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ABSTRACT 
The purpose of this paper is to estimate the population size of known total, using a sample that 
chosen using ranked set sampling technique and some of its variations; in particular, Ranked 
Set Sampling (RSS), Moving Extreme Ranked Set Sampling (MERSS) and Median Ranked 
Set(MRSS) are considered. The estimators obtained are compared with their counterparts using 
simple random sampling(SRS). It turned out that the estimators using RSS and its variations 
are more efficient than the corresponding estimators using SRS.  
 
Keywords: Population size, Simple random sampling; Ranked set sampling; Moving extreme 
ranked set sampling; Median ranked set sampling. 

1. Introduction 

     Statistics is the science that deals with the understanding of the population 
characteristics based on a proper portion of it. More precisely, statistics is the science 
of collecting information from a suitable portion of the population of interest (a 
representative sample), properly organizing and summarizing the collected 
information, making inferences about the population, and providing the accuracy of 
these inferences. 
       One main branch of inferential statistics is the estimation of some of the population 

parameters such as the mean(  ), variance(
2 ), total ( ) proportion( p ), etc.  The 

size of the population (N) is usually known, but sometimes, it is unknown and need to 
be estimated. For examples, the size of “Fish population” in a sea “Beggars population” 
in a city, “the total number of Oranges” in a truckload of oranges, etc. Most of the time, 
it is very hard to count the number of elements in mobile populations and in a 
population which consists of very similar elements that are hard to distinguish among 
them (Fish, Camels, etc.). We should thank ALLAH for being of different voices and 
shapes: 
 قال تعالى: "وَمِنْ آياَتِهِ خَلْقُ السَّمَاوَاتِ وَالأْرَْضِ وَاخْتِلاَفُ ألَْسِنَتكُِمْ وَألَْوَانِكُمْ   "ۚ◌  

Allah said in the Holly Quran: 

   "One of Allah Verses is the creation of the Heavens & the Earth and the difference 
of our Tongues & Colors” 

      There are several techniques for the estimation of the population size and population 
total.  In this work, the goal is the estimation of N for a population of known total  
based on a random sample obtained using ranked set sampling technique or some of its 
variations.  
      The next section contains a short description of the main sampling techniques and 
a popular method of the estimation of N and  . The literature review of this topic and 
a summary of the proposed work is the content of Section 3. The previous work related 
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to these topics is given in section 3, the estimation of  N using SRS and RSS is 
considered in section 4, the use of MERSS to estimate N is the content of section 5, 
MRSS is considered section 6. The suggested estimators are compared to the 
corresponding estimators using SRS. Concluding remarks are given in section 7. 
2. Sampling Techniques and Methods of Estimation of the Population 
Size and Total 

   The accuracy of the inference depends mainly on the sample size and the sampling 
technique used to choose the sample. The main sampling techniques are Simple, 
Stratified, Cluster and Systematic random sampling. A sample of size n  from a 
population of size N  is called a simple random sample(SRS) if it is chosen so that all 
possible samples of size n have equal chances of being chosen; i.e. the probability for 

any sample of size n  to be the chosen sample is 1 ( )N
n . As a consequence of this 

definition, the probability that any element of the population will be in the chosen SRS 

(Inclusion Probability) is:    1
1 /N N

n n
n

N

  . 

      In Stratified Random Sampling technique, the population is partitioned 
(stratified) into L groups called “strata”. The division is appropriate if the elements of 
the groups are similar within (measured by variance) and different among (measured 
by coefficient of variation). A stratified sample consists of L  random samples, one 
from each stratum. 
      For Cluster Random Sampling technique, the population consists of N  groups 
called “clusters”. A cluster sample is a random sample of n  clusters. For cluster 
sampling to be effective, the elements of the clusters should be different within and 
similar among.  
     To obtain a random sample using the above techniques, a frame of the population 
should be available (a list of all elements of the population). It happens in practice that 
the frame is not available before taking the sample. To obtain a systematic random 
sample, we choose one element at random from the first k  elements and include in the 

sample every thk element thereafter. The obtained sample is called 1 in k 
systematic sample.  
      For more details about the above 4 sampling techniques, see [23] & [16]. 
Ranked Set Sampling(RSS) is a newer sampling method. It was suggested by [18] for 
estimating the pasture yields. A ranked set sample can be obtained using the following 
steps:  

Step (1): Choose a random sample of size m  from the population.  
Step (2): Order by judgment the elements of the chosen random sample with 
respect to the variable of interest and choose the element with minimum value for 
actual measurement, i.e., ( )1:mX .  

Step (3): Repeat steps (1) & (2), but choose the second minimum, (2 ):mX for actual 

measurement. 
Step (4): The above process continues until obtaining the maximum ( ):m mX for 

actual measurement. 
Step (5): Steps (1-4) may be repeated r times if needed, to obtain a sample of size 
n rm .  
To avoid ranking error, m (set size) should be small; the size of the sample can be 
increased by increasing r  not m . The elements of RSS can be denoted by: 
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( : ) : 1,2,..., , 1,2,...j
i mX i m j r  , ( : )

j
i mX  is the thi  order statistic of the thi  

random sample of size m at the 
thj  cycle, assuming that judgment ranking is the 

same as actual ranking (no error in ranking),  Clearly a SRS consists of m  
dependent order statistics, while a RSS of size m ( For one cycle) consists of m  
independent order statistics. 

     There are many variations of RSS. Double RSS (DRSS) is a variation of RSS 
introduced by [10]. It is simply a RSS obtained based on m  RSSs. Multistage RSS 
(MSRSS), introduced by [11], is generalization of DRSS. If the number of stages in 
MSRSS goes to infinity, then the sample is called a Steady-State Ranked Set Sampling 
(SSRSS). It was shown by [6] that Steady-State Ranked Set Sampling is very similar 
to Stratified random sampling.  Median ranked set sampling(MRSS) was introduced by 
[19]. 
       Moving Extreme RSS (MERSS) was first introduced by [4] and coined MERSS by 
[8]. It was described as follows:  
        Step (1): Select m  random samples of size 1, 2,…, m .  
        Step (2): Order the elements by judgment, without actual measurement of the      
                        variable of interest.  
        Step (3): Measure accurately the judgment maximum ordered observation from     
                        the first set (1:1)X , the judgment maximum ordered observation from the       

                        second set (2:2)X . The process continues in this way until the judgment  

                        maximum ordered observation from the last 
thm  sample is measured,    

                        ( : )m mX .  

        Step (4): Steps (1-3) may be repeated if necessary on m samples of size 1,2,…, m           
                        , respectively, but the judgment minimum ordered observation is      
                        measured instead of the judgment maximum. 
Methods of Estimation of the Population Size and Total 
The well-known techniques of estimating the size and the population total are outlined 
below:  
 (1) Ratio Estimation  
       Ratio estimation is a technique used to estimate   for the variable of interest using 

an auxiliary variable. Let y  be the mean of the variable of interest, which can be 

estimated by the sample average, Y .  Let y  be the population total, which is yN . It 

can be estimated by YN  if N  is known. If N  is unknown and x  (assumed known), 

is the total of the values of the auxiliary variable X  then the population ratio ( R ) is : 

x

y

x

y

x

y

N

N
R










 . Thus, y
y x

x


 


 . 

If       1 1 2 2, , , , , ,  n nX Y X Y X Y  is a SRS, then  

ˆˆ &y x
Y Y

R r
X X

    . 

For more details, see [22] and [1].   
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(2) Capture-Recapture Method:  
 This method was used for the first time to estimate the size of French population by 
Laplace in 1786 and it was designed by Lincolon-Petersen in 1894; see [24]. There are 
two types of Capture-Recapture Technique: Capture-Recapture Technique Using 
Direct Sampling Capture-Recapture Technique Using Inverse Sampling. This method 
using RSS will be considered in a future work. 
 
3.  Literature Review 
Estimation of Population Size and Total 
     [13] considered the estimation of the size of a closed population when capture 
probabilities vary among animals. [22] applied the capture recapture method to estimate 
the death and injury rates due to road traffic accidents in Karachi, Pakistan. [20] 
considered the estimation of the size of a closed population using stratified sampling. 
[2] considered the estimation of the population total when the population size is 
unknown. [25] estimated the number of people eligible for health service. [12] 
considered the estimation of the number of drug users in Bangkok using capture 
recapture method. [15] used capture-recapture method to estimate the size of the eastern 
Canada -West Greenland Bowhead “Whale population”. [3] considered the estimation 
of the Population Total-Utilizing Estimators of the Population size. [17] investigated 

ratio-type estimators of the population mean y of the study variable Y, involving 

either the first or the third quartile of the auxiliary variable X, using RSS and ERSS 
methods. 

Ranked Set Sampling and Some of its Variations   
      [18] presented the first paper on RSS where he estimated the average yield of 
pastures. [26] established the theory of RSS. An annotated bibliography of literature on 
RSS until 1995 was provided by [14]. 
[8] introduced the double RSS procedure (DRSS) for estimating the population mean. 
[4] introduced the moving extreme ranked set sampling (MERSS). [11] introduced the 
multistage ranked set sampling (MSRSS) as a generalization of the double RSS. [8] 
investigated MERSS and used it to estimate the mean of the exponential distribution. 
[9] estimated the location parameter of symmetric distribution using MERSS.  For more 
details about RSS and its variation, see [5]. [7] studied the accuracy of ranking in 
moving extreme ranked set sampling. 
 
4. Estimation of the Population Size Using Ranked Set Sampling 
Technique  
      In this section, we will consider the estimation of the population size, N , using 
ranked set sampling technique. The suggested estimators will be compared to their 
counter parts using simple random sampling technique.  
Estimation the Population Size Using SRS   
      We want to estimate the population size N  assuming that the population total of 
the variable of interest, ,X is known. For example, we can easily find the total weight 

of oranges in a truckload, but it is not easy to count the number of oranges. For 
completeness, we first review the procedure of estimation using the main sampling 
technique, SRS. Now,  
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X N   .XN



 Thus, to estimate N  we need a suitable estimator of  
1


.        

       If   𝑋ଵ, 𝑋ଶ, . . , 𝑋௠ is a SRS from the population of interest, then the usual estimator 
of µ is the average of the sample, 𝑋ത. Since, 𝜏௑ is known, a suggested estimator of 𝑁 is 

1

1

X
SRS

SRS

N
X



 . 

1

1

1
,SRS X

SRS

E N E
X


           

 2
1

1

1
var .SRS X

SRS

Var N
X


           

 

        The mean squared error (MSE) of this estimator is: 
2

2
1

1 1

1 1
var .SRS X X

SRS SRS

MSE N E N
X X

 
                      

 

        Note that if 𝑋 ഥ is always positive, then since  1x  a convex function, by Jessen’s 

Inequality we have 

1

1

1 1
.SRS X X

SRS

E N E N
X

 


                  
Thus, 1SRSN



is a positively biased 

estimator of N . While, if 𝑋 ഥ is always negative, 1 ,SRSE N N
   

 
 it is negatively 

biased.  
Estimation the Population Size Using RSS  

     Let    1: :,...,m m mX X be a RSS of size 𝑚. Let  1 :
1

/
m

RSS i m
i

X X m


   it is an unbiased 

estimator of µ (i.e.  1RSSE X  ). Thus, a suitable RSS estimator for the population 

size is 

1
1

X
RSS

RSS

N
X



 . 

2

2
1

1 1

1 1
varRSS X X

RSS RSS

MSE N E N
X X

 
                     

. 

     The efficiency of 1RSSN


w.r.t. 1SRSN


 is  

   1 11 1; /SRS RSSRSS SRSEff N N MSE X MSE X
    

 
. 

     It is not possible to find the MSE theoretically, so we find it based on simulation 
from some well-known distributions: Gamma, Beta and Uniform. Tables (4.1), (4.2) & 

(4.3) contain the Bias, MSE, of each of the two estimators and the efficiency of 1RSSN


 

w.r.t. 1SRSN


for different values of  N and 𝑚.  

Table (4.1): Bias, MSE of 1RSSN


 & 1SRSN


& Efficiency for Gamma (2,1)  

N m  1
ˆ

SRSBias N  1
ˆ

SRSMSE N  1
ˆ

RSSBias N  1
ˆ

RSSMSE N  1 1
ˆ ˆ,RSS SRSEff N N

10000 2 3159 96655381 2024 40917200 2.362 

3 2039 39322421 984 13942660 2.820 
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4 1349 22833941 616 7519040 3.037 

5 1167 17210250 420 4683529 3.675 

5000 2 1686 25168221 1036 10852461 2.319 

3 1005 10644658 514 3581116 2.972 

4 732 6213451 298 1936500 3.208 

5 558 41520518 192 1152250 3.603 

1000 2 336 956256.2 200 388807 2.459 

3 190 398662.42 96 135999 2.931 

4 133 221738.12 61 74016 2.995 

5 107 158533.85 39 44354 3.574 

Table (4.2): Bias, MSE of 1RSSN


 & 1SRSN


& Efficiency for Beta (4,3)  

N m  1
ˆ

SRSBias N  1
ˆ

SRSMSE N  1
ˆ

RSSBias N  1
ˆ

RSSMSE N  1 1
ˆ ˆ,RSS SRSEff N N

10000 2 572 8044468 317 4327625 1.859 

3 399 4738801 182 1921000 2.467 

4 299 3120482 117 1095289 2.849 

5 206 2389460 58 692264 3.451 

5000 2 286 1895952 172 1051000 1.803 

3 160 1020343 81 452935 2.253 

4 125 707250 48 250417 2.824 

5 103 543676 30 166845 3.258 

1000 2 59 79681 38 43839 1.817 

3 31 41551 15 18882 2.201 

4 23 29668 10 11028 2.690 

5 19 23008 6 6692 3.437 

Table (4.3): Bias, MSE of 1RSSN


 & 1SRSN


& Efficiency for Uniform (1,2)  

N m  1
ˆ

SRSBias N   1
ˆ

SRSMSE N   1
ˆ

RSSBias N  1
ˆ

RSSMSE N  1 1
ˆ ˆ;RSS SRSEff N N  

10000 2 199 2130517 131 1351186 1.577 

3 127 1345538 60 642001 2.096 

4 83 996914 41 373781 2.667 

5 88 778628 24 243625 3.196 

5000 2 98 544589 61 345995 1.574 

3 67 348679 35 164016 2.125 
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4 51 254304 17 95897 2.651 

5 44 196770 13 62068 3.170 

1000 2 17 20471 12 13459 1.521 

3 13 13353 7 6333 2.108 

4 10 9755 4 3822 2.552 

5 9 7792 3 2470 3.154 

 

Based on the contents of the above tables, it can be seen that the Bias and MSE of each 
the two estimators, are decreasing in m and N. Both estimators are positively biased. 

The Bias and MSE of RSSN 1



 is less than that of SRSN 1



 based on the same m and N . 

1 1;RSS SRSEff N N
  

 
 

 is always larger than 1 and it is increasing in m for fixed N. N  has 

a very slight effect on the efficiency. 
 
5. Estimation the Population Size Using MERSS 
     MERSS is one of the main variations of RSS. It is obtained by measuring the 
judgment maximum, minimum or both of random samples of size 1,2, … , 𝑚.  

      Let    1:1 :,..., m mX X  be a MERSS (max.) of size m . Let 
 :1

m

i ii
MERSSm

X
X

m



.       

      Since  X
X N N

 


   , a suitable estimator for the population size is  

X
MERSSm

MERSSm

N
X



 , 

       with MSE given by  
2

2 1 1
varMERSSm X X

MERSSm MERSSm

MSE N E N
X X

 
                      

. 

        Tables (5.1), (5.2) and (5.3) contain the Bias, MSE, and the efficiency of  MERSSN


 

w.r.t. SRSN


for different values of N and m .  

Table (5.1): Bias, MSE of MERSSmN


 & SRSN


& ;MERSSm SRSEff N N
  

 
 

for Gamma (2,1) 
 

N m  ˆ
SRSBias N   ˆ

SRSMSE N   ˆ
MERSSmBias N  ˆ

MERSSmMSE N  ˆ ˆ,MERSSm SRSEff N N

10000 

 
 
 

2 3344 89062961 292 29864113 2.982 

3 2011 38524505 -1624 10956456 3.516 

4 1412 24093145 -2582 10554719 2.282 

5 1128 16780228 -3174 12364568 1.357 
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5000 2 1702 22451400 173 7449119 3.013 

3 1050 10931562 -838 2754566 3.968 

4 709 6184321 -1304 2670125 2.316 

5 555 4187682 -1583 3067456 1.365 

1000 2 334 1039436 23 275944 3.766 

3 202 415960 -163 109415 3.801 

4 148 242769 -260 105290 2.305 

5 107 164295 -315 121505 1.352 

 

Table (5.2): Bias, MSE of MERSSmN


 & SRSN


& ;MERSSm SRSEff N N
  

 
 

for Bata (4,3) 
 

N m  ˆ
SRSBias N   ˆ

SRSMSE N   ˆ
MERSSmBias N  ˆ

MERSSmMSE N
  ˆ ˆ,MERSSm SRSEff N N  

10000 2 604 8289041 -488 4019807 2.062 

3 325 4386386 -1133 2836342 1.546 

4 259 3101645 -1502 3074425 1.008 

5 184 2323025 -1748 3564981 0.651 

5000 2 273.2 1907413 -227 970680 1.965 

3 161 1005556 -541 649699 0.646 

4 128 706191 -728 723554 0.976 

5 95 555070 -852 846446 0.655 

1000 2 52 77462 -50 40650 1.905 

3 37 44640 -111 27390 1.629 

4 26 30068 -150 30554 0.984 

5 20 23030 -176 36023 0.639 

Table (5.3):Bias, MSE of MERSSmN


& SRSN


& ,MERSSm SRSEff N N
  

 
 

 for Uniform (1,2) 
 

N m  ˆ
SRSBias N   ˆ

SRSMSE N   ˆ
MERSSmBias N  ˆ

MERSSmMSE N  ˆ ˆ,MERSSm SRSEff N N

10000 2 197 2112409 -373.6 1519967 1.389 

3 137 1362050 -774.4 1254500 1.085 

4 95 951866 -1026 1425508 0.667 

5 79 775370 -1194 1663239 0.466 

5000 2 105 538412 -186 390700 1.378 

3 72 351266 -390 322321 1.089 
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4 52 254628 -516 364148 0.699 

5 40.8 201831 -609 433076 0.466 

1000 2 19 20711 -40 15852 1.306 

3 12 13092 -79 13093 0.999 

4 10 10038 -103 14700 0.682 

5 7 7707 -122 17393 0.443 

 

Estimation of  N using MERSS (Minimum) 

Let      1:1 1:2 1:, ,..., mX X X be a MERSS (min.) of size m from the U(0, 𝜃), then

1

1

X
MERSS

MERSS

N
X



 . 

   Tables (5.4), (5.5) and (5.6) contains the Bias, MSE, and the efficiency of 1MERSSN


w.r.t SRSN


for different value of N size  and m .  

Table (5.4): The Bias, MSE of 1MERSSN


 & SRSN


&  1
ˆ ˆ;MERSS SRSEff N N for Gamma (2,1)

 
N m  ˆ

SRSBias N   ˆ
SRSMSE N   1

ˆ
MERSSBias N  1

ˆ
MERSSMSE N  1

ˆ ˆ,MERSS SRSEff N N  

10000 2 553 8292085 1635 12620941 0.657 

3 359 4627522 2195 11412649 0.405 

4 270 3124909 2732 12598580 0.248 

5 207 2356290 3272 14957828 0.157 

5000 2 271 1857373 775 2841169 0.653 

3 170 1004908 1046 2577012 0.389 

4 125 694691 1290 2757603 0.252 

5 91 524165 1530 3266038 0.1604 

1000 2 51 75771 159 117938 0.642 

3 33 43250 215 105804 0.408 

4 28 29475 269 117899 0.249 

5 21 23216 318 138641 0.167 

Table (5.5): Bias, MSE of 1MERSSN


 & SRSN


 &  1
ˆ ˆ,MERSS SRSEff N N  for Beta (4,3) 

 
N m  ˆ

SRSBias N   ˆ
SRSMSE N   1

ˆ
MERSSBias N  1

ˆ
MERSSMSE N  1

ˆ ˆ,MERSS SRSEff N N  

10000 2 3243 95636125 6442 163425128 0.585 
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3 2024 40481600 6901 114749050 0.352 

4 1420 23928161 8181 121836861 0.196 

5 1149 16922701 9414 135518500 0.124 

5000 2 1639 23634731 3393 88337674 0.267 

3 989 9897303 3574 30130458 0.328 

4 728 5983349 4227 31850544 0.1878 

5 567 4273178 4885 36729733 0.116 

1000 2 337 1005447 634 1716189 0.585 

3 196 401022 707 1248294 0.321 

4 143 246711 811 1211298 0.203 

5 110 169088 942 1355510 0.124 

Table (5.6): Bias, MSE of 1MERSSN


 & SRSN


 &  1
ˆ ˆ,MERSS SRSEff N N  for Uniform (1,2)  

 
N m  ˆ

SRSBias N   ˆ
SRSMSE N   1

ˆ
MERSSBias N  1

ˆ
MERSSMSE N  1

ˆ ˆ,MERSS SRSEff N N

10000 2 180 2048800 760 2582656 0.793 

3 115 1331129 1112 2504420 0.531 

4 90 976356 1418 2924660 0.333 

5 71 768917 1674 3517992 0.218 

5000 2 96 529865 386 667684 0.793 

3 59 332189 558 628218 0.528 

4 47 250550 716 745602 0.336 

5 34 195434 844 888313 0.220 

1000 2 20 21190 79 27058 0.783 

3 14 13757 114 26497 0.519 

4 9 9801 145 30308 0.323 

5 6.8 7878 169 35566 0.221 

      Based on the contents of the above tables, we note that the values of the efficiency 
are conflicting; this may be due to the fact that the average is not unbiased. As in the 

case of SRS and RSS. For example, if      1:1 2:2 :, ,..., m mX X X is a MERSS (max.) of 

size m from the U(0, 𝜃), then  :i iX


 is beta(i, 1), hence,   : 1i i

i
E X

i



 & 

     
2

: 2
( ) .

1 2
i i

i
Var X

i i


 
Similar comments can be said for MERSS (min.) 

Estimation of  N using MERSS (Minimum and maximum (Both)) 
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 In order to overcome the above problem, we take MERSS (max.) and MERSS (min.), 
(MERSS both). Tables (5.7, 5.8, 5.9) contain the Bias, MSE and the efficiency of 

MERSSN


w.r.t SRSN


for different values of the population size and set size m .  

Table (5.7): Bias, MSE of MERSSN


& SRSN


&  ˆ ˆ,MERSS SRSEff N N for Gamma (2,1)
 

N m  ˆ
SRSBias N   ˆ

SRSMSE N   ˆ
MERSSBias N  ˆ

MERSSMSE N  ˆ ˆ,MERSS SRSEff N N

10000 4 1430 24144301 1139 17805290 1.356 

6 942 124269731 503 7914833 1.570 

5000 4 768.5 6461521 627 4679396 1.381 

6 442.2 3119983 268 2101648 1.484 

1000 4 139.1 224286 116 171009 1.312 

6 81.8 119117 52 77931 1.528 

Table (5.8): Bias, MSE of MERSSN


& SRSN


&  ˆ ˆ,MERSS SRSEff N N  for Beta (4,3)  
 

N m  ˆ
SRSBias N   ˆ

SRSMSE N   ˆ
MERSSBias N  ˆ

MERSSMSE N  ˆ ˆ,MERSS SRSEff N N  

10000 4 269 3184057 220 2525876 1.261 

6 150 1858525 135 1317825 1.410 

5000 4 117.8 693182 80 546657 1.268 

6 79.9 434100 64 302270 1.436 

1000 4 27.2 30489 20 23603 1.291 

6 17.4 18018 13 12858 1.401 

Table (5.9): Bias, MSE of MERSSN


& SRSN


&  ˆ ˆ,MERSS SRSEff N N  for Uniform (1,2)  
 

N m  ˆ
SRSBias N   ˆ

SRSMSE N   ˆ
MERSSBias N  ˆ

MERSSMSE N  ˆ ˆ,MERSS SRSEff N N

10000 4 99 960426 96 813825 1.180 

6 51 633037 54 439837 1.439 

5000 4 45 253819 38 201140 1.261 

6 33 161022 18 115313 1.396 

1000\ 4 9 9816 10 8432 1.164 

6 8 6604 4 4547 1.452 

Based on the contents of the above tables, it can be seen that the Bias and MSE of each 

of the two estimators, SRSN


 and MERSSN


, are decreasing in m and N. The efficiency 
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is between 1 and 1.6 for all chosen distributions, the efficiency is increasing in m. 

MERSSN


 is more efficient than ˆ
SRSN  . 

 
6. Estimation of N using Median ranked set sampling (MRSS) 

     Median ranked set sampling is another variation of RSS(MRSS) introduced by 
Muttlak (1997). For simplicity, assume  𝑚 is odd. 
     Median RSS (MRSS) can be obtained as follows: 

(1)  A SRS, 1 2, ,..., mX X X is taken from the population, the median of the sample, 

denoted by 1 1
:

2

m
m

V X  
 
 

  is identified by judgment.  

(2)  Step 1 is repeated m times to obtain m medians. 
The obtained sample, denoted by 1 2, , ..., mV V V is a called MRSS.  Let 

1

m

i
i

MRSS

V
V

m



 . Again, a suitable estimator of N is   

X
MRSS

MRSS

N
V



 , 

and the corresponding MSE is  
2

2 1 1
varMRSS X X

MRSS MRSS

MSE N E N
V V

 
                      

. 

    Tables (6.1), (6.2) and (6.3) contain the Bias, MSE and the efficiency of MRSSN


 w.r.t 

SRSN


 for different values of N and m.  

Table (6.1): Bias, MSE of MRSSN


 & SRSN


 & efficiency for Beta (4,3)  
 N m  ˆ

SRSBias N   ˆ
SRSMSE N   ˆ

MRSSBias N   ˆ
MRSSMSE N

 
 ˆ ˆ,MRSS SRSEff N N  

10000 3 366 4535560 87 1803169 2.52 

5 217 2318138 -35.9 663559.25 3.49 

7 146 1616485 -71.7 400027.45 4.04 

5000 3 168 1022432.41 38.6 412114.6 2.48 

5 103 534061.25 -3.2 152188.25 3.51 

7 65.9 361349.06 -13.4 93632.05 3.86 

1000 3 34.8 42990.4 10.9 18021.25 2.39 

5 21.2 22680.25 1.3 6627.65 3.42 

7 13.9 15843.22 -1.43 4083.6993 3.88 
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Table (6.2): Bias, MSE of MRSSN


 & SRSN


 & efficiency for Uniform (1,2)  
 N m  ˆ

SRSBias N   ˆ
SRSMSE N   ˆ

MRSSBias N   ˆ
MRSSMSE N

  ˆ ˆ,MRSS SRSEff N N
 

10000 3 133 1335593 66 764740 1.75 

5 90 770229 26 312040 2.47 

7 53 548930 24 200385 2.74 

5000 3 56 342675.29 44.3 201324.74 1.70 

5 34.8 198080.73 23.8 82878.05 2.39 

7 32.1 138374.77 23.7 54943.93 2.52 

1000 3 13.3 13150.1 10.5 8354.89 1.57 

5 5.85 7707.4 5.4 3439.72 2.24 

7 5.4 5789.97 4.8 2241.45 2.58 

 

Table (6.3): Bias, MSE of MRSSN


 & SRSN


 & efficiency values for G(2,1)   
 N m  ˆ

SRSBias N   ˆ
SRSMSE N   ˆ

MRSSBias N   ˆ
MRSSMSE N

  ˆ ˆ,MRSS SRSEff N N
 

10000 3 139 1378877 81 798661 1.73 

5 79 777125 32 331649 2.34 

7 49 561905 13 211769 2.65 

5000 3 66.8 348679.13 44 202908.89 1.72 

5 44 196769.96 16.3 82979.45 2.37 

7 29.1 143882.05 13.5 53266.41 2.70 

1000 3 13.2 13583.88 9 7825 1.74 

5 7.7 7593.53 6.8 3238.49 2.34 

7 4.4 5333.77 5.6 2092.52 2.55 

 
       Based on the contents of the above tables, it can be seen that efficiency is increasing 

in m. MRSSN


 is more efficient than SRSN


. Clearly, the difference between the 

efficiencies for different values of N is negligible; so the efficiency does not really 
depend on N. In practice the easiest to use is MERSS, because we only need to arrange 
by judgment 2 observations. 
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7.  Conclusions 

 In this paper, we considered the estimation of the population size using RSS, 
MERSS and MRSS. The suggested estimators are compared with their counter parts 
using SRS. It turned out that the suggested estimators are more efficient than the 
corresponding ones using SRS. In practice the easiest to use is MERSS, because we 
only need to arrange by judgment 2 observations. Simultaneous estimation of the 
population size and total using ranked sampling techniques based Capture recapture 
method is a suggested future work. 
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