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ABSTRACT 
The Coefficient of Dependence is introduced as an avenue for aiding student understanding of dependent, 
statistical events. The essential features of this coefficient are studied using different models and explored 
with multiple examples. Conditional probabilities are ultimately understood to be simple transformations 
of marginal probabilities via the Coefficient of Dependence, which is an idea well within the grasp of all 
undergraduate students. For completeness, proofs for the main results are relegated to the appendix for 
those interested.  
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Introduction 

     Student understanding of the whys and wherefores of conditional probability are intrinsically 
grounded in the interplay between the topics of independence and dependence. Our experience is 
that unless the latter two concepts are fully grasped, there is little hope that students truly perceive, 
and can use, the vast power of conditioning in statistical problem-solving.  
     Revisiting foundational concepts in the study of probability and statistics can occasionally 
inspire greater insights for teaching and learning. Initially, we open fresh eyes to the concept of 
independence with the goal of exploring new avenues for teaching this essential topic. Then, we 
delve into some surprising linkages with the general concept of conditioning. 
 
1. The Coefficient of Dependence 

First, consider the standard definition of independence found in many common texts. 
 
Standard Definition: Let S be the sample space of a random experiment having probability 
function P defined for all events associated with S. Events A and B are said to be 
(probabilistically) independent when and only when 
 

                                                         ( ) ( ) ( ).P A B P A P B                                            (1) 
 

Note that ( ) 0P A   or ( ) 0P B  implies ( ) 0,P A B  inasmuch as A B  is a subset of 

both events A and .B   Moreover, if ( ) 0,P A B  then equation (1) prevails if and only if 

( ) 0P A   or ( ) 0,P B   These are the simplest cases for independence. 
 
Returning to equation (1) as an exemplar, there are three pertinent probability statements 
regarding the relationship among the probabilities shown that can, and do, emerge in practice.  
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These are: ( ) ( ) ( )P A B P A P B  or ( ) ( ) ( )P A B P A P B  , or

( ) ( ) ( )P A B P A P B  . Let’s study these three cases more closely with an eye toward 
enhancing teaching effectiveness.                               
 
Example 1.1: Starting simply, consider the following three probability models associated with an 
unbalanced (biased) tetrahedra die to be tossed once with its downward face recorded,  
  

 

 

 

Consider events {1,2}A   and {1,3},B   so that {1}.A B   

 

For Model I: ( ) 0.50,P A  ( ) 0.50,  and ( ) = 0.40,P B P A B  so that 

( ) .25   ( ) ( ),P A B P A P B      0.40 0.50 0.50  
showing that events A and B are not independent (= dependent). 
 

For Model II: ( ) 0.50,P A  ( ) 0.50,  and ( ) = 0.10,P B P A B  so that 

( ) 0 25   ( ) ( ),P A B P A P B     0.10 0.50 0.50   
showing that events A and B are not independent, or dependent. 
 

And, for Model III: ( ) 0.40,P A  ( ) 0.40,  and ( ) = 0.16,P B P A B   

( )   ( ) ( ),P A B P A P B     0.16 0.40 0.40  
showing that events A and B are independent.                                                                                █ 
 
Notice that for Model III, events A and B have a non-null intersection, {1},A B   and yet 

those two events are still independent, exemplifying the well-known fact that non-null 
independent events must overlap. So, the independence property does not imply disjointedness, 
which is a common student misconception. More importantly, Models I and II reveal different 
types (> vs. < ) of dependence. This motivates the following definition which is the cornerstone 
of all that follows. 
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Definition 1.1: Let S be the sample space of a random experiment having probability function P 
defined for all events associated with S. Let A and B be any two non-null 
( ( ) 0 and ( ) 0)P A P B   events. The coefficient of dependence, written D(A,B), is defined by 
 

                                                     
( )

( , ) .
( ) ( )

P A B
A B

P A P B





D                                                    (2) 

Events A and B are said to be independent when and only when D(A,B) = 1. Otherwise, A and B 
are said to be super-dependent when D(A,B) > 1 or sub-dependent when D(A,B) < 1. 
 
Observe that the coefficient of dependence is a symmetric function of its two arguments in the 
sense 

                               
( ) ( )

( , ) ( , ),
( ) ( ) ( ) ( )

P B A P A B
B A A B

P B P A P A P B

 
  

 
D D                        (3) 

 

Additionally, ( , )A BD is the ratio of  ( ) to ( ) ( ) ,P A B P A P B  which is immediately seen to 

be a nonnegative, real number, whenever A and B are both non-null events. 
The reason for studying the coefficient of dependence will be seen in the next section, which 
considers dependent events and their relationship to conditional probability statements. For now, 
simply note that events A and B are super-dependent ( ( , )A B D 1.60) for Model I, while sub-

dependent ( ( , ) 0.40A B D ) for Model II, and yet independent ( ( , ) 1.00A B D ) for Model 
III.  
 

2. Connections with Conditional Probability 

The topic of conditional probability is a fundamental concept in the study of probability and 
statistics, and many modern discussions of it begin with the following definition. 
 
Definition 2.1: Let S be the sample space of a random experiment having probability function P 
defined for all events associated with S. Let A and B be any two events. The conditional 
probability of event A given that event B has already occurred, written P(A | B), is defined by 
 

                                                          
( )

( | ) ,     
( )

P A B
P A B

P B


                                           (4)                                                    

provided B is a non-null event. 
 
A close connection between the coefficient of dependence and conditional probability can now 
be established. That is, 

( ) ( ) ( ) ( )
( | ) =  =  ( ) ( , ) ( )

( ) ( ) ( ) ( ) ( )

P A B P A P A B P A B
P A B P A A B P A

P B P A P B P A P B

       
        

     
D        

                                                                                                                                                 (5a) 
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( ) ( ) ( ) ( )
( | ) =  =  ( ) ( , ) ( ),

( ) ( ) ( ) ( ) ( )

P B A P B A P B P A B
P B A P B A B P B

P A P A P B P A P B

       
       

     
D          

                                                                                                                                              (5b)  
 
when A and B are non-null events. Equations (5a) and (5b) reveal precisely how the marginal 
(unconditional) probabilities ( )P A and ( ),P B  are transformed into the conditional probabilities

( | )P A B  and ( | )P B A when additional information is provided. In fact, the transformation is 

exclusively quantified by the coefficient of dependence factor ( , )A BD  in both cases. That is,  

                                                                                        (6)  
                                                                                                                                   
So, the conditional probabilities on the left-hand sides of equations (5) are both transformed 
(magnified or diminished, or unaltered) from their corresponding marginal probabilities by the 
same factor, the coefficient of dependence.  
 
It is critically important here to keep in mind that equations (6) are not intended to be 
computationally simpler than defining equation (4), for they are not. Rather, equations (6)  
give the necessary insight into the transformative nature of conditional probability in a functional 
format quite familiar to students. Indeed, the acquisition of deeper student insight far 
overshadows any loss of computational simplicity, as the next example illustrates.   
 
Example 2.1: (Written in the format of a classroom exercise) 
The Information Technology (IT) department for a large, multinational corporation maintains 
two classifications, A and B, for its one hundred systems engineers. There are thirty A-classified 
systems engineers, and the remainder are B-classified. Sixty percent of the A-classified systems 
engineers are women, while twenty percent of the B-classified systems engineers are women.  
 
(a) Write a cross-classification table using the given information. 

  A-classified B-classified Row Total 

Woman 18 14 32 

Man 12 56 68 

Column Total 30 70 100 

   Grand Total 
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Consider the following events for selecting a systems engineer: 
 
A = event that a selected person is A-classified.     B = event that a selected person is B-classified. 
M = event that a selected person is a man.             W = event that a selected person is a woman. 
 
(b) Suppose a systems engineer from the IT department of the company is randomly selected, 

find the probability that person is a woman. 
 
                       ( ) 0.32,P W   computed directly using the first-row total in the table. 
  
(c) Suppose a system engineer from the IT department of the company is randomly selected, find  
      the probability that person is A-classified. 
 
                      ( ) 0.30,P A   computed directly using the first-column total in the table. 
 
(d) Suppose a system engineer from the IT department of the company is randomly selected, find   
      the probability that person is an A-classified women. 
 
               ( ) 0.18,P W A   computed using the first-row, first-column cell of the table. 
 
(e) Find the coefficient of dependence factor, ( , )W AD . 
 

              Using (b), (c) and (d) above, 
 

( ) 0.18
( , ) .

( ) ( ) 0.32 0.30

P W A
W A

P W P A


  

 
D 1.875  

 
(f) Find the conditional probability a randomly selected person is a woman, given they are  
      A-classified. 
 
                ( | ) ( , ) ( ,32 60%) %P W A W A P W    D 1.875  computed using equations (5).                                        
 
Events W and A are super-dependent since P(W) = 32% almost doubles to P(W| A) = 60% with 
the given information. Indeed, it is the coefficient of dependence factor, 1.875, that provides the 
precise, transformational effect that the conditional information conveys beyond the marginal 
probability to the conditional probability. That is, the coefficient of dependence “mathematizes”, 
using a single number, the given information to produce a conditional probability carrying that 
information from the marginal probability. In particular, the percent increase in P(W| A) = 60% 
relative to P(W) = 32% is usually computed as 
  

( | ) ( ) 60% 32% 28% 7
100% 100% 100% 100% ,  

( ) 32% 32% 8

which is precisely (1.875 1)% ( , ) 1) 100%.

P W A P W

P W

W A

                     
      

    

87.5%

D
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So, P(W| A) = 60% is an 87.5% increase over P(W) = 32% in the presence of the given  
A-classification status of the selected systems engineer. 
 
(g) Find the conditional probability a randomly selected person is A-classified, given they are a  
      women.  
 

( | ) ( , ) ( ) ( , ) ,( 30% 56.2) 5%P A W A W P A W A P A      D D 1.875  
 
       which we already know must be the same 87.5% increase over P(A) = 30% (Check!) 
 
(h) Suppose a systems engineer from the IT department is randomly selected, find the    
      probability that person is a man. 
 

( ) 0.68,P M   computed directly from the second-row total in the table. 
 
(i)  Suppose a systems engineer from the IT department is randomly selected, find the    
      probability that person is an A-classified man. 
 
          ( ) 0.12,P M A   computed directly from the second-row, first-column cell of the table. 
 
(k) Find the coefficient of dependence factor, ( , )M AD  
 
         Using (c), (h) and (i) above,  
 

 
( ) 0.12 1,200

( , ) .
( ) ( ) 0.68 0.30 2,040

P M A
M A

P M P A


    

 
10

D 0.5882
17

 

 
(l) Find the conditional probability a randomly selected person is a man, given they are  
      A-classified. 
 

( | ) 1 ( | ) 1 60% 40% or, if  one chooses to use (f) above,

( | ) ( , ) ( ) .68% 40%

P M A P W A

P M A M A P M

    

      
 

10
D

17

 

 
Events M and A are sub-dependent. Notice that P(M) = 68% almost halves to P(M | A) = 40% in 
the presence of the given information. Again, it is the coefficient of dependence factor, 0.5882 
(=10/17) that provides the precise transformational effect that the conditional information 
conveys beyond the marginal probability.  
 
The percent decrease in P(M| A) = 40% relative to P(M) = 68% is computed as 
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 
   

( | ) ( ) 40% 68% 28% 10100% 100% 100% 1 100% 17( ) 68% 68%

7= 100% % ( , ) 1 100%.17

P M A P M

P M

M A

                  
    

    -41.176 D

 

 
(m) Find the conditional probability a randomly selected person is A-classified, given they are a  
      man.  

              ( | ) ( , ) ( ) ( , ) ( ) ,% 173 470 .6 %P A M A M P A M A P A     10D D 17   

      which we already know must be the same 41.176% decrease relative to P(A) = 30% seen 
      in bullet item (l) above.                                         
                                                                                                                                                         █  
 
A consequence of bullet items (f) and (l) is the following proposition.  
 
Proposition 2.1: Let S be the sample space of a random experiment having probability function P 
defined for all events associated with S. Let A and B be any two non-null events. Then, the 
percent change in ( | )P A B relative to ( )P A is computed as 
 

 %   ( | )   ( ) ( , ) 1 100%,change in P A B relative to P A A B  D
 

where D(A,B) is the coefficient of dependence between events A and B. If this computation 
results in a positive value, then it is regarded as a percent increase, while if negative, then it is 
deemed a percent decrease. 
 
 
Proof: 

 

( | ) ( ) ( | )
%  100% 1 100%

( ) ( )

( | ) ( )
1 100%

( ) ( )

( )
                 1 100%

( ) ( )

( , ) 1 100%.                                   

P A B P A P A B
change

P A P A

P A B P B

P A P B

P A B

P A P B

A B

   
       
   
 

    
 

    
  D

 

                                                                                                                                                         █ 
 
The next theorem collects some results, whose proofs appear in the Appendix for interested 
readers. More advanced students can be challenged to demonstrate these claims. 
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Theorem 2.1: Let A and B be any two non-null events and let cA denote the complement of A. 
Then, if D(A, B) denotes the coefficient of dependence between A and B, then 
 

a) D(A,B) = 0 if and only if ( ) 0.P A B     
b) If A and B are disjoint events ( )A B  , then D(A,B) = 0. 

c) ( , ) 1 if and only if ( , ) 1.cA B A B D D  

d) ( , ) 1 if and only if ( , ) 1.cA B A B D D  

e) ( , ) 1 if and only if ( , ) 1.cA B A B D D   

f) 
 

1 ( , ) ( )
( , ) ( , ).

1 ( )
c cA B P A

A B B A
P A

 
 


D

D D  

g) 
1

( , ) 1.
( )

A A
P A

 D  

Proof: See Appendix.                                                   █  
                                                                             
 
Corollary 2.1: Let A and B be any two non-null events and let D(A, B) denote the coefficient of 
dependence between A and B, then 
 

a) ( , ) 1   ( | )  >  ( )   ( | )  ( ).A B P A B P A P B A P B D if and only if  if  and only if   
b) ( , ) 1   ( | )  ( )  ( | )  ( ).A B P A B P A P B A P B  D if and only if  if  and only if    
c) ( , ) 1   ( | )  ( )   ( | )  ( ).A B P A B P A P B A P B  D if  and only if  if  and only if   

 
The proof for Corollary 2.1 is similar to those given for the proof of Theorem 2.1, which appears 
in the Appendix                         █ 
 
 
 
The converse of Theorem 2.1(b) does not hold. That is, D(A,B) = 0 does not guarantee that A 
and B are disjoint events, as the next example demonstrates. 
 
 
Example 2.2: (Uniform distribution). The experiment here is to choose a number “at random” 

from the unit interval [0,1]. Suppose  1: 0 2x xA    and  1: 1 ,2x xB     then

 1 .2xA B   Moreover, 
0.5 0

( ) 0.5,
1.0 0

P A


 


 
1.0 0.5

( ) 0.5,
1.0 0

P B


 


and

1 1 0.5 0.5
( ) 0.

2 2 1.0 0
P A B P x

         
 

So, 
( ) 0

( , ) 0,
( ) ( ) 0.5 0.5

P A B
A B

P A P B


  

 
D  even though events A and B are not disjoint.       █ 
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The next example nuances the conclusion of Theorem 2.1(g) to two different non-null events A 
and B by showing that the range of D(A,B) is actually  : 0 .d d    

 
Example 2.3: (Exponential distribution). The random experiment here comes from the unit 
exponential distribution which has distribution function 
 

( ) ( ) 1 exp( ) when 0.P X x F x x x       
 
Choose any positive value, say w. Let  : 1A x x w    and  :B x x w  . Then,  

     : 1 : : 1 ,A B x x w x x w x x w         so that 

 
          
          

 

: 1 1 : 1 1 ( 1) 1 1 exp ( 1) exp ( 1)

: 1 : 1 ( ) 1 1 exp ) exp

exp ( 1) .

( )

( )

( )

F w w

F w w

w

P A P x x w P x x w w

P B P x x w P x x w w

P A B

                

           

 




 

 

 
Now, letting w shows 

   
( ) exp( ( 1)) 1

( , ) exp( ) ,  
( ) ( ) exp( ( 1)) exp( ) exp( )

P A B w
A B w

P A P B w w w

  
    

     
D  

demonstrating the range of ( , )A BD to be the set of non-negative, real numbers; 

.0 ( , )A B  D                                                                                                                █ 

 
Theorem 2.2 provides a consistency check on calculations involving the coefficient of 
dependence, and its proof is provided in the Appendix as well. 
 
Theorem 2.2: Let A be a non-null event and suppose  1 2, ,......, nB B B is a finite partition 

(pairwise mutually exclusive events with 1 2 ......  )nB B B    S  of a sample space. Then, 

 

1 1 2 2

1

1 ( , ) ( ) ( , ) ( ) .......... ( , ) ( )

= ( , ) ( ) ( ).

n n
n

i i
i

A B P B A B P B A B P B

A B P A P B


      

 

D D D

D
 

                                                                                                                                               █ 
Example 2.4: Revisit Example 2.1 wherein  

15 10
( , ) , ( , ) , ( ) 0.32,  ( ) 0.68.

8 17
and A W A M P W P M   D D  

Then, a quick consistency check is 
 

15 10
( , ) ( ) ( , ) ( ) 0.32 + 0.68 1.00.

8 17
A W P W A M P M

            
   

D D  
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3. Conclusions 
  
The coefficient of dependence is introduced and studied here as a means of helping students truly 
understand the elusive topics of independence versus dependence. Additionally, several illustrative 
examples are given to help instructors in their quest to both broaden and strengthen student 
understanding of conditional probability via the coefficient of dependence. We have long held the 
belief that the best explanation for any concept is the simplest one that gives the essential insight, 
and the coefficient of dependence is precisely the transformation to teach for connecting marginal 
and conditional probabilities.  
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APPENDIX 
Proof for Theorem 2.1: 
 

a) 
( )

( , ) 0 0 ( ) 0.
( ) ( )

P A B
A B P A B

P A P B


     


D   

 

b) 
( ) ( ) 0

( , ) 0.
( ) ( ) ( ) ( ) ( ) ( )

P A B P
A B A B

P A P B P A P B P A P B

 
      

  
D  

 

c) 

( ) ( )
( , ) 1 >1  > ( ) ( | )> ( ) 1 ( | ) 1 ( )

( ) ( ) ( )

( ) ( )
( | ) ( ) ( ) 1 ( , ) 1.

( ) ( ) ( )

c c
c c c c

c

P A B P A B
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Proof for Theorem 2.2: 
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