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ABSTRACT 
A Generalized Log-Logistic (GLL) family of lifetime distributions is one in which any pair of distributions 
are related through a GLL transformation, for some (non-negative) value of the transformation parameter 
 (the odds function of the second distribution is the ୲୦ power of the odds function of the first distribution).  
We consider GLL families generated from an exponential distribution. We derive some useful 
characteristics of these distributions; moreover, we discuss the hazard rates and Kullback-Leibler 
divergence, then illustrate the usefulness of this distribution family by fitting real data sets. 

Keywords: Generalized Log-Logistic Exponential distribution; properties of MLE’s; hazard rates; 
Kullback-Leibler divergence; data fitting. 

 

1. Introduction 
A Generalized Log-Logistic (GLL) family of lifetime distributions is one in which any pair of 

distributions are related through a GLL transformation, defined below, for some (non-negative) 
value of the transformation parameter κ.  These families of distributions were first introduced by 
Gleaton and Lynch [9]. 

In this paper, we explore the Generalized Log-Logistic (GLL) family of lifetime distributions 
generated from an exponential distribution (GLLE).  First, we will derive some useful 
characteristics of the GLLE family of lifetime distributions; moreover, we will discuss the hazard 
rates and then we will illustrate the usefulness of this family of distributions by fitting real data 
sets. 

The foundational work on the properties of lifetime distributions belonging to families 
generated by a GLL transformation was introduced by Gleaton and Lynch in their seminal paper 
[9]. Their contribution has led to significant advancements in various fields where the GLL family 
of distributions is widely used [1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 17]. 
In [9], Gleaton and Lynch discussed properties of lifetime distributions belonging to families 
generated by a Generalized Log-Logistic transformation: 

                                 𝐺఑(𝑥) = Λ఑ ∘ 𝐺(𝑥) =
൫𝐺(𝑥)൯

఑

൫𝐺(𝑥)൯
఑

+ ൫�̅�(𝑥)൯
఑ ,    for 𝑥 > 0                                (𝟏. 𝟏) 

relating two lifetime distribution functions  G x  and  G x .  Here the distribution  G x  may 

also be a function of an m-dimensional non-negative parameter vector 𝜽 = (𝜃ଵ, 𝜃ଶ , … , 𝜃௠).  The 
transformation is defined for each  > 0 by 
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Λ఑(𝑢) = ቈ1 + ൬
𝑢ത

𝑢
൰

఑

቉

ିଵ

,   for 0 < 𝑢 < 1, 

where 𝑢ത = 1 − 𝑢. 
In [9], Gleaton and Lynch established several fundamental results concerning the GLL families 

of lifetime distributions, which include: 
1) The set of GLL transformations forms an Abelian group under the binary operation of 

composition. 
2) The set of GLL transformations partitions the set of all lifetime distributions into 

equivalence classes, with any two distributions in an equivalence class being related to 
each other through a GLL transformation. 

3) In  each equivalence class, either every distribution has a moment generating function, 
or none does. 

4) Every distribution in an equivalence class has the same number of moments. 
5) The equivalence classes are linearly ordered according to the transformation parameter, 

with larger values of the parameter implying smaller dispersion of the distribution 
about the common class median. 

6) Within each equivalence class, the Kullback-Leibler information for a pair of 
distributions is an increasing function of the ratio of the transformation parameters. 

 
After their work on GLL distributions [9], Gleaton and Lynch further extended their work on 

GLL distributions by incorporating a proportional odds transformation, as discussed in their 
subsequent paper [10]. They established essential properties of such distribution families, in 
addition, they found that the GLLE, which is the primary focus of the current paper, provided a 
better fit compared to a 2-parameter Weibull distribution to a set of data consisting of the tensile 
breaking strengths of 𝑛 = 64 ten-millimeter-long carbon fibers. These findings underscore the 
significance of the GLL family of distributions in accurately modeling data from a wide range of 
fields, including material science. Gleaton and Lynch's contribution has been instrumental in 
promoting the use of GLL distributions in practical applications and inspiring further research in 
the field. 

The terms “generalized log logistic” and “odd log logistic” are used interchangeably in the 
literature to refer to the same distribution transformation. Although the former term was introduced 
earlier in the literature, both terms have been used to describe the same distribution families [1, 2, 
3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 17]. 

In this paper, we will derive some useful characteristics of the GLLE family of lifetime 
distributions where 𝑔(𝑥; 𝜆) = 𝜆𝑒ିఒ௫𝐼(଴,ஶ)(𝑥),  is the p.d.f. of an exponential distribution, for 𝜆 >

0, and 
                                  𝑔఑(𝑥; 𝜆) = Λ′఑൫𝐺(𝑥; 𝜆)൯𝑔(𝑥; 𝜆) = 𝑙఑൫𝑔(𝑥; 𝜆)൯,                               (𝟏. 𝟐)  

for 𝜅 > 0 is the p.d.f. of the corresponding GLLE distribution.  Moreover, we will illustrate the 
usefulness of this family by using two real data sets in which we compare fits of GLLE 
distributions to fits of Weibull distributions analytically. 

2. Characteristics of the GLLE Distribution. 

In [9], Gleaton and Lynch proved the following theorem which is useful in examining the shape 
of the p.d.f. of a Generalized Log-Logistic distribution, including as a special case, the GLLE 
distribution family: 
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THEOREM 2.1: Let 𝐺(𝑥; 𝝋) be the c.d.f. and 𝑔(𝑥; 𝝋) the p.d.f. of a baseline lifetime distribution 
characterized by a vector parameter 𝝋.  Let 𝜅 > 0,  and let 𝐺఑(𝑥; 𝝋) be the c.d.f. and 𝑔఑(𝑥; 𝝋) of 
a lifetime distribution generated from the baseline distribution by a generalized log-logistic 
transformation with transformation parameter 𝜅.  We define 𝐺ିଵ(𝑥) = 𝑖𝑛𝑓{𝑦: 𝐺(𝑦) ≥ 𝑥}.  Let the 
distribution 𝐺 have a unique median, 𝐺ିଵ(0.5).  Then 
(i) The medians of 𝐺 and 𝐺఑ are equal, i.e., 𝐺ିଵ(0.5) = 𝐺఑

ିଵ(0.5) for all 𝜅 > 0. 
(ii) 𝐺఑   is a decreasing function of 𝜅 on the interval ൫0, 𝐺ିଵ(0.5)൯, with lim

఑→ஶ
𝐺఑(𝑥) = 0, and is an 

increasing function of 𝜅 on the interval (𝐺ିଵ(0.5), ∞), with lim
఑→ஶ

𝐺఑(𝑥) = 1. 

(iii) For all 𝑥 > 0, lim
఑↓଴

𝐺఑(𝑥) = 0.5. 

(iv) The density of the GLLE distribution at the median is proportional to 𝜅. 
For the Generalized Log-Logistic Exponential distribution (GLLE) family, we wish to find the 

value of the argument at which the maximum of the density function occurs, as a function of the 
transformation parameter. 
THEOREM 2.2:  Let 𝑔(𝑥; 𝜆) = 𝜆𝑒ିఒ௫𝐼(଴,ஶ)(𝑥), the p.d.f. of an exponential distribution, for 𝜆 > 0, 
and let 𝑔఑(𝑥; 𝜆) = 𝑙఑൫𝑔(𝑥; 𝜆)൯, for 𝜅 > 0, the p.d.f. of the corresponding GLLE distribution.  Then 

a)  the point, 𝑥௠, at which the unique maximum of the GLLE p.d.f. occurs: 

i) is less than the common median, 𝑥଴.ହ =
௟௡(ଶ)

ఒ
, of the GLLE equivalence class, and 

ii) approaches 𝑥଴.ହ for larger values of κ; 
b)  quantiles below the median approach the median as 𝜅 → ∞; 
c)  quantiles above the median approach the median as 𝜅 → ∞; and 
d)  the median is the same for all possible values of 𝜅 > 0. 

PROOF: a) We rewrite the p.d.f. in terms of the exponential odds function, Ω(𝑥) =
ீ(௫)

ீ̅(௫)
= 𝑒ఒ௫ − 1.  

Then 

𝑔఑(𝑥) = 𝜅𝜆൫1 + Ω(𝑥)൯
൫Ω(𝑥)൯

఑ିଵ

ൣ1 + ൫Ω(𝑥)൯
఑

൧
ଶ 𝐼(଴,ஶ)(𝑥). 

We will find the value of 𝑥௠ by differentiating the natural logarithm of the p.d.f.: 
𝑙𝑛൫𝑔఑(𝑥)൯ = 𝑙𝑛(𝜅𝜆) + 𝑙𝑛൫1 + Ω(𝑥)൯ + (𝜅 − 1)𝑙𝑛൫Ω(𝑥)൯ − 2𝑙𝑛൫1 + ൫Ω(𝑥)൯

఑
൯. 

Using the derivative of the exponential odds function: 
𝑑Ω

𝑑𝑥
= 𝜆𝑒ఒ௫ , 

we find that the derivative of the log of the p.d.f. with respect to 𝑥 is: 

𝑑𝑙𝑛൫𝑔఑(𝑥)൯

𝑑𝑥
= 𝜆𝑒ఒ௫ ൥

1

1 + Ω(𝑥)
+

𝜅 − 1

Ω(𝑥)
− 2𝜅

൫Ω(𝑥)൯
఑ିଵ

1 + ൫Ω(𝑥)൯
఑൩. 

If we set this equal to zero and rearrange terms, we find that 𝑥௠ must satisfy the equation: 

                                                      
1 − ൫Ω(𝑥௠)൯

఑

1 + ൫Ω(𝑥௠)൯
఑ =

1

𝜅

1

1 + Ω(𝑥௠)
.                                                      (𝟐. 𝟏) 

Both sides of this equation must be positive.  In particular, we have Ω(𝑥௠) < 1, i.e., the point 
at which the maximum of the p.d.f. occurs must be less than the common median of the distribution 
family, 𝑥଴.ହ.  In addition, for larger values of the transformation parameter, the RHS of the equation 
decreases, in the limit going to 0.  This means that the LHS must also approach 0.  The implication 
of this is that Ω(𝑥௠) must get closer to 1, so that 𝑥௠ approaches the median as κ increases.  It was 



Characteristics of the GLLE Family of             James U. Gleaton, Sami Hamid  
Lifetime Distributions, and Applications             and Ping Sa 

43 
 

already proved in [9] that the distribution approached a degenerate distribution at the median as κ 
goes to infinity. 

b)  Let 0 < 𝑞 < 1, and denote the 𝑞௧௛ quantile of the distribution by 𝑥఑,௤.  We have: 

𝑥఑,௤ =
1

𝜆
𝑙𝑛 ቆ1 + ൬

𝑞

𝑞ത
൰

఑షభ

ቇ. 

Differentiating with respect to 𝜅, we find 
𝑑𝑥఑,௤

𝑑𝜅
= −

1

𝜅ଶ𝜆

1

1 + ቀ
𝑞
𝑞ത

ቁ
఑ 𝑙𝑛 ൬

𝑞

𝑞ത
൰. 

For 0 < 𝑞 < 0.5, 𝑙𝑛 ቀ
௤

௤ത
ቁ < 0, and the derivative is positive for all κ. 

c)  For 0.5 < 𝑞 < 1, 𝑙𝑛 ቀ
௤

௤ത
ቁ > 0, and the derivative is negative for all κ. 

d)  For q = 0.5, 𝑙𝑛 ቀ
௤

௤ത
ቁ = 0, and the derivative is 0 for all κ, implying that the medians are the 

same for all of the GLLE distributions with a given value of 𝜆.                                                                   ∎ 
The value of 𝑥௠ for a particular value of the transformation parameter may be found by solving 

(numerically) the equation: 

                              𝜅൫Ω(𝑥௠)൯
఑ାଵ

+ (𝜅 + 1)൫Ω(𝑥௠)൯
఑

− 𝜅Ω(𝑥௠) − 𝜅 + 1 = 0                           (𝟐. 𝟐) 

for Ω(𝑥௠) and inverting to find 𝑥௠ =
ଵ

ఒ
𝑙𝑛൫1 + Ω(𝑥௠)൯. 

We see that GLLE distributions are positively skewed, with tails that decay more rapidly 
than the baseline exponential distribution so long as the transformation parameter exceeds 1.  A 
GLLE distribution with 𝜅 >  1 is an appropriate distribution to attempt to fit to reliability data sets 
having certain characteristics: 

i) failure is unlikely to occur in a short time (or under relatively small levels of stress), 
ii) failure is more likely to occur before very long times (or under less extreme conditions 

of stress), 
iii) failure occurs sooner (or under less stress) than for the baseline exponential 

distribution, 
iv) failure is highly likely to occur during some finite time interval (or interval of stress) 

bounded away from 0. 
 

3. Hazard Rate for GLLE Distributions. 

If the generating distribution is unit exponential, then its hazard rate function is constant, with 
ℎ(𝑥) = 1, for 𝑥 < 0.  The hazard rate function of the GLLE distribution with 𝜆 = 1 is given by 

                      ℎ఑(𝑥) =
𝜅(1 − 𝑒ି௫)఑ିଵ𝑒ି௫

(1 − 𝑒ି௫)఑ + 𝑒ି఑
=  

𝜅(𝑒௫ − 1)఑

1 + (𝑒௫ − 1)఑
൬

𝑒௫

𝑒௫ − 1
൰.                         (𝟑. 𝟏) 

It is clear from the second form of ℎ఑ that the function asymptotically approaches the constant 
𝜅 for large 𝑥; it is clear from the first form of ℎ఑ that ℎ఑(0) = 0, for 𝜅 > 1, and that ℎ఑ is 
unbounded at 0 for 𝜅 < 1. Graphs of the hazard rate functions are shown in Figures 3.1 and 3.2 
for 𝜅 = 2 and 𝜅 = 4, respectively.  In each of these two cases, there is a particular value 𝑥఑  of 𝑥 
such that ℎ఑(𝑥) > 𝜅 for all 𝑥 > 𝑥఑ and ℎ′఑(𝑥) > 0 for all 𝑥 < 𝑥఑ .  We will show that this property 
holds in general when 𝜅 >  1. 
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Graphs of the hazard rate functions are shown in Figures 3.3 and 3.4 for 𝜅 = 0.5 and 𝜅 = 0.2, 
respectively.  In each of these two cases, there is a particular value 𝑥఑  of 𝑥 such that ℎ఑(𝑥) < 𝜅 
for all 𝑥 > 𝑥఑ and ℎ′఑(𝑥) < 0 for all 𝑥 < 𝑥఑ .  We will show that this property holds in general 
when κ < 1. 

 

 

 

 
Figure 3.1:  Hazard Rate, κ = 2 Figure 3.2:  Hazard Rate, κ = 4 

 

 
Figure 3.3:  Hazard Rate, 𝜅 = 0.5 

 

 
Figure 3.4:  Hazard Rate, 𝜅 = 0.2 

 

THEOREM 3.1: Let 𝑋 be a non-negative continuous random variable with a GLLE (𝜅, 𝜆 = 1) 
distribution.  Then the hazard rate function ℎ఑(𝑥) has the following properties: 

For 𝜅 > 1, 

i)  lim
௫↓଴

ℎ఑(𝑥) = 0; 

ii)  ℎ఑(𝑥) > 𝜅 for 𝑥 > 𝑙𝑛(2); ℎ఑(𝑥) < 𝜅 for 𝑥 < 𝑙𝑛(2); 

iii)  There is a unique 𝑥௠௔௫ > 0 such that ℎ′఑(𝑥௠௔௫) = 0; ℎ′఑(𝑥) > 0 for 0 < 𝑥 < 𝑥௠௔௫; ℎ′఑(𝑥) <
0 for 𝑥 > 𝑥௠௔௫; and 
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iv)  lim
௫→ାஶ

ℎ఑(𝑥) = 𝜅. 

For 𝜅 < 1, 

v)  lim
௫↓଴

ℎ఑(𝑥) = +∞; 

vi)  ℎ఑(𝑥) < 𝜅 for 𝑥 > 𝑙𝑛(2); ℎ఑(𝑥) > 𝜅 for 𝑥 < 𝑙𝑛(2); 

vii)  There is a unique 𝑥௠௜௡ > 0 such that ℎ′఑(𝑥௠௜௡) = 0; ℎ′఑(𝑥) < 0 for 0 < 𝑥 < 𝑥௠௜௡; ℎ′఑(𝑥) >
0 for 𝑥 > 𝑥௠௜௡; and 

viii)  lim
௫→ାஶ

ℎ఑(𝑥) = 𝜅. 

PROOF: 

Let 𝜅 > 1.  Properties (i) and (iv) are obvious from the functional form of ℎ఑ in (3.1).  

ii)  Let 𝑦 = 𝑒௫ − 1.  If 𝑥 > 𝑙𝑛(2), then 𝑦 > 1, so that 𝑦఑ > 𝑦, which implies that 

௬ഉ

ଵା௬ഉ
ቀ

௬ାଵ

௬
ቁ > 1, or ℎ఑(𝑥) > 𝜅.  It is also clear that for 0 < 𝑥 < 𝑙𝑛(2), we have 0 < 𝑦 < 1.  This 

implies that, for 𝜅 > 1, 𝑦఑ < 𝑦, implying 
௬ഉ

ଵା௬ഉ
ቀ

௬ାଵ

௬
ቁ < 1, or ℎ఑(𝑥) < 𝜅. 

iii)   The derivative of ℎ఑ is 

                     ℎ′఑(𝑥) =
𝜅𝑒௫(𝑒௫ − 1)఑ିଶ[𝜅(𝑒௫ − 1) + 𝜅 − 1 − (𝑒௫ − 1)఑]

[1 + (𝑒௫ − 1)఑]ଶ
.                   (𝟑. 𝟐) 

It is clear that the sign of the derivative is determined by the sign of the quantity in brackets in 
the numerator.  Letting 𝑦 = 𝑒௫ − 1, as before, we may write the quantity in brackets as 

                                                     𝑔(𝑦) = −𝑦఑ + 𝜅𝑦 + 𝜅 − 1.                                                (𝟑. 𝟑) 

This function is guaranteed to have exactly one positive real root for 𝜅 > 1.  Let 𝑥ଵ be the value 
of 𝑥 corresponding to this solution.  Then 𝑥ଵ is a candidate for the maximum of the hazard rate.  
Further examination of (3.3) shows that the derivative of the hazard rate is positive for 𝑥 < 𝑥ଵ and 
negative for 𝑥 > 𝑥ଵ.  

Now, let 𝜅 < 1.  Properties (v) and (viii) are obvious from the functional form of ℎ఑ in (3.1). 

vi)  As before, we let 𝑦 = 𝑒௫ − 1.  For 𝑥 < √2, we have 0 < 𝑦 < 1, which implies 𝑦఑ > 𝑦, 

implying 
௬ഉ

ଵା௬ഉ
ቀ

ଵା௬

௬
ቁ > 1,  or ℎ఑(𝑥) > 𝜅. 

vii)  As in the proof of (iii), the sign of the derivative is determined by the sign of the quantity in 
brackets in the numerator of (3.2).  Letting 𝑦 = 𝑒௫ − 1, we may write this quantity in the form of 
(3.3).  For 𝜅 < 1, 𝑔(𝑦) has exactly one positive real root.  Let 𝑥ଶ be the value of 𝑥 corresponding 
to this root.  Then 𝑥ଶ is a candidate for the minimum of the hazard rate.  Further examination of 
(3.3) shows that ℎ′఑(𝑥) < 0 for 0 < 𝑥 < 𝑥ଶ, and that ℎ′఑(𝑥) > 0 for 𝑥ଶ < 𝑥 < +∞.                    

Thus, the behavior exhibited by ℎଶ and ℎସ in Figures 3.1 and 3.2 generalizes to all 𝜅 > 1; 
while the behavior exhibited by ℎ଴.ହ and ℎ଴.ଶ in Figures 3.3 and 3.4 generalizes to all 𝜅 < 1. 
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4. Kullback-Leibler Divergence 

Let 𝜅ଶ > 𝜅ଵ > 0, and let 𝑟 =
఑మ

఑భ
> 1.  Let 𝐺఑భ

(𝑥) and 𝐺఑మ
(𝑥) be c.d.f.’s related to each other by 

a GLL transformation.  The Kullback-Leibler divergence of 𝐺఑మ
(𝑥), relative to 𝐺఑భ

(𝑥), was shown 
by Gleaton and Lynch [9] to be 

                    𝐾 ቀ𝐺఑మ
(𝑥); 𝐺఑భ

(𝑥)ቁ = 2(𝑟 − 1) − 𝑙𝑛(𝑟) + 2 න 𝑙𝑛(𝑢௥ + 𝑢ത௥)𝑑𝑢,

ଵ

଴

                           (𝟒. 𝟏) 

a strictly increasing function of the ratio, 𝑟, of the GLL transformation parameters, and 
independent of the form of the baseline c.d.f., 𝐺఑భ

(𝑥).   For 𝑟 =  1, the divergence is 0.  If we 
integrate by parts and use the fact that the GLL Unit Uniform distribution is symmetric about 0.5, 
we obtain 

𝐾 ቀ𝐺఑మ
(𝑥); 𝐺఑భ

(𝑥)ቁ = 𝑟 − 2 − 𝑙𝑛(𝑟) + 2𝑟 න
1 − 𝑢

𝑢

𝑢௥

𝑢௥ + (1 − 𝑢)௥
𝑑𝑢.

ଵ

଴

 

The integral may be evaluated numerically for specific values of 𝑟 > 1.  The table below gives 
values of the K-L divergence for 𝑟 = 1, 1.5, 2, 2.5, and 5. 

𝑟 1 1.5 2 2.5 5 
𝐾(𝑟) 0 0.13734 0.44845 0.85463 3.483 

 

5. Applications 

We attempted to fit two reliability data sets to both a GLLE distribution, with p.d.f. given by 
Equation (1.2), and to a Weibull distribution, with p.d.f. 

                                                    𝑓(𝑥; 𝜆, 𝜌) = 𝜌𝜆ିఘ𝑥ఘିଵ𝑒ି(௫/ఒ)ഐ
𝐼(଴,ஶ)(𝑥).                                                    

Maximum likelihood estimates of the parameters were calculated, and assessment of fit of each 
distribution to the data set was done. 

a)  The first data set, listed in the Appendix, consists of measurements of the tensile strengths of 
carbon fibres of length 10 mm (where 𝑛 =  64). Strength measurements are in GPa. This data set 
is from Bader and Priest [5].  This data set was analyzed in [10].  The results are recapitulated here. 

For the GLLE distribution, the MLE’s are 𝜆መ = 4.316169 ,  𝜅ෝ = 6.188709.  The Cramer-von 
Mises statistic was 0.086319.  For the Weibull distribution, the MLE’s are 𝜆መ = 3.505193,  𝜌ෝ =
5.02631.  The value of the Cramer-von Mises statistic was 0.135782.  The Cramer-von Mises 
value was smaller for the GLLE  than for the Weibull, indicating a somewhat better fit for the 
GLLE distribution. 

b)  The second data set include 𝑛 = 63 observations of the strengths of 1.5 cm glass fibres, 
measured at the National Physical Laboratory, England which presented by Smith and Naylor [16]. 
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In [15], the Zografos-Balakrishnan odd log-logistic generalized half-normal (ZOLL-GHN) family 
with four parameters is introduced and studied, and the usefulness of this family were illustrated 
using this data set. 

    We used the Kolmogorov-Smirnov test to assess the fit of the data to the two distributions. 

     For the GLLE distribution, the MLE’s are 𝜆መ = 0.453359,  𝜅ෝ = 5.913577.  The value of the K-
S statistic is 0.148358, with p-value = 0.112646.  For the Weibull distribution, the MLE’s are 𝜆መ =
1.628113,  𝜌ෝ = 5.780701.  The value of the K-S statistic is 0.152236, with p-value = 0.096914. 

We cannot say that either distribution does not fit the data; however, the GLLE fits the data slightly 
better than the Weibull. 

6. Conclusion. 

In this paper we considered family of lifetime distributions generated from an exponential 
distribution by a GLL transformation. We obtained some useful characteristics of these 
distributions; we found an equation for numerically calculating the point 𝑥௠ at which the 
maximum of the density function occurs, derived the limiting behavior of the quantiles of the 
distribution. Moreover, we found the behavior of the hazard rate function for values of  > 1 and 
 < 1. We extended the Kullback-Leibler divergence studied by Gleaton and Lynch [9] for general 
GLL families, calculating the Kullback-Leibler divergence for pairs of GLLE distributions for 
various values of the ratio of the transformation parameters. Finally, we attempted to fit two 
reliability data sets to both a GLLE distribution and a Weibull distribution. For both data sets, the 
GLLE provided a somewhat better fit than the Weibull distribution. 

Appendix: Data Sets 

a) The first data set consists of measurements of the tensile strengths of carbon fibres of length 
10 mm (where 𝑛 =  64). Strength measurements are in GPa. This data set is from Bader 
and Priest [5]: 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.454, 

2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 

2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 

3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 

3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 

4.027, 4.225, 4.395, 5.020 

b) The second data set include 𝑛 = 63 observations of the strengths of 1.5 cm glass fibres, 
measured at the National Physical Laboratory, England which presented by Smith and 
Naylor [16]: 

0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2,0.74, 1.04, 1.27, 1.39, 
1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 
1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 
1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89 
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