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ABSTRACT 
The Nigerian pensioners have high expectations from the government to ensure an effective 
implementation of pension regulations existing in the country. These expectations arise from the need 
to have sustainable standard of living in retirement and their benefits paid as at when due. However, the 
government does not know how many retirees will be alive at a particular period of time to draw fund 
from the pension account. This calls for regular verification of pensioners by Pension Transitional 
Arrangements Directorate (PTAD) at national level, office of the accountant general for State level and 
Local Government Pensions Board for Unified Local Government Council. This process exposed 
pensioners to stress related problems and some pensioners even die during such verification exercise. 
Again, it gives rise to varying set of problems that limit the capacity of the stakeholders within Nigeria 
pension industry to meet pensioner’s expectations. Survival rate of these retirees is key important 
statistic to the government for adequate preparation for their terminal benefits and to provide other 
social packages for this vulnerable group of people. However, this statistic is lacking in the State. 
Consequently, this work intends to address this problem by using the theory of Ranked Set Sampling 
(RSS) for Survival analysis to estimate the Survival rate of the retirees which will help the government 
in making adequate budgetary provisions to the Nigeria Pension Industry. Analysis and evaluation are 
presented. 

Keywords: Ranked Set Sampling, Survival Analysis, Kaplan-Meier estimator, Cox proportional Hazard 
model and Hazard ratio. 

1. Introduction 

 The modeling of time to event data is an important topic with many applications in 
diverse areas. The collective of methods to analyze such data are called survival analysis, event 
history analysis or duration analysis (Emmert–Streib and Dehmer, 2019). Survival analysis is 
generally defined as a set of methods for analyzing data where the outcome variable is the time 
until the occurrence of an event of interest. The event can be death which is very common in 
medical field, death after retirement as in the work of Bamia et al. (2008), relapse and 
recurrence (Fields et al. (2011), agitation attack (Lesem et al.,(2011), graduation (Min et al. 
(2011), malfunctioning of device (Richardeau and Pham, 2012) and bankruptcy (Daepp et al. 
(2015) or any designated experience of interest that may happen to an individual. 
 The concept of RSS was developed by McIntyre (1952) to estimate mean pasture yields. 
Takahas1 and Wakimoto (1968) extended the theory of RRS under presumption of perfect 
ranking. Other notable scholars in RSS include: Gaur et al. (2013) considered an RSS approach 
to the multiple sample scale problem.  Chen et al. (2013) extended RSS to Moving Extreme 
Ranked Set Sampling (MERSS) for estimation of scale parameter for scale distribution, Singh 
et al. (2014) proposed an estimator for population mean and ranking of the elements observed 
on the basis of auxiliary variable. Al-Omari and Bouza (2014) used RSS design to assess the 
impact of developmental programme and discussed the procedure of RSS design. Khan and 
Shabbir (2015) suggested a class of Hartley-Ross type unbiased estimator in RSS. 
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 In RSS the population is divided into a simple random sample of size k, each unit is 
rated according to subjective criteria. The smallest unit in the sample is measured and the 
remaining units are eliminated. After ranking each unit according to the same criteria, a second 
simple random sample of size k is chosen from the population and the second smallest unit is 
then measured and the remaining units are discarded. This process is repeated until the ordered 
units are measured.  
 As seen in the work of Zhang (2016), instead of focusing on the time (how long) a 
subject can survive, survival analysis examines the probability of an event given subjects who 
are under observation at that survival time. With this, survival times and survival probability 
can be estimated without bias given that subjects under observation are true representatives. 
For this paper event of interest is survival after retirement. Survival rate for these Retirees is 
key important statistic to the government for adequate preparation for their terminal benefits 
and to provide other social packages for this vulnerable group of people. On the whole, this 
statistic is lacking in the State. Consequently, this work intends to address this problem by 
introducing the theory of Ranked Set Sampling (RSS) for Survival analysis to estimate the 
Survival rate of the retirees which will help the government in making adequate budgeting 
provisions to the Nigeria Pension Industry. 

   

2. Materials and methods 

2.1 Basic Notations and Definitions 
 Let 𝑋ଵ, 𝑋ଶ, 𝑋ଷ, … , 𝑋௡ be a random sample of size 𝑛 from a random variable 𝑋 with 
probability density function 𝐟(𝐱) and finite mean (µ) and variance (𝜎ଶ). Let 𝑋௜(ଵ) be the first 
order statistic from the set (𝑋௜ଵ, 𝑋௜ଶ, … , 𝑋௜௡) which represents the ith random sample of size n. 
For convenience 𝑋௜(ଵ) is also written as 𝑋(௜,௡)to denote the ith order statistic from the ith set of 
𝑛 observations with mean 𝜇(௜,௡). Let 𝑋(௜,௡)௝ denote the ith order statistic from the ith sample of 
size n in the jth cycle (j = 1, 2, … , m).  
          According to Wolfe (2012) set size plays a critical role in the performance of any RSS 
procedure. For a given set size 𝑘, each measured ranked set sample observation utilizes 
additional information obtained from its ranking relative to 𝑘 − 1 other units from the 
population. With perfect rankings this additional information is clearly an increasing function 
of 𝑘 Thus, with perfect rankings, is it good to take set size k to be as small as possible, the 
larger 𝑘 is, the more likely to experience ranking errors.  
 Survival time data are analyzed with the use of special techniques and the underlying 
assumptions taken into account. According to Zwiener et al. (2011) survival times are analyzed 
with the Kaplan-Meier method which yields two measures of interest: survival rates and the 
median survival time. The log-rank test is used to compare survival times across treatment 
groups while Cox regression model is used to test the effect of other independent variables on 
the survival time. 

2.2 Estimation of Population of interest 
 The natural ranked set sample estimator, 𝜇̂ோௌௌ ,for the population mean 𝜇 based on the 
ranked set sample ൫𝑋(ଵ), … , 𝑋(௞)ଵ; 𝑋(ଵ)ଶ, … , 𝑋(௞)ଶ; … ; 𝑋(ଵ)ெ, … , 𝑋(௄)ெ൯ is simply the average of 
the sample observations.  
 The unbiased estimator of the population mean is determined using (Wolfe, 2012) as 
given in Equation (1) 

𝜇̂ோௌௌ  =  𝑋തோௌௌ  = ∑ ∑
௑[೔]ೕ

௞௠

௞
௜ ୀଵ

௠
௝ ୀଵ                                                                                  (1) 
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The balanced RSS estimator 𝜇̂ோௌௌ  in equation (1) is also an unbiased estimator for the 
population mean μ regardless of whether the judgment rankings are perfect or imperfect. For 
simplicity, let consider only the case of a single cycle (𝑚 = 1), so that the total sample size 𝑛 
is equal to the set size 𝑘 . Under the assumption of perfect rankings, the RSS observations can 
be represented for this setting by 𝑋(ଵ)

∗ , . . . , 𝑋(௞)
∗  where the  𝑘 variables are mutually independent 

and  𝑋(௜)
∗ ,    𝑖 = 1,2, … , 𝑘 is distributed like the ith order statistic for a random sample of size 𝑘 

from a continuous distribution with distribution function 𝐹 and density 𝑓 . Thus (1) becomes 

𝜇̂ோௌௌ  =  𝑋തோௌௌ  =
ଵ

୏
∑ 𝑋(௜)

∗௞
௜ୀଵ                                                                                         (2)                                

Taking expectation of (2) gives 

𝐸[𝜇̂ோௌௌ]  = 𝐸[𝑋തோௌௌ]  =   
ଵ

௞
∑  𝐸ൣ𝑋∗

(௜)൧௞
௜ୀଵ  .                                                             (3)  

 𝐸ൣ𝑋∗
(௜)൧ =  ∫ 𝑥

௞

(௜ ିଵ)!(௞ ି௜)!
 [𝐹(𝑥)]௜ ିଵஶ

ିஶ
[1 − 𝐹(𝑥)]௞ ିଵ 𝑓(𝑥)𝑑𝑥                              (4)      

Substituting (4) in (3) gives  

𝐸[𝑋തோௌௌ] =  
1

𝑘
෍{න 𝑘𝑥(௜ ିଵ

௞ ିଵ
ஶ

ିஶ

௞

௜ ୀଵ

)  [𝐹(𝑥)]௜ ିଵ [1 – 𝐹(𝑥)]௞ ିଵ 𝑓(𝑥)𝑑𝑥}         𝑖 = 1,2, … , 𝑘 

𝐸[𝑋തோௌௌ] = ∫ 𝑥𝑓(𝑥){∑ (  )௜ ିଵ
௞ିଵ௞

௜ ୀଵ
ஶ

ିஶ
 [𝐹(𝑥)]௜ ିଵ [1 – 𝐹(𝑥)]௞ ି௜  }𝑑𝑥               

𝐸[𝑋തோௌௌ] = { ∫ 𝑥𝑓(𝑥)[
ஶ

ିஶ
∑ ( )௤

௞ିଵ   [௞
௜ୀଵ  𝐹(𝑥)]௤  [1 – 𝐹(𝑥)]௞ ି௜] }𝑑𝑥           

Since  ∑ ( )௤
௞ିଵ   [௞ିଵ

௤ୀ଴  𝐹(𝑥)]௤ [1 – 𝐹(𝑥)](௞ –௜)ି௤ = 1                                  
and  𝑞 =  𝑖 –  1 
𝐸[𝜇ோௌௌ  ] = 𝐸[𝑋തோௌௌ ] = ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

ି∞
 = µ.                                                                      (5) 

Following from (2) 

𝑉𝑎𝑟[𝑋തோௌௌ ] =
ଵ

௞మ
∑ 𝑉𝑎𝑟(𝑋(௜)

∗௞
௜ୀଵ )                                                                                  (6) 

Let 𝜇(௜)
∗ = 𝐸[𝑋(௜)

∗  ], for 𝑖 = 1, . . . , 𝑘,   then 𝐸ൣ(𝑋(௜)
∗ − µ)ଶ൧ = 𝐸ൣ൫𝑋௜

∗ − 𝜇(௜)
∗ +   𝜇(௜)

∗ − µ൯൧
ଶ
 

𝐸ൣ[𝑋(௜)
∗ − µ]ଶ൧ = 𝑉𝑎𝑟൫𝑋(௜)

∗ ൯ + ൫𝜇(௜)
∗ − µ൯

ଶ
   

𝑉𝑎𝑟൫𝑋(௜)
∗ ൯ = 𝐸ൣ[𝑋(௜)

∗ − µ]ଶ൧ − ൫𝜇(௜)
∗ − µ൯

ଶ
                                                                      (7) 

substituting (7) in (6) gives (8) 

  𝑉𝑎𝑟 [𝑋തோௌௌ] =  
 ଵ

   ௞మ
∑ 𝐸[(𝑋(௜)

∗ − µ)ଶ௞
௜ୀଵ )] −

ଵ

௞మ
∑ (𝜇(௜)

∗ − µ)ଶ௞
௜ୀଵ  .                               (8) 

Similarly, 
∑ 𝐸(X୧

∗ − µ)ଶ௞
௜ୀଵ ) = ∑ ∫ 𝑘(𝑥 − µ)ଶ (௜ିଵ

௞ିଵ∞

ି∞
௞
௜ ୀଵ ) [𝐹(𝑥)]௜ିଵ [1 – 𝐹(𝑥)]௞ି୧𝑓(𝑥)𝑑𝑥    

 ∑ 𝐸(X୧
∗ − µ)ଶ௞

௜ୀଵ ) =  𝑘 ∫ (𝑥 − µ)ଶஶ

ିஶ
𝑓(𝑥){∑ ( )௜ ିଵ

௞ିଵ௞ 
௜ୀଵ   [𝐹(𝑥)]௜ ିଵൣ1 – 𝐹(𝑥)]௞ ି௜ൟ𝑑𝑥        (9)        

∑ 𝐸[(𝑋(௜)
∗ − µ)ଶ௞

௜ୀଵ )] =  𝑘 ∫ (𝑥 − µ)ଶஶ

ିஶ
𝑓(𝑥) = k𝛿ଶ.                                            (10) 

Substituting (10) in (8), it follows that 

𝑉𝑎𝑟 [𝑋തோௌௌ] =  
ଵ

௞మ
{k𝛿ଶ − ∑ (𝜇(௜)

∗ − µ)ଶ௞
௜ୀଵ )} =

ఋమ

௞
−

ଵ

௞మ
                                           (11) 

Thus, both  𝜇̂ௌோௌ 𝑎𝑛𝑑 𝜇ෝ ோௌௌ are unbiased estimator for population mean.  
 Working with a finite population, the formula for determining the sample size is given 
by Saxen (2018) as:  

n =  
୒

(ଵ ା୒ୣమ )
                                                                                                                      (12) 

where n is the corrected sample size, N is the population size, and e is the Margin of error 
(MoE) given by e =  0.05 based on the research condition by Saxen (2018). 
For this studyN =  1,647; hence 

𝑛 =
ଵ଺ସ଻

(ଵ ା ଵ଺ସଽ(଴.଴ହ)మ)
 ≈ 322                                                                                              (13) 



                                                                                    JPSS    Vol. 22 No. 1    September 2024     pp. 1-17 

4 
 

2.3 Procedures for selection of sample size based on RSS design 
 RSS of size n = 320, for the purpose of balanced RSS design, the set size k = 5, m = 
cycles and N = 1,647 The process proceeded by numbering the retirees names from 1 to 1,647 
in the list, with selection of five numbers randomly from four digits random numbers table and 
put it in a set and collect another SRS of five numbers independent of the first set and placed 
in another set till five sets independent of each selection without replacement is completed. The 
smallest number in the first set is considered as the 1st item in RSS. The second smallest in the 
second set is considered as the 2nd item in RSS. The third smallest in the third set is considered 
as the 3rd item in RSS. The fourth smallest in the fourth set is considered as the 4th item in 
RSS and the largest unit is ranked as the 5th item in RSS from the last set and this complete 
the first cycle. The total of 25 SRS set of numbers are needed for complete one cycle in this 
very design. The process is repeated 64 times for complete 64 cycles as shown in the matrix 
below. 

⎣
⎢
⎢
⎢
⎢
⎡

𝑋ଵ[ଵ]𝑋ଵ[ଶ]    ⋯    𝑋ଵ[ହ]

𝑋ଶ[ଵ]𝑋ଶ[ଶ]     ⋯    𝑋ଶ[ହ]

𝑋ଷ[ଵ] 𝑋ଷ[ଶ]       ⋯    𝑋ଷ[ହ]

⋮                     ⋮     ⋯           ⋮ 
𝑋଺ସ[ଵ]𝑋଺ସ[ଶ]       ⋯     𝑋଺ସ[ହ]⎦

⎥
⎥
⎥
⎥
⎤

 

 
 Each row represents the set size and the cycle, each cycle produced ith judgment order 
statistic denoted as  𝑋[௜];  𝑖 =  1, … ,5  ,. This scheme, RSS produced the required Sample size. 
       
2.4 Kaplan –Meier (KM) Estimator 
          The Kaplan–Meier (KM) estimator of a survival function SKM (t) according to Emmert-
Sterib and Dehmer (2019) is defined as: 

𝑆௞௠(𝑡) =  ∏
௡೔ିௗ೔

௡೔
௜:௧೔ழ௧ =  ∏ ቀ1 −

ௗ೔

௡೔
ቁ௜:௧೔ழ௧                                                          (14) 

 Survival data contains two components; survival time and event status. In this study KM 
estimator is developed using RSS design. KM estimator is a non-parametric method. It 
measures the probability that a person survives longer than a specific time, which is 
fundamental in survival analysis. Under RSS design, KM in Equation (14) can be rewritten as 
in Equation (15) 

𝑆መோௌௌ(𝑡)  =  ∏
௡೔ ି ௗ೔

௡೔
௜:௧೔ழ௧ =  ∏ ቀ1 − 

ௗ೔

௡೔
ቁ௜:௧೔ழ௧                                                     (15) 

      The Kaplan–Meier (KM) estimator of a survival function SKM (t) according to Emmert-
Sterib and Dehmer (2019) is defined as: 

𝑆௞௠(𝑡) =  ∏
௡೔ିௗ೔

௡೔
௜:௧೔ழ௧ =  ∏ ቀ1 −

ௗ೔

௡೔
ቁ௜:௧೔ழ௧                                                          (14) 

 Survival data contains two components; survival time and event status. In this study KM 
estimator is developed using RSS design. KM estimator is a non-parametric method. It 
measures the probability that a person survives longer than a specific time, which is 
fundamental in survival analysis. Under RSS design, KM in Equation (14) can be rewritten as 
in Equation (15) 

𝑆መோௌௌ(𝑡)  =  ∏
௡೔ ି ௗ೔

௡೔
௜:௧೔ழ௧ =  ∏ ቀ1 − 

ௗ೔

௡೔
ቁ௜:௧೔ழ௧                                                     (15) 
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This estimator holds for all t >  0 and it depends only on two variables, 𝑛௜and 𝑑௜ Where 𝑆መோௌௌ 
indicates that this estimator is under RSS design, 𝑛௜: number at risk at time 𝑡௜, 𝑑௜: number of 
subjects that do not experience the events of interest at time 𝑡௜. Here, 𝑛௜    corresponds to the 
number of subjects present at time 𝑡௜ generated through 𝑅𝑆𝑆 design. In contract, subjects that 
are censoring are no longer present. This estimator is considering only events 𝑖 that occur 
before time 𝑡, that is,𝑡௜ < 1. Hence, the survival curve SRSS (t) for time 𝑡 under this design 
considers all events that happened before 𝑡. It is important to realize that, for evaluating the 
Kaplan–Meier estimator, only the events occurring at {𝑡௜} are important. That means, between 
two events, 𝑡௜ and 𝑡௜ + 1, the survival curve is constant. 
  
2.5 Cox Proportional Hazard (CPH) Regression Model 
      One of the most popular regression techniques for survival outcomes is Cox Proportional 
hazards regression analysis. According to Sullivan (2016) the Cox proportional hazards 
Regression (CPH) model is defined as in Equation (16) 
 CPH model is used to study the relationship between survival time and covariates in 
the model. It can also be used to obtain an estimator of the effect size; this estimator takes the 
form of the hazard ratio which is reported by Exp (B) and 95 percent confidence interval in 
Table 5. 
 Assessing the Cox Proportional Hazard (CPH) assumption, the most popular graphical 
techniques for evaluating the CPH assumption involve comparing estimated In(– In) survival 
curves over different (combination of) categories of variables being investigated: gender, age, 
rank at retirement, Length of Service before retirement (LOS) and monthly pension.     

 ℎ(𝑡) = ℎ଴(𝑡)𝑒𝑥𝑝൫𝑏ଵ𝑋ଵ + 𝑏ଶ𝑋ଶ + − ⋯ + 𝑏௣𝑋௣൯                                            (16)   

where ℎ(𝑡) is the expected hazard at time 𝑡, ℎ଴(𝑡)) is the baseline hazard and represents the 
hazard when all of the predictors (or independent variables) 𝑋ଵ  ,     𝑋ଶ  , .  .  ., 𝑋௣  are equal to 
zero. Notice that the predicted hazard (that is, ℎ(𝑡)), or the rate of suffering the event of interest 
in the next instant, is the product of the baseline hazard (ℎ଴(𝑡)) and the exponential function 
of the linear combination of the predictors. Thus, the predictors have a multiplicative or 
proportional effect on the predicted hazard (Sullivan, 2016). The hazard function formula for 
the CPH model, by Kleinbaum and Klein (2016) is defined in Equation (17). 
 
ℎ(𝑡, 𝑥) = ℎ଴(𝑡)𝑒𝑥𝑝 ∑ 𝛽௜𝑋௜

௣
௜ୀଵ                                          (17) 

 
where 𝑋௜ = (𝑋ଵ  ,     𝑋ଶ  , .  .  ., 𝑋௣ ) are explanatory variables, can be converted to a 
corresponding survival function formula as shown in Equation (18). 
𝑆መ(𝑡, 𝑥) = S଴(t) 𝑒𝑥𝑝 ∑ 𝛽௜𝑋௜

௣
௜ୀଵ                        (18) 

 
The two quantitative terms considered in any survival analysis, are the survivor function 
denoted by 𝐒(𝐭), and the hazard function denoted by 𝐡(𝐭), (Klein Baum and Klein, 2012). The 
survivor function 𝐒(𝐭),  gives the probability that a person survives longer than some specified 
time t: that is, 𝐒(𝐭), gives the probability that the random variable 𝑻exceeds the specified time 
𝐭, (𝐏(𝐓 > 𝐭)).  The survivor function is fundamental to a survival analysis, because obtaining 
survival probabilities for different values of t provides crucial summary information from 
survival data. The hazard function 𝐡(𝐭),  gives the instantaneous potential per unit time for the 
event to occur, given that the individual has survived up to time 𝑡. 
 



                                                                                    JPSS    Vol. 22 No. 1    September 2024     pp. 1-17 

6 
 

2.6 Assumptions for appropriate use of the CPH model 
     The fundamental assumption in the CPH model is that the hazards are proportional, which 
means that the relative hazard remains constant over time with different predictor or covariate 
levels (Kuitune et al. (2021). Time independence of the covariates 𝑋௜: the effect of risk factors 
measured at the beginning of the study period, or at baseline does not change over time 
(Sullivan, 2016). 

According to Emmert-Sterib and Dehmer (2019) there are two significant methods 
(analytical and graphical) of testing proportional hazard assumption. The underlying idea of 
both methods is comparison of estimated ln[(−ln)survival curves] and comparison of 
observed with predicted survival curves. A log-log survival curve is simply a transformation 
of an estimated survival curve that results from taking the natural log of an estimated survival 
probability twice. 
 
2.6.1 Analytical Method 

Schoenfeld Residual Method is used in testing Cox proportional assumption, a p-value 
greater than 0.05 does not violate the assumption (Wang et al., 2022). 
 
2.6.2 Graphical Methods: 

The two graphical methods assess the CPH assumption perform a comparison for each 
variable one at a time. This means that each covariate is assessed for itself.  
 
2.6.2.1 Graphical Method 1: 

In order to understand the first methods, consider the adjusted Survival curves given by 
Emmert–Sterib and Dehmer (2019) in Equation (19) 
 
   𝑆መ(𝑡, 𝑥) = S଴(t)𝑒𝑥𝑝 ∑ 𝛽௜𝑋௜

௣
௜ୀଵ                                                                            (19)     

                

Taking In (−In) of Equation (19) gives Equation (20)  

In (−In S(t, 𝐗)) = ൫∑ 𝛽௜𝑋௜
௣
௜ୀଵ ൯ +  In (−In S0(t))                                          (20) 

Utilizing this expression evaluating two individuals characterized by the specific covariates 

𝑋ଵ  =  (𝑋ଵଵ, 𝑋ଵଶ, … , 𝑋ଵ௣)                                                 (21) 

𝑋ଶ  =  (𝑋ଶଵ, 𝑋ଶଶ, … , 𝑋ଶ௣)                                                                                               (22)     
Gives 

In (−In S (t, 𝑋ଵ))   −   In (−In S (t, 𝑋ଶ))     =  ∑ 𝛽௜
௣
௜ୀଵ (𝑋ଵ௜ − 𝑋ଶ௜)                               (23) 

From Equation (23), one can deduce that the difference between In(−ln) survival curves for 
two individuals having different covariate values is a constant given by the right hand-side. 
      For assessing the Cox proportional hazard assumption, one performs such a comparison for 
each covariate at a time. In case of categorical covariates, all values will be assessed. For 
continuous covariates, one categorizes them for the comparison. The reason for using Equation 
(23) for each covariate at a time and not for all at once is that performing such a comparison 
covariate-by-covariate is more stringent. From Equation (19), it follows that survival curves 
cannot cross each other if hazards are proportional. Observation of such crosses leads to a clear 
violation of the Cox proportional hazard assumption. This study employs graphical method 1. 
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2.6.2.2 Graphical Method 2:  
 The underlying idea of this approach to compare observed with expected survival 
curves to assess the Cox proportional hazard assumption is the graphical analog of the 
goodness-of-fit (GOF) testing. Here, observed survival curves are obtained from stratified 
estimates of Kaplan -Meier curves. The strata are obtained by the categories of the covariates 
and the expected  
Survival curves are obtained from performing a Cox proportional hazard model with adjusted 
survival curves, as given by Equation (19). 
The comparison is performed as for the In(−ln)survival curves, that is, for each covariate one-
at a time. For this, the observed and expected survival curve for each stratum is plotted in the 
same figure for assessment. If for each category of the covariates the observed and expected 
survival curves are close to each other, the Cox proportional hazard assumption holds. 
 
2.7 Computing the Hazard Ratio 
 

One of the main goals of the Cox PH model is to compare the hazard rates of individuals 
who have different values for the covariates. Hazard Ratio (HR) is defined as the hazard for 
one individual divided by the hazard for a different individual. The two individuals being 
compared can be distinguished by their values for the set of predictors, that is, the 𝐗′s.  
Consider the hazard ratio with p covariates given by Emmert-Sterib and Dehmer (2019) in 
Equation (19) can be rewritten as in Equation (24) 
 
௛(௧,௑)

௛೚(௧)
= 𝑒𝑥𝑝 ∑ 𝛽௜𝑋௜

௣
௜ୀଵ                                                                                      (24) 

𝐻𝑅෢
ோௌௌ  =  

௛෡೔൫௧│௑೔൯

௛෡ೕ൫௧│௑ೕ൯
=

୦෡బ (౪) ୣ୶୮൫β෠౟ଡ଼౟൯

୦෡బ(୲) ୣ୶୮ቀβ෠ഡଡ଼ഡቁ
෣                         (25)                                          

 𝐻𝑅෢
ோௌௌ = 𝑒𝑥𝑝 ቀ𝛽መ൫𝑋௜  − 𝑋௝൯ቁ                      (26) 

where 𝐻𝑅෢
ோௌௌ is the hazard ratio under RSS design, the baseline hazard rate ℎ଴(t) is an 

unspecified non-negative function of time. It is the time-dependent part of the hazard and 
corresponds to the hazard rate when all covariate values are equal to zero.  
Let 𝑿𝒊  =  𝑿𝒋 + 1, in Equation (26) the hazard ratio reduces to  

𝐻𝑅෢
ோௌௌ = 𝑒𝑥𝑝൫𝛽መ൯                                      (27) 

Hence, 
𝛽መ =  log(𝐻𝑅෢

ோௌௌ )                                          (28) 
𝛽መ , is referred as the log hazard ratio under RSS design. Although the hazard rate hx(t) is 
allowed to vary overtime, the hazard ratio is constant; this is the assumption of proportional 
hazards, which relies on the value of the coefficient of the covariates or its effect on the 
outcome variable. 
Additionally, it is necessary to construct a (1−𝛼 ) confidence interval for the hazard ratio as 
in Equation (29) 

𝐻𝑅(1 − 𝛼)% = 𝑒𝑥𝑝 ቀ𝛽መ൫𝑋௜  − 𝑋௝൯ቁ ±  𝑍(ଵି 
ഀ

మ
)S෠𝑒 ቀ𝛽መ൫𝑋௜  − 𝑋௝൯ቁ                 (29) 

where,  

 S෠𝑒 ቀ𝛽መ൫𝑋௜  − 𝑋௝൯ቁ = ට𝑉𝑎𝑟෢
ோௌௌ ቀ𝛽መ൫𝑋௜  − 𝑋௝൯ቁ .                                                (30) 

𝐻଴ ∶ 𝛽௝ = 0                                                                                                       (31) 
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The test statistic 

𝑍ோௌௌ  =  
ఉഥೕି ଴

ௌ௘൫ఉೕ൯
~𝑁(0,1)                                                    (32) 

where 𝛼 Level for this study is 5 percent. 

2.8 Adjusted Survival Curves 
 Survival curves can be obtained adjusted for explanatory variables used as predictors in the 

Cox model; these are called adjusted survival curves and like Kaplan-Meier curve, this are also 
plotted as step function. The hazard formula converted before to survival in Equation (18) can 
be rewritten in Equation (33) as 
𝑆መோௌௌ(𝑡, 𝑥) = (t)𝑒𝑥𝑝 ∑ 𝛽௜𝑋௜

௣
௜ୀଵ                                                           (33) 

The survival function in Equation (33) is the basis for determining adjusted survival curves 
under RSS; the covariates are defined as indicated:          
X1 = Sex coded 1 for male and 2 for female. 
X2 = Age at retirement. 
X3 = Rank at retirement (socioeconomic status) defined as categorical variable are coded into 
four levels: 1 for grade level 1-6, 2 for grade level 7-12, 3 for grade level 13-14 and 4 for grade 
level 15-17. 
X4 = Length of services in years (LOS) 
X5 = Monthly pension coded as:  1 ≤  N20, 000.00, 2 > N 20,000.00  
but ≤25, 000.00, 3 >N25, 000.00 but ≤N50,000.00, 4 >N50, 000.00 but ≤N75, 000.00, 5 
>N75, 000.00 but ≤ N100, 000.00, 6 > N100, 000.00 but ≤N150, 000.00 and 7 >N150, 
000.00.    

3. Data Analysis 

3.1 Application of RSS in Selection of sample Size 
      Table 1 shows the application of RSS procedure in selection of 320 sample size from 
Pension data of Unified Local Government council in Akwa Ibom State used for this study. 
For cycle one, each set consists of 5 independently selected random numbers and 52 formed a 
complete cycle, each cycle produced 5 judgments ranking order statistic as shown in the last 
column.  

 
Table1: Ranked Set Sample of Size 320 with K=5, m = 64 for Pensioners retiring 

              from 2016-2020 
Cycle  SET I SET II SET III SET IV SET V 𝑿[𝟏]               

 

1 313 278 20 (220) 114  13 

 243 166 249 17 95 51 

 309 61 40 229 76 81 

 (13) (51) (81) 165 (222) 220 

 274 4 118 45 190 222 

 

3.2 Result of Fitting Kaplan-Meier Estimator  
Using Kaplan- Meier estimator in Equation (15) to evaluate the survival function from the 

data provides descriptive statistics as shown in Table 2 and the graph of survival function 
using gender as a factor in Figure 1. 
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Table 2: Showing descriptive statistics of survival data 

Sex at Retirement  Total N N of Event Censored 

   Number  Percentage  

Male  185 161 24 13.0 

Female  135 130 5 3.7 

Total  320 291 29 9.1 

 
Figure 1: Showing survival function of retirees of 

Unified Local Government System 

 

3.3 Estimating Survival Rate Using Kaplan-Meier Estimator  

    At any specific time-interval (𝑡௜, 𝑡௜ + 1), the survival probability is calculated as the number 
of subjects surviving (𝑛௜ − 𝑑௜) divided by the number of subjects at risk (𝑛௜) at 𝑡௜. Subject(s) 
censored within the period are not counted in the denominator for that time interval (Tanujit 
et al.  (2020), recall equation (15), Table.3 Shows the summary of estimated survival time for 
male retirees. 
 

Table 3: Estimation of Survival Rate for Male Retirees using 
Kaplan-Meier Estimator 

Event time (t) in 

years   

     col.1 

Subjects at 

retirement “lx”                  

        col. 2 

Died after 

retirement “d
x

” 

     Col.3 

Effective no. exposed to 

risk of dying after 

retirement “R
x
” 

      Col.4 

Proportion of 

dying after 

retirement 

“q
x
” 𝒄𝒐𝒍.𝟑

𝒄𝒐𝒍.𝟒
   

    Col.5 

Proportion 

surviving 

after 

retirement 

“p
x

” (1− 

Col.5) 

   Col.6 

Cumulative 

probabilities 

of surviving 

after 

retirement for 

males Retirees 

“P
x

” Col.7 

1 53 13 40 0.3250 0.6750 0.6750 

2 41 9 32 0.2813 0.7187 0.4851 

3 42 2 40 0.050 0.950 0.4609 

4 21 0 21 0.000 1.000 0.4609 

5 28 0 28 0.000 1.000 0.4609 
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Total probability of survival till that time interval is calculated by multiplying all the 
probabilities of survival at all time intervals preceding that time (Geol et al. (2010), by applying 
law of multiplication of probability to calculate cumulative probability.  
 From Table 3, five years survival rate for male retirees is given as:  P (n)   = 0.4609  . 
 

Table 4: Estimation of Survival Rate for Female Retiree using 
Kaplan-Meier Estimator 

Event time (t) in 

years 

col.1 

Subjects at 

retirement “lx” 

col. 2 

Died after 

retirement “d
x

” 

Col.3 

Effective no. exposed to 

risk of dying after 

retirement “R
x
” 

Col.4 

Proportion of 

dying after 

retirement 

“q
x

” 𝒄𝒐𝒍.𝟑

𝒄𝒐𝒍.𝟒
 

Col.5 

Proportion 

surviving 

after 

retirement 

“p
x

” 

(1−col.5) 

Col.6 

Cumulative 

probabilities 

of surviving 

after 

retirement for 

fe males 

Retirees “P
x
” 

col.7 

1 34 1 33 0.03030 0.9697 0.9697 

2 26 4 22 0.1820 0.8180 0.7932 

3 21 0 21 0.000 1.000 0.7932 

4 30 0 30 0.000 1.000 0.7932 

5 24 0 24 0.000 1.000 0.7932 

 
Similarly, from Table 4, five years survival rate for female retirees is given as P(n) =
0.7932.    
 
3.4 Assessing the Cox Proportional Hazard (CPH) Assumption 
      Assessing the Cox proportional hazard assumption is a central theme in survival analysis. 
Statistically, this probability is provided by the survival function  
       𝑆(𝑡) = 𝑃(𝑇 > 𝑡), where T is a function of time ‘t’ 
The most popular graphical techniques for evaluating the CPH assumption involve comparing 
estimated ln(– In) survival curves over different (combination of) categories of variables being 
investigated as earlier noted in Section 2.5.  
Fitting model for Equation (23) gives the following results, using Cox proportional hazards 
regression procedure. Figure 2 shows the  log (– log) survival curve (LML) at different level 
of monthly pension at retirement. 
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Figure 2: Showing the 𝐥𝐨𝐠 (– 𝐥𝐨𝐠) survival curve at different 
Level of monthly pension at retirement 

 

Figure 3 shows the log (– log)survival curve at different level of rank at retirement. Figure 
4 shows the log (– log) survival curve at different level of gender at retirement. The assessment 
is carried out for each covariate at a time and not for all at once. Performing such a comparison 
covariate-by-covariate is more stringent. Visual inspection of LML plots shows that the 
survival curves do not cross each other which imply that CPH assumption is not violated.  
 
 
 
 
 Figure 3: Showing the 𝐥𝐨𝐠 (– 𝐥𝐨𝐠) survival curve at different levels of 

Ranks at retirement 
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Figure 4: Showing the  𝐥𝐨𝐠 (– 𝐥𝐨𝐠) survival curve at different level of 

Gender at retirement 

 

 
 

Figure 5: Showing the 𝐥𝐨𝐠 (– 𝐥𝐨𝐠) Survival curve by gender and 
Duration of service before retirement 

 

Figure 5 shows another visual assessment of Kaplan – Meier curves, LML plot when event 
time is the time in years spent in service before retirement controlling for sex, again the 

curves do not cross each other, meaning that this covariate LOS is time independent variable. 
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Figure 6: Showing survival distribution of gender by duration of service 

before retirement 

 
 

3.4 Assessing Effect of Explanatory variables on Survival time after retirement 

Table 5: Showing Variables in the Equation 
Covariates B SE Df Exp(B) [𝟏 – 𝐄𝐱𝐩(𝐁)]% 95.0% CI for   Exp(B) 

      Lower Upper 

Gender -0.102 0.132 1 0.903 9.7 0.697 1.171 

Age at retirement 0. 070 0.028 1 1.073 -7.3 1.015 1.134 

Rank at retirement:   3     

Status (1) 0.246 0.563 1 1.279 -28.0 0.259 2.355 

Status (2) 0.006 0.439 1 1.006 -0.6 0.425 2.380 

Status (3) -0.158 0.216 1 0.854 14.62 0.560 1.304 

LOS -0.015 0.011 1 0.985 1.5 0.964 1.007 

Monthly Pensions -0.012 0.107 1 0.988 1.2 0.802 1.218 

 

4. Results and Discussion  

RSS has been satisfactorily used in selection of sample size for this study as seen in Table 
1, without loss of generality, it is assumed that there is perfect ranking that is, within each cycle 
one unit belongs to each rank order statistics and hence m ranked units from each circle are 
included in the measurement. 
    Fitting the model in Equation (15) provides descriptive statistic in Table 2. Out of 320 sample 
size, male and female retirees are 185 and 135 respectively. Out of 291 events, 161 male and 
130 female retirees experienced event of interest respectively. The 29 subjects censored, 24 are 
male while five are female, those that could not survive after retirement. 

From the analysis, 13 males died after first year of retirement, 9 died after two years and 
two died after three years of retirement respectively. Five females died after the first two years 
of retirement as summarizes in Tables 3 and 4 respectively. It can be inferred that any pensioner 
that survived the first three years after retirement has higher probability of surviving longer 
after retirement.  

Survival function can be determined using the Kaplan–Meier curve, survival rates indicate 
the number of patients in whom no event has occurred up to a certain point in time (Zwiener et 
al., (2011). In non-medical field this should be interpreted with care, because in medical field 
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the event of interest is always time to death. In this study survival rates indicate the number of 
pensioners whose event of interest did occurred to a certain point in time. When stating survival 
rates, it is important to also state the point in time to which it corresponds. From Tables 3 and 
4, the overall probability of surviving until at least the end of five years of study; for male 
estimated survival rates is about 0.4609, and for female estimated survival 
rate is about 0.7918. This can be interpreted as follows: five years after retirement, we can 
expect 46 percent male and 79 female pensioners to be alive respectively.        

Again, the assumption of the Cox Proportional Hazard (CPH) was assessed Visual 
inspection of Figures 2, 3, 4, and 5 respectively shows that the LML survival curves do not 
cross each other meaning that assumption of proportional hazard is not violated.  
 

Thus, assessing the effects of five covariates on the survival time, four variables 
demonstrated an effect on overall survival; they are gender, rank at retirement, monthly pension 
and Length of Service (LOS).  

Age-at-retirement is continuous variable, the coefficient of this variable is 0.070, Exp 
(0.070) = 1.073 is hazard ratio and is greater than one, the 95 percent confident interval for the 
hazard ratio is [1 .015, 1.134]. This variable has 1.073 as hazard ratio, therefore there is about 
7.3 percent decreased in survival rate to a one-year increase in age (or the expected hazard is 
1.07 times higher in a person who is one year older than another), holding other predictors 
constant. Age is potential decrease of survive time. Age is not a significant determinant of 
survival time with hazard ratio 1.073 (HR > 1). This study has shown that some pensioners 
died between the ages of 51 to 60 years in the first three years after retirement, so age does not 
improve survival time.  

For gender in Table 5, the estimated coefficient is -0.102 and Exp (−0.102)  =  0.903, 
which is the hazard ratio and is less than one. The 95 percent confidence interval for this hazard 
ratio is [0.697, 1.171]. Sex is categorical variable, male as reference group; this means that 
female’s survival time after retirement is increased by 9.7 percent more as compare to the 
males’ counterpart. Sex is very strong time independent covariate which does not change over 
time.  Mwakala (2013), in her work noted that there is significant difference between male and 
female survival time and concluded that gender does indeed determine the rate of survival after 
retirement in Kenya, in fact that male are about 2.1 times more likely to die compare to their female 
counterparts. This study has demonstrated that sex also influence survival time with hazard ratio less 
than one, female having about 0.79 survival rates and male about 0.46 survival rates, this has 
shown that the result is consistence in the existing result that female tend to live longer than 
their male counterpart. [see Mwakala (2013)]. 

Rank at retirement determine the salary grade level attained at retirement and is coded into 
four categories, grade level 2-6, 7-12, 13-14 and 15-17 respectively, grade level 15-17 served 
as referenced group. Grade level 2-6 with estimated coefficient of 0.246, Exp (0.246) = 1.279, 
this hazard ratio is greater than one, the 95 percent confidence interval is [0.259, 2.355], that is 
to say the pensioners in grade level 2-6 are about 28 percent decreased in survival rate compare 
to those in grade level 15-17. Grade level 7-12 has estimated coefficient 0.006 with hazard 
ratio 1.006, hazard ratio greater than one (HR>1), the 95 percent confidence interval for hazard 
ratio is [0.425, 2.380], this implies that pensioners in grade level 7-12 are about 0.6 percent 
decreased in survival rate after retirement compare to those in grade level 15-17. Again, grade 
level 13-14 has estimated coefficient -0.158, Exp (-0.158) gives the hazard ratio as 0.854 
(HR<1) which is a good prognosis for the outcome variable, the 95 percent confidence interval 
is [0.560, 1.304], that is to say pensioners in grade level 13-14 are about 14.6 percent increase 
in survival rate after retirement to compare to pensioners in grade level 15-17. Rank at 
retirement, some researchers termed it socio-economic status is well-known to be a good 
predictor of mortality (Sullivan, 2016), people in higher socio-economic have lower mortality 
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at any given age and longer average survival than those in lower grade level. This was seen in 
Table 5 as those in grade level 2-6 and 7-12 tend to have higher hazard ratio compare to those 
in grade level 13-14.  

There are disparities in monthly pensions earned by pensioners resulted from different grade 
level, the estimated coefficient of this variable is –0.012, the hazard ratio is 0.988 (HR<1) 
which is a good prognosis for the outcome variable, the 95 percent confidence interval is 
[0.802, 1.218]. Thus, monthly pension increased survival rate by about 1.2 percent. 
Mwakala (2013) mentioned that there was a significant difference in probability of surviving 
among the retirees based on monthly pension received as she relates socio-economic status 
with monthly pension.  In this study, monthly pension is seen to improve survival time. Apart 
from monthly income, other socio-economic variables like occupation of the pensioner after 
retirement, academic attainment while in service and family size should be made available by 
the retirees to be accounted for in subsequent study. 

Length of service before retirement (LOS) has a good prognosis for the outcome variable. 
This covariate has estimated coefficient of –0.015, Exp (- 0.015) gives hazard ratio of 0.985, 
(HR<1) and the 95 percent confidence interval for hazard ratio lies between [0.961, 1.006]. 
This variable is very important to any retiree; pension and gratuity are based on the years spent 
in service before retirement. This variable improves survival time after retirement by about 1.5 
percent. Length of Service (LOS) is years spent in service before retirement, this covariate has 
hazard ratio less than one invariable infer to improve survival time. Possibly, pensioners while 
in the service might have use this time to prepare for their exit from service, knowing that 
retirement is a different phase of life that requires strategic preparation without which is 
difficult to survive in the first three years. Figure 6 shows survival distribution of gender by 
duration of service before retirement adjusted for gender, this distribution revealed that retirees 
spent between 12-35 years before retirement. In addition, terminal benefits depend on years of 
qualifying service (length of service). Though in the work of Ajayi et al. (2014) this covariate, 
duration of service before retirement does not have effect on longevity of retired Academic 
Staff of University; this may depend on the definition of event of interest, presence of other 
covariates in the model and statistical tool used. They used Analysis of Variance (ANOVA) to 
estimate the effect of predictors in the model whereas this study made use of CPH regression 
model which gives a better result than ANOVA. 

5. Conclusion 

In view of the above analysis, it is observed that RSS yields a good representative samples, 
its asymptotic property is seen in the Kaplan-Meier estimate’s step function with jumps at 
event times, the ties in the event time is grouped into set event time. KM estimator under 
RSS design estimated survival rates for male is about 0.46 and female 0.79 in Unified Local 
Government Council of Akwa Ibom State. The Log rank test revealed no significant 
difference between male and female survival function with (p–value > 0.05). 
As seen in the work of Chandra et al. (2018), RSS is cost–effective, time saving and precise 
method of sample selections. It provides a better estimate of the characteristic under study. It 
yields a good representative samples, RSS contains information across the entire population 

Cox Proportional Hazard assumption was not violated, the covariates are all time 
independence variables. This study shows that gender, rank at retirement, Length of Service 
(LOS) and monthly pensions are strong determinants of survival time after retirement.  

With this question what make one pensioner live longer compare to another pensioner, it is 
suggested that study should be done to ascertain causes of early death among pensioners for 
possible interventions by the government.     
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