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ABSTRACT 
This study employs the Box-Jenkins methodology for time series modelling to analyze Nigerian crude oil 
production data. To enhance the model-building process, the Friedman rank test for seasonality was utilized. 
Data were sourced from the Nigerian Petroleum Corporation’s Annual Statistical Bulletin, covering the 
period from January 1997 to September 2014. The findings indicate that the yearly and monthly mean 
distributions exhibit non-constant behavior over time, implying that both natural and governmental factors 
significantly impact crude oil production (COP) dynamics. Consequently, a seasonal  
𝐴𝑅𝐼𝑀𝐴(0,1,1)(0,1,1)ଵଶ model was fitted and deemed appropriate for the data.  

Keywords: Box-Jenkins Models, Time Series Modelling, Friedman Rank Test, Seasonality Test. 

1. Introduction 

Since crude oil and natural gas account for approximately two-thirds of global energy 
consumption, crude oil is becoming more and more important to the global economy. Crude oil is 
the most traded and largest commodity globally, making up around ten percent of global trade, and 
its global consumption exceeds five hundred billion US dollars, roughly ten percent of the US 
GDP. International trading in crude oil involves a wide range of participants, including enterprises, 
governments, private refineries, countries that export and import oil, and also oil speculators. The 
price of crude oil is mostly determined by the availability and demand for the commodity, while it 
is also greatly impacted by a wide range of unpredictable past, present, and future events, including 
weather, stock levels, GDP growth, political issues, and public expectations. Moreover, oil prices 
differ globally since moving crude oil from one nation to another takes a long time. Due to these 
factors, the market is very dynamic and fluctuates, and the underlying process causing this 
complexity is unknown. In a country that relies heavily on petroleum, where the sale of the 
enormous reserves of natural gas and oil provides almost all of the government’s income. Nigeria 
is Africa's leading oil producer, producing more than 2.5 million barrels of crude oil per day, 
ranking among the top 10 in the world. However, the country’s residents have been living through 
a continuous energy crisis due to a lack of petroleum products, unstable gas prices, and a shortage 
of gasoline, all of which have a detrimental impact on the national economy. 

In actuality, fuel shortages have been a defining feature of Nigeria’s history, particularly 
throughout the military regime of the 1908s and 1990s and even during the democratic 
administrations of 2003, 2005, 2008, 2012 – 2013, and most recently 2022 – 2023. Government 
mismanagement and corruption that have led to mistrust are blamed by the public on the 
government, while gasoline middlemen are blamed by the government for hoarding. Citizens have 
experienced a rolling energy crisis for several months between 2022 and 2023. Every gas station 
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in the country has seen variations of this scene. Nigerians continue to experience fuel shortages in 
the shadow of plenty, despite all of the government’s efforts to find a solution.  

2. Literature Review 

Time series provides useful tools that help predict the future by approximating models that use 
past data, and these time series models have advantages over other statistical models in certain 
situations. They can be easily used for forecasting purposes because historical sequences of 
observations are readily available from published secondary sources, and these successive 
observations are statistically dependent. In such situations, time series models are a boon for 
forecasters. Many researchers have employed techniques developed by [3] in their work. 

Nigerian crude oil production was studied by Omekara et al. [27] using the Box-Jenkins 
ARIMA model. Based on their findings, a SARIMA(1,1,1)(0,1,1)12 model was determined to be 
appropriate for the dataset. The work of Fatoki et al. [10] concentrated on using ARIMA modelling 
tools to analyze Nigeria’s crude oil production from 1980 to 2013. The series was well-fit using 
the ARIMA(1,2,2) model. To develop an appropriate time series model for the monthly crude oil 
output in Nigeria, Sadeeq and Ahmadu [28] fitted ARIMA(2,1,0)(2,1,1)12 to the series, which 
covered the years 2002 – 2016. Etaga et al. [8] fitted a time series model to the production and 
export of crude oil from Nigeria between January 1999 and December 2015. The best models for 
producing and exporting crude oil were SARIMA(1,0,1)(2,0,0)12 and SARIMA(2,1,0)(1,0,1)12, 
respectively, according to their findings. Taiwo et al. [33] examined and discussed the volatility 
and swings in the monthly crude oil price in Nigeria using time series analysis. The fitted 
ARIMA(5,1,2) model was found to be adequate for the given data. Ijeoma [15] thought about 
applying the Box-Jenkins approach to examine Nigeria’s monthly crude oil prices from January 
2000 to December 2013. The results showed that the ARIMA(1,1,1) model was appropriate for the 
dataset. 

Similarly, a time series model is fitted by Clement [5] to the chemical viscosity reading data. 
The initial models fitted to the same data points by Box-Jenkins are compared with the results 
using the normalized Bayesian Information Criterion (BIC). Consequently, the proposed model 
performed better than the Box-Jenkins models. Again, using data on the exchange rate between 
the US dollar and the Nigerian naira, Clement [6] constructs a statistical time series model. It was 
determined that an ARIMA(0,1,1) would suffice for the dataset. Shittu and Inyang [31] used the 
ARIMA-Intervention model to simulate Nigerian monthly crude oil prices to compare the outcome 
with the intervention model's utilizing a lag operator. Their findings showed that the ARIMA-
Intervention model outperformed the alternative model. Etuk et al. [9] examined the effect of the 
declaration of cooperation (Doc) on the production of crude oil (COP) in Nigeria. The results 
showed that the DoC's 35% level production cut had a negative impact on COP. Moffat and 
Inyangs [23] investigated the impact of the Nigerian government amnesty programme on her crude 
oil production. The result disclosed that the Humanitarian Initiative's assistance had no effect on 
the output of crude oil. 

Inyang et al. [18] used the Box-Tiao method to investigate how international oil politics affected 
the price of Nigerian crude. The Organization of Petroleum Exporting Countries' intervention in 
December 2016 had a notable and abrupt effect on the price of Nigerian oil upon its introduction, 
as seen by the corresponding 33.72% increase in price. Again, a time series intervention model 
based on the ESM and ARIMA Models was used by Inyang et al. [16] to model the daily exchange 
rates between the Pakistani rupee and the Nigerian naira. The comparison of the intervention 
model with ESM and the ARIMA-Intervention model showed that the latter performed better. 
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Inyang et al. [17] evaluated the response of the comparative value of the Bangladesh Taka to the 
Naira owing to the 2016 financial crisis using an intervention model based on ETS plus ARIMA 
models. Their results revealed that the intervention caused a 68.49% depreciation in the value of 
the Naira exchanged with the Bangladesh Taka in the exchange rate market, with a decay rate of 
0.6. In light of this, this work seeks to investigate the trend pattern and provide a framework for 
determining the rate of crude oil production (COP) in Nigeria by fitting an appropriate time series 
model. 

3. Materials and Method 

3.1 Data Description 
The monthly crude oil output for the period of January 1997 to September 2014 is the secondary 

data set utilized for this analysis. A total of 213 observations were extracted from the Nigeria 
National Petroleum Corporation (NNPC) Annual Statistical Bulletin [24]. The statistical package 
used for the analysis of this work is the R language (R-4.1.3-win) [32]. 

3.2 Model Specification 
The Box-Jenkins ARIMA Procedure:  

The modeling technique used, Box-Jenkins [2-4], is restricted to stationary series:  
(a). Stationary: Making the series stationary is thus the initial move in the analysis. 
Time Series Plot: A constant variance and mean suggest stationary behavior. 
Trend Stationary: When trend and slope are eliminated, a stationary series is what remains. 
Difference Stationarity: If the series is transformed, it ends up being stationary.   
(b). Model Identification:  ACF and PACF are the identification tools. After determining the 
stationary pattern of the series, one may identify the structure of the ARMIA(p,d,q) model for the 
process by examining the correlogram plots.  
(c). Model Estimation: Calculate the models' estimated parameters. Here, the analysis is done using 
R software.  
(d). Diagnostic Checking: This process is known as model validation. Used to select a better model 
among competing models.   

3.2.1 Autoregressive Moving Average Process [ARMA(p,q)] 
Give an autoregressive process of order p and a moving average process of order q, we have: 

 
𝐹௧ = 𝜕ଵ𝐹௧ିଵ + ⋯ + 𝜕𝐹௧ି + 𝜛௧ + ℘ଵ𝜛௧ିଵ + ⋯ + ℘𝜛௧ି (1) 
 
With shift operator Ω defined as: 
Ω ≡ 1 , Ω𝐹௧ = 𝐹௧ିଵ,  Ω𝐹௧ = 𝐹௧ି , 𝑘 = 1,2 … (2) 
 
Applying (2), (1) reduces to: 
൫1 − 𝜕ଵΩ − 𝜕ଶΩଶ − ⋯ − 𝜕Ω൯𝐹௧ = ൫1 + ℘ଵΩ + ℘ଶΩଶ + ⋯ + ℘Ω൯𝜛௧  
 
𝜕(Ω)𝐹௧ = ℘(Ω)𝜛௧   (3)  
 
Where: 
  𝜕(Ω) = 1 − 𝜕ଵΩ − 𝜕ଶΩଶ − ⋯ − 𝜕Ω  
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 ℘(Ω) = 1 + ℘ଵΩ + ℘ଶΩଶ + ⋯ + ℘Ω  
 
𝐹௧ is the COP dataset at time t; 𝜕′𝑠 and ℘′𝑠 are the AR and MA parameters; 𝜛௧ is the white noise 
term and assumed to have these properties: 
 
𝐸(𝜛௧) = 0, Cov(𝜛௧, 𝜛௧) = 𝑉𝑎𝑟(𝜛௧) = 𝜎ଶ,  
𝐶𝑜𝑣(𝐹௧, 𝜛௧ା) = 0, 𝑘 ≠ 0, 𝐶𝑜𝑣(𝐹௧, 𝜛௧ାି) = 0, 𝑘 > 𝑝 
 
Nonstationary Models 

Most time series that are seen in real life show non-stationary conduct, which can be 
attributed to seasonal fluctuation or trend, which is a shift in the local mean. The method to model 
a non-stationary time series is to reduce such a process to a stationary one and then model using 
what we know concerning the stationary process. 
Differencing  

Differencing is a form of adjustment in time series when the series has been found to 
contain components such as trend, the regular differencing operator is introduced. The regular 
(non-seasonal) difference of order one is given by  
 
∇𝐹௧ = 𝐹௧ − 𝐹௧ିଵ = (1 − Ω)𝐹௧                                                                                      (4)  
First differencing may be stationary depending on the nature of the trend. Sometimes higher order 
differencing may be required. 
 
In general, 
∇ୢ𝐹௧ = ∇൫∇ୢିଵ𝐹௧൯ = (1 − Ω)ௗ𝐹௧                                                                               (5)               
Where d is the order of differencing 
At times non-stationarity may be due to seasonal variation; to reduce such series to a stationary 
one, seasonal differencing could be applied. The seasonal difference of order D with period S is 
given by 
 
∇ୈ

ୗ𝐹௧ = ∇ୗ(∇ୈିଵ𝐹௧)  (6)  
 
For instance, the first seasonal difference at period S is given by  
∇ୱ𝐹௧ = 𝐹௧ − 𝐹௧ି௦  
For monthly seasonal data with period S=12 
∇ଵଶ𝐹௧ = 𝐹௧ − 𝐹௧ିଵଶ  
For quarterly data with period S=4 
∇ସ𝐹௧ = 𝐹௧ − 𝐹௧ିସ  
 
When a polynomial trend series is differentiated, the degree of the polynomial is typically lowered 
by the level of the differencing. That is, level one differencing eliminates a linear trend, whereas 
level two differencing eliminates a quadratic trend. 

3.2.2 Autoregressive Integrated Moving Average Process [ARIMA(p,d,q)] 
Given an ARMA model with parameters ARMA(p,q) and the differencing operator in (5), the 

resulting model is given as ARIMA(p,d,q), written using (2) as 
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𝜕(Ω) ∇ௗ𝐹௧ = ℘(Ω)𝜖௧                                                                                                         (7) 
 
3.2.3 Seasonal Autoregressive Integrated Moving Average Process [ARIMA(p,d,q)(P,D,Q)S] 

The seasonal autoregressive integrated moving average process is an integrated series that is 
obtained after the seasonal components have been removed. It is written as 
SARIMA(p,d,q). (𝑃, 𝐷, 𝑄)ௌ  (8) 
whereas S denotes the order of seasonality, the uppercase letters stand for the model's seasonal 
components, and the lowercase letters stand for the non-seasonal components. 
Generally, for the multiplicative seasonal model 
 
𝜕(Ω) Åୗ(Ωୗ)∇ୈ

ୗ∇ௗ𝐹௧ = ℘(Ω)ℚௌ(Ωୗ)𝜛௧  (9) 
 
Where: 
𝜕(Ω) = 1 − 𝜕ଵΩ − 𝜕ଶΩଶ − ⋯ − 𝑉Ω ≡ 1 − ∑ 𝜕Ω


ୀଵ   

Åୗ(Ωୗ) = 1 − Åୗ,ଵΩୗ − Åୗ,ଶΩଶୗ − ⋯ − Åୗ,Ωୗ ≡ 1 − ∑ Åୗ,୧Ω
ௌ

ୀଵ   

℘(Ω) = 1 + ℘ଵΩ + ℘ଶΩଶ + ⋯ + ℘Ω ≡ ∑ ℘Ωொ
ୀ , ℘ = 1  

ℚௌ(Ωୗ) = 1 + ℚௌ,ଵΩௌ + ℚௌ,ଶΩଶௌ + ⋯ + ℚΩொௌ ≡ ∑ ℚௌ,ொΩௌொ
ୀ   

 
∇ௗ and ∇

ௌ remained as defined in (5) and (6) respectively. 
Åୗ′𝑠 and ℚௌ′𝑠 are parameters of the seasonal autoregressive and moving average process. 
 
3.3 Unit Root Test 

As a prerequisite for any further analysis in time series modeling, it is pertinent to formally 
diagnose the characteristics of the series that are used in the study [19].  
The regression equation in (10) serves as the foundation for the Augmented Dickey-Fuller (ADF) 
[7] test. 
𝐹௧ = 𝜕𝐹௧ିଵ + ∑ 𝐹𝛥𝐹௧ି + 𝜛௧

ିଵ
ୀଵ   (10) 

 
Where 𝐹௧ is the series being tested and the quantity of lag-differenced terms (p) is included to 
capture any autocorrelation. 
 
Hypothesis: 
𝐻: 𝛽 = 0   (series contains a unit root)           
Against 
𝐻ଵ: 𝛽 ≠ 0         
Test statistics are: 

ℸఘ =
డିଵ

ௌ.ா(డ)
~𝑡∝(𝑛)  (11) 

 
3.4 Seasonality Test 
3.4.1 Friedman Test (Stable Seasonality Test) 

The test statistic is constructed as follows. Considering the matrix of data ൛𝑓ൟ
×

with number 

of years in the sample (i.e. n rows) and the frequency of the data (i.e. k columns). 
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The data matrix is substituted by a new matrix ൛ℓൟ
×

, such that ℓ is the rank of 𝑓 within block 

𝑖 [11 – 14, 21, 26]. 
 

ℋ =
∃

℮ട
  (12) 

 
Where; 

∃௧= 𝑛 ∑ (ℓ.ఫ
തതത − ℓത)

ୀଵ  and ℮ధ =
∑ ∑ (ℓ.ണ

തതതതିℓത)మೖ
ೕసభ


సభ

(ିଵ)
  (13) 

 
For large 𝑛 (𝑛 > 1`5) 𝑜𝑟 𝑘 (𝑘 > 4), the probability distribution of ℋ can be approximated by that 
of a chi-square distribution. Therefore, the p-value is given by 𝑃(𝑓ଶ

ିଵ
> ℋ) 

 
Hypothesis: 
𝐻: Ⅎ = 0   (no stable seasonality) 
Vs 
𝐻ଵ: Ⅎ ≠ 0         
           
3.5 Model Validation 

Diagnostic testing is a crucial stage in building time series models, and this consists of 
scrutinizing a variety of diagnostics to determine whether the selected model is healthy and hence 
ready to forecast. We consider here; 

3.5.1 Plot of the residual ACF 
Plotting the correlogram of the fitted model's residuals allows one to assess the goodness of fit 

soon after a suitable ARIMA model has been established. The residuals are white noise, suggesting 
that the model fits well, provided a majority of the autocorrelation coefficients are inside the bound 

of ±
ଶ

√்
, T is the total duration of the data points [20].  

3.5.2 Akaike Information Criterion (AIC) 
The AIC [1, 19-20, 29], is formulated as 

 

𝐴𝐼𝐶 = 𝑀చ ቂ1 +
ଶ

చି
ቃ  (16) 

Where: 
𝑀చ = Index related to production error (known as residual sum of squares) 
𝑝 = No. of parameters in the model, 𝜍 = No. of data points. 
 
3.5.3 Bayesian Information Criterion (BIC) 

Given a limited number of models, the BIC is a criterion for choosing a model. The model 
with the smallest BIC value among two or more estimated models should be chosen [5,19-20, 29]. 
It is given by: 
 
BIC= 𝑛𝑙𝑛𝜎ොధ

ଶ + 𝑘𝑙𝑛(𝑛)  (17) 
 
Where 𝜎ොధ

ଶ  is the estimated error variance defined by 
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 𝜎ොధ
ଶ =

ଵ

்
∑ (𝑓

చ
 − 𝑓)̅ଶ 

𝑓 = Observed data, 𝜍 = observations length, 𝑘 = quantity of estimated parameters. 
 
3.5.4 Ljung Box Test 

Up to lag k, the Ljung Box Test can be used to determine if serial autocorrelation is present or 
absent [19-20]. We compute the statistic ℧ to perform the Ljung Box test [22]. Given a series 𝑓௧ of 
length 𝜍: 
 

℧(ℳ) = 𝜍(𝜍 + 2) ∑
ೕ

మ

చି

ℵ
ୀଵ   (18) 

Where:  𝑟 = accumulated sample autocorrelations, ℵ = the time lag. 
 
Hypothesis: 
𝐻: (residuals do not show any autocorrelation)                                  
Against 
𝐻ଵ:  (𝐻 is false) 

4. Results and Discussion 

The dataset reflects the monthly Nigerian crude oil output from January 1997 to September 
2014. Figure 1 displays the sequence plotted against time. The graph of the series does not show 
any unique pattern as it rises and falls at random, perhaps due to the mechanism that generated the 
dataset.  
 

 
Figure 1. Time Plot of Crude Oil Production (COP) 
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Table 1. Monthly Mean of Crude Oil Production 
S/N Month Monthly Total Monthly Mean 
1 January 1300265866 72236993 
2 February 1188137444 66007636 
3 March 1265356009 70297556 
4 April 1212953595 67386311 
5 May 1248069240 69337180 
6 June 1215050295 67502794 
7 July 1248316869 69350937 
8 August 1277414026 70967446 
9 September 1246098394 69227689 
10 October 1213671337 71392432 
11 November 1170111387 68830082 
12 December 1213821003 71401235 

 
Table 2. Yearly Mean of Crude Oil Production 

S/N Year Yearly Total Yearly Mean 
1 1997 855721134 71310095 
2 1998 826443999 68870333 
3 1999 773677520 64473127 
4 2000 828547638 69045637 

5 2001 865173583 72097799 
6 2002 740687180 61723932 
7 2003 844150929 70345911 
8 2004 910156486 75846374 
9 2005 918660619 76555052 
10 2006 869196506 72433042 
11 2007 803000708 66916726 
12 2008 768745932 64062161 
13 2009 780347940 65028995 
14 2010 896043406 74670284 
15 2011 866245232 72187103 
16 2012 852776655 71064721 
17 2013 800488096 66707341 
18 2014 599201906 66577990 

 
To explore the effect of the mean and to check if the mean is a constant function of time or not, 

the monthly and yearly means of the series were computed, as are respectively shown in Tables 1 
and 2. The highest monthly mean of 72236993 is observed in January, while the lowest monthly 
mean of 66007636 is observed in February. Similarly, the highest yearly mean of 76555052 was 
observed in 2005, while the least yearly mean of 61723932 was observed in 2002. Therefore, it is 
seen that both the monthly and yearly means are not constant functions of time and that government 
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policies and programmes in the oil sector of the Nigerian economy, coupled with oil theft and 
natural phenomena, affect the distribution of crude oil production. 
 
 
Model Identification 

The graph of the original series in Figure 1 exhibits the characteristics of a non-stationary series, 
with peaks at intervals of equal length indicating the presence of a seasonal trend (also see Figure 
4). These attributes are confirmed by both the autocorrelation function (ACF) and the partial 
autocorrelation function (PACF) of the series in Figures 2 and 3, respectively. The inability of both 
the ACF and the PACF to die out quickly at high lags shows that the series is not stationary, as 
confirmed by the unit root test at level in Table 3. 

 
Figure 2. ACF of Crude Oil Production 

 
Figure 3. PACF of Crude Oil Production 
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Figure 4. Time Series Decomposition of the COP 

 
 
Table 3. Unit Root Test at Level 
Test Augmented Dickey-Fuller 
Data COP 
Dickey-Fuller -3.3075 
Lag order 5 
P-value 0.07127 
Alternative hypothesis Stationary 

 
Table 4. Unit Root Test at First Difference 
Test Augmented Dickey-Fuller 
Data COP 
Dickey-Fuller -8.3079 
Lag order 5 
P-value 0.01 
Alternative hypothesis Stationary 

 
Table 5. Seasonality Test before Seasonal Differencing 
Test Friedman rank 
Data COP 
Test Statistic 82.96  
P-value 3.93241e-13 
Alternative hypothesis Data is Seasonal 

 
Table 6. Seasonality Test after Seasonal Differencing 
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Test Friedman rank 
Data COP 
Test Statistic 1.11 
P-value 0.9999162 
Alternative hypothesis Data is Seasonal 

To attain stationarity, the series was transformed. The series transformation difference method 
was used, and both regular and seasonal differencing were carried out. The graph of the differenced 
series in Figures 5 and 8 indicates that the series is stationary. The plots of the ACF and the PACF 
of the differenced series in Figures 6, 7, 9, and 10 confirmed that the series is stationary. Following 
the initial difference, a unit root test was performed in Table 4, and the results showed that the 
series was stationary. 

 
Figure 5. First Order Regular Differencing 

 

 
Figure 6. ACF of First Order Regular Differencing 
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Figure 7. PACF of First Order Regular Differencing 

 

 
Figure 8. Seasonal Differencing of First Order Regular Difference 
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Figure 9. ACF of Seasonal Differencing of First Order Regular Difference 

 

 
Figure 10. PACF of Seasonal Differencing of First Order Regular Difference 

 
Because ACF and PACF indicated signs of seasonality since they repeat themselves at lags that 

are multiples of the number of periods per season (here the period = 12), and a Friedman 
seasonality test in Table 5 further confirmed that a seasonal effect is present (also, see Figure 4). 
A first-order seasonal differencing was done to remove the seasonal effects, and a seasonal test in 
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Table 6 confirmed that the seasonal effect was removed (also see Figure 11). Based on the 
correlogram in Figures 9 and 10, a mixed process is suggested. 
Possible models identified for the COP dataset are: 
𝑆𝐴𝑅𝐼𝑀𝐴(1,1,1)(1,1,1)ଵଶ, 𝑆𝐴𝑅𝐼𝑀𝐴(0,1,2)(0,1,2)ଵଶ  
𝑆𝐴𝑅𝐼𝑀𝐴(1,1,0)(1,1,0)ଵଶ, 𝑆𝐴𝑅𝐼𝑀𝐴(0,1,1)(0,1,1)ଵଶ  
 
Model Estimation 

Determining the least squares estimates of the identified models' parameters is the next step 
after making a rough identification of what seems to be appropriate models for the series. Table 7 
summarizes the estimated ARIMA models along with their statistics to fit the models to the data. 
 

Table 7. Parameter Estimation for ARIMA(p,d,q)(P,D,Q)S Models 
Parameters Estimate Std. Error Z-value Prob. Value 
(1,1,1)(1,1,1)12 𝜕𝟏 0.102895 0.104983 0.9801 0.3270 

℘𝟏 -0.695992 0.072532 -9.5957 <2e-16 *** 
Å𝟏 -0.110394 0.083553 -1.3212 0.1864 
ℚ𝟏 -0.882415 0.077276 -11.4191 <2e-16 *** 

(0,1,2)(0,1,2)12 ℘ -0.579304 0.076445 -7.5780 3.508e-14 *** 
℘ଶ -0.083983 0.076011 -1.1049 0.2692 
ℚ𝟏 -0.999473 0.078387 -12.7506 < 2.2e-16 *** 
ℚଶ 0.122634 0.086617 1.4158 0.1568 

(1,1,0)(1,1,0)12 𝜕𝟏 -0.359280 0.066188 -5.4282 5.693e-08 *** 
Å𝟏 -0.540229 0.058225 -9.2783 < 2.2e-16 *** 

(0,1,1)(0,1,1)12 ℘𝟏 -0.641675 0.056641 -11.3288 < 2.2e-16 *** 
ℚଶ -0.963015 0.159142 -6.0513 1.437e-09 *** 

 
Diagnostic Check 

After determining the model and estimating the parameters, diagnostic checking was carried 
out to see whether the fitted model was adequate. According to Table 8, the 
𝐴𝑅𝐼𝑀𝐴(0,1,1)(0,1,1)ଵଶ model has the smallest Bayesian Information Criterion (BIC) and Akaike 
Information Criterion (AIC) values, at 6832.179 and 6822.284, respectively, out of the four 
estimated ARIMA models. 
Table 8. Model Evaluation for ARIMA(p,d,q)(P,D,Q)S Models  
Model BIC AIC 
(1,1,1)(1,1,1)12 6839.756 6823.264 
(0,1,2)(0,1,2)12 6839.08 6822.589 
(1,1,0)(1,1,0)12 6917.716 6907.821 
(0,1,1)(0,1,1)12 6832.179 6822.284 

 
Table 9. Ljung-Box Test for ARIMA(0,1,1)(0,1,1)12 
Residuals from ARIMA(0,1,1)(0,1,1)12 
Q* = 17.407, df = 22, p-value = 0.7405 
 
Model df: 2.   Total lags used: 24 
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Figures 12, 13, and 14 demonstrate the adequacy of the fitted model by using the ACF and 
PACF residuals from the model to show that nearly all of the coefficients of both the ACF and 

PACF of the residuals are inside the significance bounds of ±
ଶ

√ଶଵଷ
= ±0.1370. Examining the 

goodness of fit test once more, the model fits the data well, as shown by the Ljung-Box test statistic 
of 17.407 and p-value of 0.7405 in Table 9. 

 
Figure 11. Decomposition after Regular and Seasonal Differencing 

 

 
Figure 12. ACF Residuals from ARIMA(0,1,1)(0,1,1)12 Model 
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Figure 13. PACF Residuals from ARIMA(0,1,1)(0,1,1)12 Model 

 

 
Figure 14. Residuals from Fitted ARIMA(0,1,1)(0,1,1)12 Model 
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Figure 15. Fitted Vs Actual Values 

 
Table 10. Forecasting with ARIMA(0,1,1)(0,1,1)12 Model 

S/N Period Forecasts          95% Prediction Interval 
Lower Upper 

214 October 2014 66993366 55666754 78319978 
215 November 2014 64321971 52290163 76353779 
216 December 2014 66957620 54259720 79655521 
217 January 2015 67732676 54406889 81058464 
218 February 2015 61435593 47507020 75364166 
219 March 2015 62569469 48063137 77075802 
220 April 2015 62864796 47802850 77926741 
221 May 2015 64851582 49253802 80449362 
222 June 2015 62964187 46848379 79079995 
223 July 2015 64871982 48254287 81489677 
224 August 2015 66502959 49398097 83607822 
225 September 2015 64730534 47152000 82309068 

 
5. Conclusion                                    

Consequently, the 𝐴𝑅𝐼𝑀𝐴(0,1,1)(0,1,1)ଵଶ  model proved superior to other estimated models 
in the family of nested 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)ௌ models. Hence, it is statistically significant, 
appropriate, and adequate for the dataset. The plot of the fitted model agreed with the actual values, 
which implies that the model is a good fit and therefore suggests that the model could be used in 
forecasting future values of COP, Figure 15. The forecasts obtained using the fitted model revealed 
that there is a greater tendency for decreasing crude oil production in Nigeria (see Table 10). 
Mathematically, the 𝐴𝑅𝐼𝑀𝐴(0,1,1)(0,1,1)ଵଶ model is  
∇∇ଵଶ𝐹௧ = (1 + ℘ଵΩ)(1 + ℚଵଶ,ଵΩଵଶ)𝜛௧  (19) 
So that, 
𝐹௧ = 𝐹௧ିଵ + 𝐹௧ିଵଶ − 𝐹௧ିଵଷ + 𝜛௧ − 0.6417𝜛௧ିଵ − 0.9631𝜛௧ିଶ + 0.6179𝜛௧ିଵଷ  (20) 



Friedman Test Technique for Optimizing          Elisha J. Inyang, Imoh U. Moffat 
a Seasonal Box-Jenkins ARIMA Model Building   and Ettebong P. Clement 

35 
 

 
According to the prediction made using the fitted model in (20), Nigeria is more likely to see a 

decline in its production of crude oil. This can easily be explained by the lawlessness (oil theft) 
and corrupt practices that prevailed in the petroleum sector in Nigeria, coupled with government 
policy inconsistency in the sector. The decreasing rate of crude oil production has a strong effect 
on the Nigerian economy. Therefore, it is recommended that (i) the government regulate and 
supervise the operation of the petroleum sector, as is done in Saudi Arabia, Iraq, the USA, and 
other advanced oil-producing nations. (ii) The government should repair the local refineries and 
increase crude oil delivery to the local refineries to ensure a constant supply of petroleum products 
in the country. (iii) The government should diversify its economy to avoid distress, especially now 
that the crude oil price is dwindling in the international market. 
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Appendix: R Code 

#Required package 
library(forecast) 
library(tseries) 
library(seastests) 
library(lmtest) 
library(ggplot2) 
 
#Data 
getwd() 
setwd("C:/Users/Elisha Inyang/Desktop/UG_Paper") 
Eji<-read.csv("COProd.csv",header = T) 
attach(Eji) 
 
#Time Series Analyis 
E<- ts(Eji, start=c(1997, 1), end=c(2014, 9), frequency=12) 
 
#Time Plot 
plot(E,main="Crude Oil Production") 
acf(E,main="ACF of Crude Oil Production") 
pacf(E,main="PACF of Crude Oil Production") 
 
#Time Series Decomposition 
decompose=decompose(E) 
plot(decompose) 
 
#Unit Root Test at Level 
adf.test(E) 
 
#Seasonality Test 
kw(E, freq = 12, diff = T, residuals = F, autoarima = T) 
fried(E, freq = 12, diff = T, residuals = F, autoarima = T) 
 
#First Differencing 
d1<-diff(E) 
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plot(d1,main="First Regular Difference") 
acf(d1,main="ACF of First Regular Difference") 
pacf(d1,main="PACF of First Regular Difference") 
 
 
#Unit Root Test at First Difference 
adf.test(d1) 
 
#Seasonal Differencing 
Sd2<-diff(d1,12) 
plot(Sd2,main="Seasonal Difference of First Regular Difference") 
acf(Sd2,main="ACF of Seasonal Difference of First Regular Difference") 
pacf(Sd2,main="PACF of Seasonal Difference of First Regular Difference") 
 
 
#Decomposition After Seasonal Differencing 
decompose=decompose(Sd2) 
plot(decompose) 
 
#Seasonality Test After Seasonal Differencing 
kw(Sd2, freq = 12, diff = T, residuals = F, autoarima = T) 
fried(Sd2, freq = 12, diff = T, residuals = F, autoarima = T) 
 
#Model Fitting 
fit1<-arima(E,order = c(1,1,1),seasonal = list(order=c(1,1,1),period=12),include.mean=FALSE) 
coeftest(fit1) 
BIC(fit1) 
AIC(fit1) 
 
fit2<-arima(E,order = c(0,1,2),seasonal = list(order=c(0,1,2),period=12),include.mean=FALSE) 
coeftest(fit2) 
BIC(fit2) 
AIC(fit2) 
 
fit3<-arima(E,order = c(1,1,0),seasonal = list(order=c(1,1,0),period=12),include.mean=FALSE) 
coeftest(fit3) 
BIC(fit3) 
AIC(fit3) 
 
fit4<-arima(E,order = c(0,1,1),seasonal = list(order=c(0,1,1),period=12),include.mean=FALSE) 
coeftest(fit4) 
BIC(fit4) 
AIC(fit4) 
 
# Forecasts with C.I. 
Forecast.model1 <- Arima(window(E,end=c(2014, 9)),order = c(0,1,1), 
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                         seasonal = list(order=c(0,1,1),period=12)) 
forecast(Forecast.model1,h=12) 
 
#Ljung-Box Test 
checkresiduals(fit4) 
 
# Plot the fitted values with actual values 
plot(E,ylab ="Crude Oil Production",xlab = "Time",col = "black",main="Fitted Vs Actual 
values") 
lines(fitted(fit4), lty=2,col = "red") 
legend("bottomright", legend = c("Actual", "Fitted"),col = c("black", "red"), lty =c(1,2)) 
 
 
 


