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ABSTRACT  
A container has two types of candies: Type A and Type B. Concerned about her child's well-
being, a wise mom pronounces, “Each day, you can choose two candies from the container 
random. If they are of different types, you can eat them both. If they are of the same type, eat only 
one and return the other to the container.” We analyze the expected number of days needed to eat 
all candies in the container and the proportion of days the child eats two candies. Several other 
variations are either worked out or left for readers to solve. 
 
Keywords: random sampling without replacement, probability distribution, recursive relation, 
analytical expression, mathematical induction. 

 
1.  Introduction 
 
     We pose a simple probability problem understandable to high school graduates; and 
yet its solution poses a fairly hard challenge for mathematics graduate students. 
Nonetheless, one can develop a computer algorithm to compute the solution to a desired 
degree of accuracy, which suffices to make decisions. We invite mathematically inclined 
students to discover analytical solutions. 
 
     The son of a Professor of Mathematics (a specialist in Optimization Theory) loves to 
eat candies. The professor bought two kinds of candies: apple flavour (A); and butter 
toffee flavour (B). The two candies have the same shape and size; but Type A candies 
come wrapped in aqua wrapper and Type B in brown. Said the professor to himself, 
“Opening two containers to take out one candy from each is an inefficient process. So, 
every Sunday evening I will put 7 type A candies and 7 type B candies in one empty, 
opaque container. Each morning Johnny can take two candies out.” 
 
     The professor's wife did not want her son to eat too many candies. She imposed a 
restriction hoping to ensure the candies will last a few days longer while Johnny will learn 
some self-discipline. She instructed the child thus: “Every day you will take out two 
candies at random from the container. If they are of mixed types AB, you can eat them 
both; if they are of type AA or type BB, you may eat only one candy and you must return 
the other to the container.” 
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Statement of the Problem 
How effective was the mother's clever strategy? To answer, we raise the following 
questions: 
(1) In how many days will the child finish eating all 14 candies? The answer is a random 
variable X7,7 taking values 7, 8, 9,…, 13; but with what associated probabilities? 
(2) What is the expected number of days the 14 candies will last; that is, what is E[X7,7]? 
(3) What is the expected proportion of days the child will eat two candies? 
(4) How do the answers to Questions (1)-( 3) change as the number a = b of candies of 
each type increases ad infinitum? 
 
2.  Simulations 
 
      Suppose that initially the container has a type A candies and b type B candies. Without 
loss of generality, assume a ≤ b. Clearly, if a = 0 or 1, then the candies will last exactly b 
days, with the child eating one type B candy every day. If a = 1, the type A candy will be 
eaten on Day i with probability (𝑏 + 1 − 𝑖)/  for i = 1,2,…,b. But if 1 < a ≤ b, then 
the number of days the candies will last is a random variable taking integer values b, b + 
1, …, (a + b – 1). We simulate the process of candy consumption using the freeware R 
[2]. 

 Step 1: Observe the random evolution of the contents in the container beginning 
with a type A and b type B candies on Day 0 until it becomes empty. 

 Step 2: Replicate the above process multiple times to estimate the probability 
distribution of the number of days until the container is emptied. 

     Step 1. For illustration, we chose parameters a = b = 7, 14, 30, 100. The result of one 
iteration of Step 1 is called a sample path, which is depicted in Figure 1, together with 
the random number of days, Xa,b, the candies last. The child eats two candies on d = a + 
b – Xa,b days. 
 
    Each sample path moves horizontally (going east) when one type A candy is eaten, 
vertically (going north) when one type B candy is eaten, and diagonally (going northeast) 
when two candies (one type A and one type B) are eaten. The starting point of each path 
is (0, 0) and the ending point is (a, b). The number of bullets along the path is the number 
of days needed to eat all candies. Note that if a path has d diagonal segments (where d 
ranges over 1 to a = min{a, b}), then it has (a – d) horizontal segments and (b – d) vertical 
segments. In this case, the child eats two candies on d days out of (a + b – d) days needed 
to eat all (a + b) candies. Hence, the number of days needed to empty the container, Xa,b,  
plus the number of days two candies are eaten is always (a + b). Therefore, the answers 
to questions (2) and (3) are linearly related with slope –1. 
 
     How many distinct sample paths are there? What are their probabilities? Let Na,b 
denote the number of distinct sample paths from (0, 0) to (a, b). Clearly, for all a, b ≥ 1,  
Na,b = Nb,a and N1, b = b. Thereafter, by conditioning on the initial segment going from (0, 
0) to (1, 0), (1, 1), (0, 1), we have the recursive relation 

𝑁 , = 𝑁 , +  𝑁 , + 𝑁 ,          (1) 
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    Table 1 documents the number of sample paths for some values of (a, b). However, 
the crux of the problem lies in the fact that these paths are not equally likely, even when 
the paths have the same number of diagonal segments. We will explain how to calculate 
the probability of each sample path in Section 2. 
 

 
Figure 1. Sample paths for a = b = 7, 14, 30, and 100, showing the cumulative number 
of candies eaten until the container is empty. Each bullet represents a day. 
 
      It is worth mentioning that just as any path tracks the cumulative number of candies 
of each type eaten by a certain day, by subtraction, one can also track the number of 
candies of each type left in the container. Therefore, given the number of candies of each 
type already eaten, it is possible to calculate the probabilities of drawing candies of types 
AA, BB and AB on the following day. 
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Table 1. Number of distinct sample paths from (0, 0) to (a, b) 
 

 b (a, b) Na, b 

1 2 3 4 5 6 7 
1 1 2 3 4 5 6 7 (14, 14) 3.256957 × 109 
2 2 5 10 17 26 37 50   
3 3 10 25 52 95 158 245 (30, 30) 3.980085 × 1021 
4 4 17 52 129 276 529 932   
5 5 26 95 276 681 1486 2947 (100, 100) 8.497919 × 1074 
6 6 37 158 529 1486 3653 8086   
7 7 50 245 932 2947 8086 19825   

 
 
       Step 2. We chose different values of parameters (a, b) and varied the number of 
replications to demonstrate that the simulated probabilities have higher degree of 
accuracy as the number of replications increases. (The simulated probabilities are correct 
to at least m decimal places if the number of replications is 102m.) The results of Step 2 
are shown in Table 2. Note that the simulated probabilities are close to the exact 
probabilities shown in the last column, which are computed using a technique described 
in the next section and documented in Table 3. 
 
 
 

Table 2. Simulated probabilities for the number of days until the container becomes empty 
 
 

a b replications Xa,b count estimated probability exact probability 
2 2 103 2 days 664 0.664 2/3 

3 days 336 0.336 1/3 
2 3 103 3 days 776 0.776 4/5 

4 days 224 0.224 1/5 
2 3 105 3 days 79626 0.79626 4/5 

4 days 20284 0.20284 1/5 
   3 days 39,961 0.39961 0.40 
3 3 105 4 days 52,006 0.52006 0.52 
   5 days 8033 0.08033 0.08 
   4 days 227,880 0.227880 0.228571 
4 4 106 5 

6 
days 
days 

541,815 
211,630 

0.541815 
0.211630 

0.542041 
0.210612 

   7 days 18,675 0.018675 0.018776 

 
 
3.  From Manual Calculations to Computational Algorithms 
 
     Manual Calculations. A tree map, shown in Figure 2, depicts the evolution of the 
contents of the container for the case a = b = 2. Along each arrow, we write the conditional 
probability of that transition. We strongly urge readers to construct tree maps for cases a 
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= b = 3 and a = b = 4 and observe that the tree map for (a, b) is the mirror image of the 
tree map for (b, a). 

 
 
Figure 2. All possible sample paths for a container with 2 type A candies and 2 type B 
candies, together with conditional probabilities along each transition 
 
     If we multiply all conditional probabilities along a directed path, we will get the 
eventual prob- ability of traveling on that path until reaching the end configuration when 
the container becomes empty. Recall that the number of segments along each path equals 
the number of days Xa,b to eat all candies. Adding up the probabilities of those paths that 
require equal number of days to finish all candies, we obtain the probability distribution 
of Xa,b.  Note that the number of days when the child eats two candies is a +b−Xa,b. Hence, 
the answers to questions (2) and (3) are linearly related. The results of manual calculations 
are included in Table 3. 
 
    What is shown in Figure 2, can be generalized to explain how the contents of the 
container evolves if it starts at point (0, 0) with (a, b) candies of types A and B. From 
each node, at most three branches can emerge after a random draw of two candies: 
 
(1) Draw AA; eat one type A candy, return the other to reach point (1, 0) leaving (a -1, 

b) candies in the container, with associated probability 

              𝑃(𝐴𝐴) =                        (2) 

(2) Draw AB; eat both candies to reach point (1, 1) leaving (a− 1, b− 1) candies 
with associated probability 

   𝑃(𝐴𝐵) =  
∙

          (3) 

(3) Draw BB; eat one type B candy, return the other to reach point (0, 1) leaving 
(a, b − 1) candies, with associated probability 

   𝑃(𝐵𝐵) =            (4) 

     Equations (2), (3), (4) are hypergeometric probabilities (see [4], for example) 
corresponding to the number of candies of each type in a random sample without 
replacement of size two from a container containing a type A and b type B candies. 
Starting from (a, b) candies on Day 0, and using conditional probabilities (2), (3), (4) of 
drawing two candies on each day, the resulting probability distribution of the number of 
days until the container becomes empty is shown in Table 3. 
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Table 3. The distribution of Xa,b, the number of days (a, b) candies will last, obtained by 
manual calculation using a tree map 
 
 

a b probabilities 
2 2 P(2 days) = 2/3 

P(3 days) = 1/3 
 

3 
 
3 

P(3 days) = 2/5 
P(4 days) = 13/25 
P(5 days) = 2/25 

 
4 

 
4 

P(4 days) = 8/35 
P(5 days) = 664/1225 
P(6 days) = 258/1225 
P(7 days) = 23/1225 

 
 
Remark 1. Note that if the sample path reaches point (a − 1, b − 1), then the container 
has in it only one candy of each type. Hence, the next day only type AB pair can be drawn, 
as justified by evaluating (2), (4) and (3) to be 0, 0 and 1, respectively. 
 

Recursive Relation.  From a tree map, we note that Xa,b equals: (i) 1 + Xa−1,b with 
probability ∕ ; (ii) 1+Xa−1,b−1 with probability 𝑎𝑏 ∕ ; and (iii) 1+Xa,b−1 with 

probability ∕ . Since the total number of candies in the container is reduced by 
one or two each day, proceeding recursively, a computational algorithm can calculate the 
probabilities associated with permissible values of Xa,b. The algorithm stops when the 
boundary condition is met with either a or b or both reduced to 1.  Recall that when the 
container has one type A candy and b ≥ 1 type B candies, then the container will be 
emptied after exactly b days.  The recursively computed probabilities and the run times 
are shown in Table 4. 
 

Table 4. The probability distribution of Xa,b, the number of days (a, b) candies will last, 
is calculated using a recursive relation: The distributions of X7,7 and X14,14 are 
approximate. 
 

a    b  Xa,b P (Xa,b)  Xa,b P (Xa,b)  Xa,b P (Xa,b) Runtime (sec) 
2    2 2 days 2/3 3 days 1/3  0.0000 
3    3 3 days 2/5 4 days 13/25 5 days 2/25 0.0010 
4    4 4 

5 
days 
days 

8/35 
664/1225 

6 
7 

days 
days 

258/1225 
23/1225 

 0.0010 

7    7 7 
8 
9 

days 
days 
days 

16/429 
0.266362 
0.405292 

10 
11 

days 
days 

0.228096 
0.056492 

12 
13 

days 
days 

8/1287 
1/4056 

 
9.4358 

 14 days 4.084/104 19 days 0.242942 24 
25 
26 
27 

days 
days 
days 
days 

2.235/104 
1.583/105 
6.444/107 
1.145/108 

 
 15 days 0.011083 20 days 0.133501  

14   14 16 days 0.071645 21 days 0.048684 9560.6043 
 17 days 0.195349 22 days 0.012009  
 18 days 0.282132 23 days 0.002007  
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     The documented run times in Table 4 indicate that the algorithm at this stage is not 
efficient: In particular, it took 2.45 hours to calculate the probabilities for a = b = 14.  A 
more efficient algorithm is called for. Refer to [1] for efficient recursive computations. 
 
      Efficient Algorithm. To make the program more efficient, we represented the 
probability distri- bution as a vector.  Let p(x) = P{Xa,b = x} be the probability that the 
candies last for x days, where x = 1, 2, . . . , (a + b − 1). Then the vector of probabilities 
is denoted by 

   
  pa,b = (p(1), p(2), . . . , p(a + b − 1))                                   (5) 

 
     Although some leading entries of the probability vector may be zero, we wish to keep 
those entries intact so that one can read off the index easily. Note that the index starts at 
1, and not at 0. Using the vectors of probabilities, we rewrite the recursive relation as 
follows: 

 𝑝 , = 0, 𝑝 , +
⋅

0, 𝑝 , + (0, 𝑝 , )  (6) 

 
     The probability vectors pa−1,b, pa,b−1, and pa−1,b−1 on the right hand side are shifted one 
place to the right by prefixing a 0; and they can be calculated using a formula similar to 
(6). For example, 

𝑝 , = 0, 𝑝 , +
2 ⋅ 2

0, 𝑝 , + (0, 𝑝 , ) 

 
     Next, using the boundary conditions p1,2 = p2,1 = (0, 1) and p1,1 = (1, 0), we have 
 

𝑝 , =
1

6
(0,0,1) +

4

6
(0,1,0) +

1

6
(0,0,1) = 0,

2

3
,
1

3
 

 
     This is how we write an efficient program: We define a function that implements the 
recursive formula (6); and we write a new algorithm that calls this function repeatedly. 
Also, we save the results in an Excel sheet so that the program can retrieve and return the 
result, if available, or perform the recursion until it reaches the closest pu,v available in the 
Excel file. This approach avoids continuing calculations all the way down to the boundary 
condition of min{u, v} = 1, and thereby reduces the run time significantly. A small portion 
of the Excel sheet is shown in Table 5. 
 

 b 
a 1 2 3 4 
1 (1) (0, 1) (0, 0, 1) (0, 0, 0, 1) 
2  (0, 2, 1)/3 (0, 0, 4, 1)/5 (0, 0, 0, 64, 11)/75 
3   (0, 0, 10, 13, 2)/25 (0, 0, 0, 300, 202, 23)/525 
4    (0, 0, 0, 280, 664, 258, 23)/1225 

 
      On paper, we economize writing down the probability vector by eliminating the 
leading (b − 1) zeros. Instead, we write, for example, “p2,4 = ([4] 64/75, 11/75)”, and read 
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it as: “The first three entries are zeros; thereafter, starting from the fourth entry, the 
elements are 64/75,…. ” 
 
To answer Question (1) raised in Section 1, we must document p7,7. However, empowered 
by our efficient algorithm, we also document p14,14 and p30,30. 
 

𝑝 , = [7]
16

429
,
1715752

6441435
,
117479654

289864575
,

88156007

386486100
,

131000081

2318916600
,

8

1287
,

1

4056
  

=  [7]0.0373, 0.2664, 0.4053, 0.2281, 0.0565,
6.216

10
,
2.466

10
, 

 

𝑝 , = [14]
4.084

10
, 0.0111, 0.0716, 0.1953, 0.2821, 0.2429, 0.1335, 0.0487, 

0.0120,
2.235

10
,
2.235

10
,
1.583

10
,
6.444

10
,
1.145

10
, 

 

𝑝 , =
[30]9.079

10
,
1.080

10
,
3.176

10
,
4.094

10
,
2.925

10
, 0.0132, 0.0403,0.0890, 0.1469, 

0.1868, 0.1869, 0.1497, 0.0973, 0.0519, 0.0229,
8.370

10
,
2.558

10
,
6.539

10
, 

1.399

10
,
2.503

10
,
3.731

10
,
4.612

10
,
4.687

10
,
3.870

10
,
2.552

10
,
1.311

1011
, 

5.055

10
,
1.374

10
,
2.792

10
,
1.895

10
. 

 
4.  Expectation 
 
      Having calculated the probability vector pa,b, we can immediately find the expected 
number of days needed to empty the candy container. For example, the distribution of 
X4,4 is 

𝑝 , = 0,0,0,
8

35
,

664

1225
,

258

1225
,

23

1225
, 

 
with indices ranging from Day 1 to Day 7. Hence, 
 

𝐸 𝑋 , = 4 ×
8

35
+ 5 ×

664

1225
+ 6 ×

258

1225
+ 7 ×

23

1225
= 5.019592. 

 
In fact, without first finding the probability distribution, we can directly calculate µa,b  = 
E[Xa,b], the expected number of days the candies will last, by using a recursive relation 
similar to (6); namely, µ0,b = b = µ1,b, and thereafter for all a, b ≥ 1, we have µb,a = µa,b 
and 

  𝜇 , = 1 + 𝜇 , +
⋅

𝜇 , + 𝜇 ,         (7) 
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     To answer Question (2), raised in Section 1, we must report µ7,7. To compute it, we 
need µi,j for all i ≤ 7, j ≤ 7. We document these values in Table 6. 
 
 
     Table 6. Expected number of days to empty a container containing  a  type  A candies 
and b type B candies 
 

 
a 

 
1 

 
2 

 
3 

b 
4 

 
5 

 
6 

 
7 

1 1 2.00 3.00 4.00 5.00 6.00 7.00 
2 2 2.33 3.20 4.15 5.12 6.10 7.09 
3 3 3.20 3.68 4.47 5.37 6.30 7.26 
4 4 4.15 4.47 5.02 5.77 6.63 7.53 
5 5 5.12 5.37 5.77 6.35 7.09 7.91 
6 6 6.10 6.30 6.63 7.09 7.69 8.41 
7 7 7.09 7.26 7.53 7.91 8.41 9.02 

 
     Having obtained µa,b, it is now straight-forward to see that the child will eat two 
candies on average on (a + b) − µa,b days, out of the µa,b days the candies will last on 
average. Hence, on average the proportion of days the child will eat two candies is  
 

πa,b = (a + b)/µa,b − 1. 
 

    In Table 7, we answer Questions (2) and (3) of Section 1 by documenting the expected 
number of days the candies will last and the expected proportion of days the child will 
eat two candies if he starts with (a, b) candies in the container on Day 0. 
 
Table 7. Expected number of days candies will last and expected proportion of days the 
child will eat two candies 
 

(a, b) (7, 7) (14, 14) (30, 30) (102, 102) (103, 103) 
expected # days 
candies last 

 
9.02 

 
18.34 

 
39.66 

 
132.97 

 
1332.93 

proportion of days 
eat two candies 

 
0.552 

 
0.527 

 
0.513 

 
0.50413 

 
0.50045 

 
Based on Table 7, we can now answer Question (4) of Section 1: As a = b tends to infinity, 
the 2a candies will last on average 4a/3 days; and the child will eat two candies on about 
50% of the days and one candy on the remaining 50% of the days. This limiting result 
makes sense intuitively because when a = b is large, then on the first day the child is 
almost equally likely to draw two candies of the same type as two candies of different 
types. 
 
5.  Finding Analytical Expressions: Open Problem 
 
      The results in Tables 2, 3, and 4 agree, confirming that the recursive relation yields 
the probability distribution for any (a, b). Using the computationally obtained results as 
reference, we hoped to find an analytical formula that will produce pa,b directly without 
using the values of pu,v for u < a and/or v < b. We solved this problem only for a = 2. 
Indeed, X2,b (with 2 ≤ b) takes on only two values: b and b + 1. For a = 2, the probability 
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of emptying the container after (b + 1) days is given by p2,2[3] = 1/3, and thereafter for  
b ≥ 3, by the recursive relation 

 

       𝑝 , [𝑏 + 1] =
, [ ]

                           (8)     

 
since p1,b[b] = 1 and p1,b−1[b] = 0. Using mathematical induction, one can verify that the 
solution to (8) is given by 

𝑝 , [𝑏 + 1] =
2 +

 

 
        For a = 2, the probability of emptying the container after b days is p2,b[b] = 1 − p2,b[b 
+ 1]. In particular, this implies that µ2,b = b + p2,b[b + 1], which we can verify from Table 
6. However, for a > 2, the analytical expressions for the probability vector pa,b, the 
expected number of days µa,b the candies last, and the expected proportion of days πa,b 
the child eats two candies remain unsolved. We invite interested readers to discover them. 
 
6.  Johnny Learns to Optimize 
 
      Variation 0: Suppose that Mom had imposed a more parsimonious rule: ”Everyday 
you will take out two candies at random from the container. If they are of mixed types 
AB, you can eat them both; if they are of type AA or BB, you should eat no candy  and 
return them both to the container.” In such a case, Johnny would be quite unhappy; but 
as explained below, we, the problem solvers, would have a field day with a perfect 
description of Xa,b, the number of days Johnny needs to eat 2a candies (a type A and a 
type B candies), leaving in the container (b − a) candies of type B. 
 
      Note that the first day Johnny would eat two candies of opposite types is a 
geometric(ra,b) random variable (see [4]), where ra,b is the probability of drawing a mixed 
type of candies AB; that is, 

    𝑟 , =                                                                   (9) 

 
      Thereafter, the container will have left in it (a − 1, b − 1) candies of the two types. 
Continuing in this manner, we see that Xa,b is the sum of a independent geometric random 
variables with success probabilities ra,b, ra−1,b−1, . . . , r1,b−a+1, respectively. Consequently, 
the expected value of Xa,b is 
 

    𝛾 , =
,

+
,

+ ⋯ +
,

      (10) 

 
and the expected proportion of days Johnny will eat (two) candies is a/γa,b. These values  
are shown in Table 8 for some choices of (a, b).  
 
       In particular, if a = b, then (9) simplifies to ra,a = a/(2a−1), and (10) simplifies to 
2a−Ha, where Ha = 1 + 1/2 + 1/3, . . . , 1/a is the harmonic sum. For large a, the harmonic 
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sum is approximately ln(a) + γ, where γ = 0.5772156649 · · · is the Euler–Mascheroni 
constant. See [5]. Therefore, in the long-run as a = b increases ad infinitum, Johnny will 
eat two candies about 50% of days. 
 
 
Table 8. If both like candies must be returned to the container, then the expected number 
of days (a, b) candies will last and the expected proportion of days the child will eat (two) 
candies 
 

(a, b) (7, 7) (14, 14) (30, 30) (102, 102) (103, 103) 
expected # days 
candies last 

 
11.41 

 
24.75 

 
56.01 

 
194.81 

 
1992.52 

proportion of days 
eat two candies 

 
0.613 

 
0.566 

 
0.536 

 
0.51331 

 
0.50188 

(a, b) (7, 10) (14, 18) (30, 40) (102, 120) (103, 1100) 
expected # days 
candies last 

 
14.41 

 
29.35 

 
70.55 

 
230.68 

 
2229.67 

proportion of days 
eat two candies 

 
0.486 

 
0.477 

 
0.425 

 
0.43349 

 
0.44451 

 
       Interestingly, as the lower half of Table 8 shows, by adding several extra candies of 
type B, Mom can prolong Johnny’s consumption of 2a candies (or equivalently, lower 
the proportion of days Johnny eats two candies) and still preserve the extra candies she 
has added! However, taking pity on little Johnny, let us keep this sinister plan hidden 
from Mom. 
 
      Variation 1:  One day Johnny said to his mom,  “Dad says he gave me a seven-day 
supply of candies. Why can’t we finish all candies in 7 days?” Mom thought for a few 
minutes and said: “It is not good for you to eat two candies every day. Nonetheless, you 
can draw two candies at random each day. If they are of different types,  eat them both.  
If they are of the same type,  eat one and give the other to your sister. Then surely the 
container will be emptied in 7 days.” 
To evaluate νa,b, the expected number of candies the child will eat if the container initially 
had (a, b) candies of two types, we use a recursive relation similar to (7).   The boundary 
values are: ν0,b = b/2 = νb,0; ν1,1 = 2; and for b ≥ 2, we have 
 

𝑣 , = 1 + 1 + 𝑣 , + 𝑣 , = 1 +
(𝑏 − 1)𝑣 , + 2(1 + 𝑣 , )

𝑏 + 1
 

= 𝑣 ,  
 
Thereafter, for a, b ≥ 2, we have 
 

𝑣 , = 1 + 𝑣 , +
⋅

1 + 𝑣 , + 𝑣 , = 𝑣 ,        (11) 

 
Table 9 lists the number of candies Johnny will eat, for 1 ≤ a, b ≤ 7. 
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Table 9. Suppose that the child must share a candy of the same type with his sister. 
Expected number of candies the child will eat if a container initially contains a type A 
candies and b type B candies 
 

 
a 

 
 1 

 
2 

 
3 

b 
4 

 
5 

 
6 

 
7 

1  2.00 2.67 3.00 3.80 4.00 4.86 5.00 
2  2.67 3.33 4.20 4.60 5.43 5.71 6.56 
3  3.00 4.20 4.80 5.71 6.14 7.00 7.33 
4  3.80 4.60 5.71 6.29 7.22 7.67 8.55 
5  4.00 5.43 6.14 7.22 7.78 8.73 9.18 
6  4.86 5.71 7.00 7.67 8.73 9.27 10.23 
7  5.00 6.56 7.33 8.55 9.18 10.23 10.77 

 
 
        Having obtained νa,b, it is now straight-forward to see that the child will eat two 
candies on νa,b − (a + b)/2 days.  Hence, on  average  the  proportion  of  days  the  
child  will  eat  two  candies  is νa,b/(a + b)/2 − 1.  These values are shown in Table 
10. 
 
Table 10.  Suppose that the child must share a candy of the same type with his sister. 
Expected number of candies the child will eat and expected proportion of days the child 
will eat two candies 
 

(a, b)  (7, 7)  (14, 14) (30, 30) (102, 102) (103, 103) 
expected # days 
candies last 

 
 10.77 

 
 21.26 

 
45.25 

 
150.25 

 
1500.25 

proportion of days 
eat two candies 

 
 0.538 

 
 0.519 

 
0.508 

 
0.50251 

 
0.50025 

 
 
        The long-run average number of candies the child eats per day is slightly lower if he 
must give the candy of the same type to his sister than if he were to return it to the 
container. Should he maximize his own candy consumption by following Mom’s original 
instruction to put back in the container the second candy of the same type, or should he 
prefer the joy of sharing with his sister? Which optimization criteria will take precedence 
for Johnny? 
 
        In the long-run as a  = b increases ad  infinitum,  by giving the second like candy to 
his sister Johnny will eat two candies on about 50% of days and his sister will eat a candy 
on the remaining 50% of days.  Again, this limiting result makes intuitive sense because 
on Day 1 the child is almost equally likely to draw candies of opposite types as of the 
same type. Also, because a = b, the days when Johnny and his sister eat one candy each, 
it is equally likely to be of type A or type B. 
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        Variation 2: Days passed; Johnny’s craving for candy did not subside. One day he 
asked his mom: “Can I draw three candies at random? I promise I will eat only one candy 
of each type I draw and I will return the rest to the container.” If Mom approves Johnny’s 
proposal, he will eat one type A candy if he draws AAA, one type B candy if he draws 
BBB, or he will eat one candy of each type if he draws AAB or ABB, with associated 
probabilities (from hypergeometric distribution) 

𝑃( , )(𝐴𝐴𝐴) =   

𝑃( , )(𝐵𝐵𝐵) =   

              𝑃( , )(𝐴𝐴𝐴 or 𝐵𝐵𝐵) =  
⋅ 𝑏 + 𝑎 ⋅

=

𝑎𝑏(𝑎 + 𝑏 − 2)
2  

=  
3𝑎𝑏

(𝑎 + 𝑏)(𝑎 + 𝑏 − 1)
 

         
        Of course, towards the end if only one candy is left in the container, the child will 
eat it the next day; and if two candies are left in the container and they are of different 
types, the child will eat them both on the same day; but if they are of the same type, the 
child will eat the two candies on two successive days. 
 
        We leave it to the reader to verify that if the child is allowed to draw n = 3 candies 
(or less if fewer candies remain in the container), then the expected number of days to 
empty a container originally filled with 7 candies each of two types is 7.68. Hence, the 
expected proportion of days the child will eat two candies is 14/7.68 − 1 = 0.823. 
 
         Mom was not thrilled with the prospect of letting her son eat two candies on such a 
high percentage of days. Eventually, she relented and made a small concession: “Okay, I 
will give you a choice. To begin, draw two candies. If they are of different types eat them 
both. But if they are of the same type, either you eat one and return the other,  or you may 
choose to draw a third candy provided you agree to the following rule: If the third candy 
is of a different type, you may eat it together with one of the first two candies drawn, and 
return the other. But if the third candy is also of the same type as the first two, then you 
will eat no candy at all, and you must return all three candies to the container. Deal? Or, 
no deal?” 
 
         If Johnny has learned any optimization by now, he should accept the deal: First, 
note that he should draw the third candy only if the container has more candies of the 
opposite type than of the same type that he has already drawn; otherwise, he should forgo 
his option to draw a third candy. In particular, starting with equal number a of candies of 
each type,  Johnny should draw a third candy whenever he draws two candies of the same 
type, for in the container there are two more candies of the opposite type than the same 
type he has already drawn. Then the probability that he will eat two candies is 
 

𝑞 , =
𝑎 + 2 ⋅

𝑎
2𝑎 − 2 =

3𝑎

4𝑎 − 2
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whenever a ≥ 2. Of course, q1,1 = 1. The probability that he eats no candy is (1 − qa,a). 
Therefore, starting with (a, a) candies, the number of days until he eats two candies is a 
geometric(qa,a) random variable, with mean 1/qa,a = 4/3 − 2/(3a). Moreover, whether he 
eats two candies or none, the container still has an equal number of candies of each type. 
Hence, on the next day (and the next, and indeed always) he should exercise his option to 
draw the third candy whenever he draws two candies of the same type. With such a smart 
policy of essentially drawing three candies each day, he will finish eating all candies on 
average in 

𝜆 , =
1

𝑞 ,
= 1 +

4

3
−

2

3𝑖
=

4𝑎 + 1 − 2𝐻

3
 

 
days. Furthermore, he will eat two candies on 2a/λa,a − 1 proportion of days. These values 
are shown in Table 11. 
 

(a, b) (7, 7) (14, 14) (30, 30) (102, 102) (103, 103) 
expected # days 
candies last 

 
7.94 

 
16.83 

 
37.67 

 
130.21 

 
1328.68 

proportion of days 
eat two candies 

 
0.764 

 
0.663 

 
0.593 

 
0.53600 

 
0.50526 

 
Table 11. Suppose that the child always exercises the option to draw a third candy 
whenever the first two are of the same type. Then the expected number of days candies 
will last and the expected proportion of days the child will eat two candies 
 
        Thus, it turns out that Mom’s small concession prompts the child to always draw 
essentially three candies each day; and it has not achieved her desire to significantly lower 
the proportion of days the child will eat two candies, at least for small values of a. Maybe 
Mom should modify her offer by adding: “Furthermore, you will forfeit drawing candies 
the following day.” We leave it to the reader to work out the optimal strategy for the child 
under this further modification. 
 
        Variation 3. Interested readers may read the paper [3] which solved a different 
problem studying the evolution of a pill bottle that initially contains n long pills. Each 
day one pill is chosen at random: If it is a long pill, then it is split into halves, one half is 
eaten and the other half is returned to the bottle. If the selected pill is a half pill, then it is 
eaten and nothing is returned to the bottle. Assuming that all pills in the bottle are equally 
likely to be chosen (irrespective of size), the expected number of whole pills selected 
before the first half pill is chosen is 

𝑒

𝑛
𝑡 𝑒 𝑑𝑡 

 
which is of order 𝜋𝑛/2  as 𝑛 → ∞, and the expected number of half pills left in the 
bottle after the last whole pill is selected is the harmonic sum  
 

Hn = 1 + 1/2 + 1/3, . . . , 1/n. 
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        On the other hand, assuming that whole pills are twice as likely to be chosen as half 
pills, the expected number of whole pills selected before the first half pill is selected 
equals the expected number of half pills left in the bottle after the last whole pill is 
selected, and both equal 2 / − 1. 
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