௜௝ with 𝑖 = 1, 2, … , 𝑟 and 𝑗 =

1, 2, … , 𝑐, such that the fitted values will accommodate follow-up least-squares analyses and, in 
the event of some outliers, isolate the discordant portion of each outlier, perhaps for separate 
study. Also, we want the procedure to be able to handle very many suspect observations and to 
alert the user in the event that the procedure is breaking down, so that spurious results are not 
produced.  

Consider four methods for fitting observations that are in a two-factor table with outliers, 
which are  

1. leave known outliers in the table,  
2. omit cells that contain outliers, 
3. use medians via median polish, and 
4. use the new suggested method. 

In Sections 4–7, we analyze Table 3 with these four methods to compare them. Method 1 does 
a poor job, because the outlying portion in cell (1,1) corrupts the procedure in all the cells, which 
illustrates the importance of identifying and removing outliers before fitting or performing other 
analyses, such as ANOVA [4, 7]. Performing Method 2 illustrates that it leads to fitted values and 
residuals that have no clear meanings, so that method is not advised [4, 6]. The third method, 
median polish, can be an excellent process for very few outliers, but fails without warning if half 
or more of the entries in any row or column are outliers, as those values are used in the procedure 
to compute medians [4, 5, 9]. The fourth method is relatively new and recommended [3]. In Section 
8, another numerical example is analyzed with Method 4. 

4. Method 1: Leave outliers in the table 

Table 4 displays the fitting procedure for Table 3. The fitted values are in Table 5, and the 
residuals are in Table 6. The main problem is that the outlying value 34 in cell (1,1) contaminates 
all of the fitted values, which can be seen from the residuals in Table 6 being nonzero. There is a 
pattern in the residuals in Table 6, but, unfortunately, we cannot take advantage of it, because any 
pattern would be camouflaged when there are random fluctuations in the observed values, which 
real data would have. 

In Tables 2 and 4, the row effects and the column effects add to zero, and in Table 6, each row 
and each column of residuals add to zero. These zeros always occur when fitting with means, when 
there are no empty cells. 

 
Table 4. Mean based fitting of Table 3, which contains an outlier in cell (1,1) 

   Second  
Factor 

  
Row 

 
Row 

  1 2 3 Mean Effect, 𝑹𝒊 
 1 34 11 9 18  8 

First Factor 2 12 7 5 8 –2 
 3 8 3 1 4 –6 

Column Mean 18 7 5 Overall  
Mean = 10 

 

Column Effect, 𝑪𝒋 8  –3 –5  Overall Effect, E = 10 
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Table 5. Mean-based fitted values 𝑓௜௝ = 𝐸 + 𝑅௜ + 𝐶௝ for Table 4 

𝒇𝒊𝒋   Second  
Factor 

 

  1 2 3 
 1 26 15 13 

First Factor 2 16 5 3 
 3 12 1 –1 

 
 
 

Table 6. Mean-based residual values 𝑟௜௝ = 𝑥௜௝  – 𝑓௜௝ from Tables 3 and 5 

𝒓𝒊𝒋   Second  
Factor 

 

  1 2 3 
 1 8 –4 –4 

First Factor 2 –4 2 2 
 3 –4 2 2 

5. Method 2: Omit cells containing outliers 

In this section, we omit the value 34 in cell (1,1) of Table 3 and move forward with the fitting 
with means, which is performed in Table 7. Omitting the value unbalances the table and leaves 
no clear information in the fitted values and residuals, which are in Tables 8 and 9. The 
imbalance is demonstrated by the row effects and the column effects not adding to zero in Table 
7 and by the rows and columns of the residuals not adding to zero in Table 9, unlike the 
corresponding sums in Section 4. A potential estimate for 𝑓ଵଵ is 𝐸 + 𝑅ଵ + 𝐶ଵ = 7 + 3 + 3 = 13 
from Table 7, but its meaning and veracity are doubtful [4, 6]. 
 

Table 7. Table 3 is fitted with the outlying entry in cell (1,1) eliminated, as if it were a 
missing value 

   Second  
Factor 

  
Row 

 
             Row 

  1 2 3 Mean          Effect, 𝑹𝒊 
 1  11 9 10 3 

First Factor 2 12 7 5 8 1 
 3 8 3 1 4                –3 

 Column    
  Mean 

10 7 5 Overall  
 Mean = 7 

 

  Column 
Effect, 𝑪𝒋 

3 0 –2             Overall   
Effect, E = 7 

 
 

Table 8. Mean-based fitted values 𝑓௜௝ from Table 7 
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𝒇𝒊𝒋   Second  
Factor 

 

  1 2 3 
 1  10 8 

First Factor 2 11 8 6 
 3 7 4 2 

 
 
 
 
 

Table 9. Mean-based residual values 𝑟௜௝ from Tables 7 and 8 

𝒓𝒊𝒋   Second  
Factor 

 

  1 2 3 
 1    1   1 

First Factor 2 1 –1 –1 
 3 1 –1 –1 

6. Method 3: Median polish  

For the data in Table 3, median polish stops in two steps, when starting either with rows or 
columns, to yield Table 11. See Tables 10 and 11 for the two steps of median polish. The fitted 
values are in Table 12. We have continued to use the words overall effect, row effect, and column 
effect, but they are medians or from a procedure using medians, unlike in all of the other sections, 
where they indicate means. MinitabTM contains a dropdown tab for performing median polish, 
where the user can determine whether row or columns are polished first and the number of steps 
to be performed.  

Subtracting the analogous entries in Tables 3 and 12, we see that all residual values are zero 
except for cell (1,1), where the residual value is 𝑟ଵଵ = 34 – 16 = 18, which is shown in Table 11, 
as well. This method has given the outlying component 18 and left a fitted value of 16 in cell 
(1,1), in Table 12. This accomplishes the twin goals of fitting a table and isolating the troublesome 
portion of the entry in cell (1,1). 

Although median polish is a useful exploratory data analysis tool and works very well for this 
example, there is a major problem. If half or more of a row were outliers (for example, two entries 
in row 1 of a 3 × 3 table), the median of that row would be compromised and the method would 
breakdown without giving the user a warning. In other words, the polishing would be performed 
uninterrupted, but the results might be meaningless or misleading [4, 5].  

By comparing Tables 2 and 12, we see that there are two different additive fits of Table 1. In 
Table 2, the overall effect is 8, the row effects are 4, 0, and –4, and the column effects are 4,   –1, 
and –3. In Table 12, the overall effect is 7, the row effects are 4, 0, and –4, and the column effects 
are 5, 0, and –3, but the fitted values are the same. Two additive fits are possible, depending upon 
the criteria. In Table 2, the mean of the row effects and the mean of the column effects are zero. In 
Table 12, the median of the row effects and the median of the column effects are zero. 
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    Table 10. First step of median polish of Table 3, beginning with rows 

   Row Median           Row Medians Subtracted 

34 11 9 11 23 0 –2 

12 7 5 7 5 0 –2 

8 3 1 3 5 0 –2 

 
 
 

Table 11. Second polishing step, which is by columns of the result in Table 10 

 

     

 

 

 

 

 

 

 
          Table 12. Fitted values as a result of median polish in Tables 10 and 11 

𝒇𝒊𝒋   Second  
Factor 

  
Row 

  1 2 3 Effect 
 1 16 11 9 4 

First Factor 2 12 7 5 0 
 3 8 3 1              –4 

Column Effect  5 0 –2 Overall Effect = 7 

7. Method 4: The new recommended method 

This method temporarily replaces the entry in each cell (𝑖, 𝑗) containing an outlier with the 
placeholder 𝑡௜௝, which equals a numerical value resulting in a residual of zero for the cell in a 
mean-based, that is, least-squares fit. When there is more than one outlier, all the placeholders’ 
values are determined simultaneously by a system of linear equations. A table with two outliers is 
analyzed in Section 8. 

Referring to Table 13 and setting the fitted value 𝑓ଵଵ = 𝐸 + 𝑅ଵ + 𝐶ଵ equal to 𝑡ଵଵ = 𝑡 gives 
𝑡 + 56

9
+

2𝑡 + 4

9
+

2𝑡 + 4

9
= 𝑡 

which has the unique solution 𝑡 = 16. Substituting this value for 𝑡 into Table 13, we see that all 
residuals are zero, except 𝑟ଵଵ = 34 – 16 = 18. The observation 34 in cell (1,1) has been additively 
decomposed into the outlying component 18, which can be set aside for separate examination, and 

 23 0 –2 11 

 5 0 –2 7 

 5 0 –2 3 

Column Median 5 0 –2 7 

Column 18 0 0 4 

Medians 0 0 0 0 

Subtracted 0 0 0 –4 
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a remaining component 16, which can be used in subsequent analyses of the table. In those 
analyses, the residual will be zero for cell (1,1), when replacing the original entry with 𝑡 = 16. 
This has fulfilled our goal for investigating the table. 

This method can be applied to tables that have all but one well-chosen entry in any row or 
column deemed to be outliers [3]. In particular, for an 𝑟 × 𝑐 table, the whole 𝑟– 1 by 𝑐– 1 lower-
right block of entries can be outliers or otherwise considered contaminated, yet this method can 
successfully proceed by replacing each entry in the block with its own placeholder. Of course, that 
many compromised entries would threaten the integrity of the experiment.  

This method has a fail-safe protection, because, if the method breaks down for any reason, 
such as having a whole row of outliers, the set of equations for the placeholders has no solution. 
In those cases, the determinant of the set of linear equations for the placeholder has a 
determinant zero [3].  

 
Table 13. Mean-based fitting of Table 3 with the placeholder 𝑡ଵଵ = 𝑡 substituted for the    
outlying entry in (1,1) 

   Second  
Factor 

  
Row 

 
Row 

  1 2 3 Mean Effect, 𝑹𝒊 
 1 𝑡 11 9 (𝑡 + 20) 3⁄  (2𝑡 + 4) 9⁄  

First Factor  2 12 7 5 8 (16 – 𝑡) 9⁄  
 3 8 3 1 4 (– 20 – 𝑡) 9⁄  

 Column 
Mean 

(𝑡 + 20) 3⁄  7 5 Overall  
 Mean = 

(𝑡 + 56) 9⁄  

 

 Column 
Effect, 

𝑪𝒋 

(2𝑡 + 4) 9⁄  (7 –  𝑡) 9⁄  (– 11 –  𝑡) 9⁄         Overall     
    Effect, E = 

(𝑡 + 56) 9⁄  

8. Method 4: Another example 

Consider the observations in Table 14. The diagnostic graph in Figure 2 shows that there are 
outliers in cells (1,1)and (2,3) and that the observations appear to be sufficiently planar otherwise. 
Although the entries in the two suspect cells are the same size, they have been visually separated 
by rotating the axes. 

Replacing 𝑥ଵଵ = 35 with 𝑡ଵଵ and replacing 𝑥ଶଷ = 35 with 𝑡ଶଷ give  
 

𝐸 =
௧భభା ௧మయା଼ଽ

ଵଶ
, 𝑅ଵ =

௧భభା ଷ଺

ସ
– 𝐸, 𝑅ଶ =

௧మయା ଷଵ

ସ
– 𝐸, 𝐶ଵ =

௧భభାଶସ

ଷ
 – 𝐸, and 𝐶ଶ =

௧మయା ଵସ

ଷ
– 𝐸, 

so that the fitted values are    

𝑓ଵଵ = 𝐸 + 𝑅ଵ + 𝐶ଵ = 𝑡ଵଵ =
଺௧భభ– ௧మయା ଵଵହ

ଵଶ
  and  𝑓ଶଷ = 𝐸 + 𝑅ଶ + 𝐶ଷ = 𝑡ଶଷ =

–௧భభା ଺௧మయା ଺଴

ଵଶ
, 

or 

6𝑡ଵଵ + 𝑡ଶଷ = 115  and  𝑡ଵଵ + 6𝑡ଶଷ = 60. 
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The unique solution is 𝑡ଵଵ = 18 and 𝑡ଶଷ = 7. In Table 14, replacing 𝑥ଵଵ = 35 with 𝑡ଵଵ = 18 
and replacing 𝑥ଶଷ = 35 with 𝑡ଶଷ = 7 produces a table that is ready for least-squares fitting or a 
statistical procedure such as ANOVA. The residuals of the least-squares fit will be zero in cells 
(1,1) and (2,3). The discordant portions of the problematical observations are 𝑟ଵଵ = 𝑥ଵଵ – 𝑡ଵଵ =
35 – 18 = 17 and 𝑟ଶଷ = 𝑥ଶଷ –  𝑡ଶଷ = 35 –  7 = 28. 

 
 
 
 

                         Table 14. A table with two outliers, which is examined in Section 8 

 
 
 
 

 
 
 
 
 

 

 
Figure 2. Diagnostic graph for Table 14, which shows two outliers and planarity 

                        Otherwise 
 

 

 

xij           .                                  Second Factor        .   
  1        2 3 4 
 1    35       16 11 9 

First Factor 2 14 12 35 5 
 3 10 8 3 1 



Analysis of 𝒓 × 𝒄 Tables containing Outliers     David L. Farnsworth 
 
 

59 
 

9. Conclusions 

A relatively new method for handling outliers in tables of measurement data when there are no 
replications has been presented and compared to other methods. This method is recommended for 
the classroom at all educational levels, as well as for statistical practice. We have found that 
students have no difficulty understanding the reasons that outliers are troublesome, but analyses 
such as the one in Section 4 can be useful to show them. Students appear to find it particularly 
enjoyable to examine data that have outliers and have not been recognized or mitigated, but 
nonetheless have been statistically analyzed in the literature or textbooks. Besides applying the 
method to tables of data, this topic is a source for projects and interesting homework. For example, 
students can be asked to implement the method, or parts of it, in the statistical computing package 
that they are using in class. The method’s mathematics, which appears in [3], might be helpful for 
that. Students could consider or discuss other options for ways to assign values to the placeholders 
𝑡௜௝, such as using a different criterion or adding random noise. Students could be asked to examine 
non-public data sets to which they have access, such as in their science or psychology labs. 

 

We have called the troublesome observations outliers. However, that designation is not required 
for the new method to proceed. The method can be applied to the entry in a cell that may be from 
an untrusted source or the measurement of that entry may be suspicious for a variety of reasons. 
The method can be used to replace the entry with a value that is inconsequential for the further 
analyses of the data set, and the portion that would be the discordant part may be ignored in those 
cases. Observe that the troublesome entry need not be far from the data in order to apply this 
method. The new method can be used for missing values, where their placeholders will have a 
value for subsequent analyses and the discordant part is simply its negation. This allows 
computations of tables with missing values without having the flaw that is displayed in Section 5. 
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