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ABSTRACT  
We develop a new family of distributions called the Marshall-Olkin-Type II-Topp-Leone-G 
(MO-TII-TL-G) distribution, which is an infinite linear combination of the exponential-G 
family of distributions. The statistical properties of the new distributions are studied and its 
model parameters are estimated using the maximum likelihood method. A simulation study is 
carried out to determine the performance of the maximum likelihood estimates and lastly, real 
data examples are provided to demonstrate the usefulness of the proposed model in comparison 
to several other models. 

Keywords: Gompertz-G Distribution, Topp-Leone-G Distribution, Maximum Likelihood 
Estimation, Exponentiated-G Distribution. 
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1. Introduction 

There are various lifetime distributions that are discussed in the literature on statistical modelling. 
There are various lifetime distributions that are discussed in the literature on statistical modelling. 
Researchers are developing new generalized and extended distributions either by adding 
parameters to the existing ones or by combining well known distributions. These e orts attempt to 
extend existing classical distributions in order to enhance their goodness-of-fit and achieve more 
versatility in modelling data 
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The Gompertz distribution (Gompertz [10]) is one of the distributions that have found applications 
in different areas including but not limited to biology and marketing scienceLately, several authors 
introduced extensions of the Gompertz distribution so that the new extensions are more flexible 
and can be used to model different real data sets. Generalizations of the Gompertz include beta-
Gompertz distribution by Jafari et al. [11], odd generalized exponential Gompertz distribution by 
El-Damcese et al. [7], Gompertz-G family of distributions by Alizadeh et al. [2], Transmuted 
Gompertz-G family of distributions by Reyad et al. [17], Marshall-Olkin exponential Gompertz 
distribution by Khaleel et al. [12] and Marshall-Olkin Gompertz-G family of distributions by 
Chipepa and Oluyede [6]. 
 
The Gompertz-G (Gom-G) family of distributions has cumulative distribution function (cdf) and 
probability distribution function (pdf) given by 

𝐹(𝑥; 𝜆, 𝛾, 𝜁) = 1 − exp ቄ
ఒ

ఊ
[1 − (1 − 𝐺(𝑥; 𝜁))ିఊ]ቅ 

and 

𝑓(𝑥; 𝜆, 𝛾, 𝜁) = 𝜆𝑔(𝑥; 𝜁)(1 − 𝐺(𝑥; 𝜁))ିఊିଵexp ቄ
ఒ

ఊ
[1 − (1 − 𝐺(𝑥; 𝜁))ିఊ]ቅ , 

respectively, for 𝜆, 𝛾 > 0, where 𝜁 is the parameter vector from the baseline distribution. In this 
note, we take 𝜆 = 1. 
 
The Topp-Leone (TL) distribution plays a key role in modeling lifetime data in areas such as 
insurance and finance. The distribution was proposed by Topp and Leone [20]. It is has a 
bounded J-shape that has attracted several statisticians.  Al-Shomrani et al. [1] proposed the 
Topp-Leone generated family of distributions with cdf and pdf given by 

𝐹(𝑥; 𝑏, 𝜁) = [1 − 𝐺‾(𝑥; 𝜁)ଶ] 

and 

𝑓(𝑥; 𝑏, 𝜁) = 2𝑏𝑔(𝑥; 𝜁)𝐺‾(𝑥; 𝜁)[1 − 𝐺‾(𝑥; 𝜁)ଶ]ିଵ, 

respectively, for 𝑏 > 0, where 𝐺(𝑥; 𝜁) is the baseline cdf depending on a parameter vector 𝜁. 
 
We are motivated by the usefulness of the Gompertz-G and Topp-Leone-G family of distributions 
to propose a new family of distributions which is a combination of these two distributions. The 
general objectives of developing the new family of distributions are; to obtain special models 
which exhibits monotonic and non-monotonic hazard rate functions, to construct heavy-tailed 
distributions for modelling various real data sets and to provide consistently better fits than other 
generalized distributions with the same underlying model. 

The paper is organized as follows. We develop the new family of distributions and provide 
expansion of the density function in Section 2. We present some of the special cases of the 
Gompertz-Topp-Leone-G (Gom-TL-G) family of distributions in Section 3. Section 4 contains the 
statistical properties of the Gom-TL-G family of distributions. Monte Carlo simulation results are 
given in Section 5. Applications of the proposed model to real data sets are given in Section 6 and 
concluding remarks in Section 7. 
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2. The Gom-TL-G Model 

We introduce the Gom-TL-G family of distributions using the generalization by Alizadeh et al. 
[2], and taking the baseline distribution to be the Topp-Leone-G family of distributions. Therefore, 
the cdf and pdf of the Gom-TL-G family of distributions is given by 

𝐹(𝑥; 𝛾, 𝑏, 𝜁) = 1 − exp ቄభ

ം
[1 − (1 − [1 − 𝐺‾ ଶ(𝑥; 𝜁)])ିఊ]ቅ                                   (1) 

 

and 

𝑓(𝑥; 𝛾, 𝑏, 𝜁) = 2𝑏𝑔(𝑥; 𝜁)𝐺‾(𝑥; 𝜁)[1 − 𝐺‾ ଶ(𝑥; 𝜁)]ିଵ(1 − [1 − 𝐺‾ଶ(𝑥; 𝜁)])ିఊିଵ

× exp ቄభ

ം
[1 − (1 − [1 − 𝐺‾ ଶ(𝑥; 𝜁)])ିఊ]ቅ,                                            

  (2) 

respectively, for 𝛾, 𝑏 > 0 and 𝜁 is the parameter vector. The hazard rate function (hrf) is given by 

𝑓(𝑥; 𝛾, 𝑏, 𝜁) = 2𝑏𝑔(𝑥; 𝜁)𝐺‾(𝑥; 𝜁)[1 − 𝐺‾ଶ(𝑥; 𝜁)]ିଵ(1 − [1 − 𝐺‾ ଶ(𝑥; 𝜁)])ିఊିଵ. 

1.1  Expansion of Density Function 

We express the pdf of Gom-TL-G family as a mixture of an Exponentiated-G (Exp-G) distribution 
which is useful in presenting the mathematical properties of the Gom-TL-G family. The pdf in 
equation (2) can be expressed as follows 

𝑓(𝑥; 𝛾, 𝑏, 𝜁) =  
(−1)ାାା12𝑏

𝛾𝑘! (𝑞 + 1)

ஶ

,,,,ୀ

൬
𝑘

𝑙
൰ ቆ

−𝛾(𝑙 + 1) − 1

𝑚
ቇ 

                        ×  ቆ
𝑏(𝑚 + 1) − 1

𝑝
ቇ ൬

2𝑝 + 1

𝑞
൰ (𝑞 + 1)𝑔(𝑥; 𝜁)𝐺(𝑥; 𝜁)  

                        =  𝜈ାଵ

ஶ

ୀ

𝑔ାଵ(𝑥; 𝜁), 

 

where 

𝜈ାଵ = 
(−1)ାାା12𝑏

𝛾𝑘! (𝑞 + 1)

ஶ

,,,ୀ

൬
𝑘

𝑙
൰ ൬

−𝛾(𝑙 + 1) − 1

𝑚
൰

× ൬
𝑏(𝑚 + 1) − 1

𝑝
൰ ൬

2𝑝 + 1

𝑞
൰,                                         

 

   
and 𝑔ାଵ(𝑥; 𝜁) = (𝑞 + 1)𝑔(𝑥; 𝜁)𝐺(𝑥; 𝜁) is an Exp-G distribution with power parameter      
(𝑞 + 1). Therefore, the pdf of the Gom-TL-G family of distributions can be expressed as an 
infinite linear combination of the Exp-G distributions. See the appendix for the derivations. 
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2. Some Special Cases 

We present three special cases of the Gom-TL-G family of distributions in this section. We 
consider cases when the baseline distributions are Burr XII, Weibull and Lindley distributions. 

2.1 Gompertz-Topp-Leone-Burr XII (Gom-TL-BXII) Distribution 

If we take the Burr XII distribution as the baseline distribution, with cdf and pdf 𝐺(𝑥; 𝑐, 𝑘) =
1 − (1 + 𝑥)ି and 𝑔(𝑥; 𝑐, 𝑘) = 𝑘𝑐𝑥ିଵ(1 + 𝑥)ିିଵ, respectively, for 𝑐, 𝑘 > 0, we obtain the 
Gom-TL-BXII distribution with cdf and pdf given by 

𝐹(𝑥; 𝛾, 𝑏, 𝑐, 𝑘) = 1 − exp ቄభ

ം
[ଵି(ଵି[ଵି(ଵା௫)షమೖ]್)షം]ቅ  

and 

𝑓(𝑥; 𝛾, 𝑏, 𝑐, 𝑘) = 2𝑏𝑘𝑐𝑥ିଵ(1 + 𝑥)ିଶ(ାଵ)[1 − (1 + 𝑥)ିଶ]ିଵ

× (1 − [1 − (1 + 𝑥)ିଶ])ିఊିଵ                                

× exp ቄ
ଵ

ఊ
[ଵି(ଵି[ଵି(ଵା௫)షమೖ]್)షം]ቅ,                                 

 

respectively for 𝛾, 𝑏, 𝑐, 𝑘 > 0. When 𝑘 = 1, we obtain the Gompertz-Topp-Leone-Log-logistic 
(Gom-TL-LLoG) distribution. When 𝑐 = 1, we obtain the Gompertz-Topp-Leone-Lomax (Gom-
TL-Lomax) distribution. The pdf of the Gom-TL-BXII distribution can handle data that is left or 
right-skewed and symmetric shaped. Also, the hrf of the distribution exhibit increasing, 
decreasing, bathtub, J and reverse-J shapes. 

 

                

       Figure 1: Plots of the pdf and hrf for the Gom-TL-BXII distribution 

2.2 Gompertz-Topp-Leone-Weibull (Gom-TL-W) Distribution 

Consider the weibull distribution with cdf and pdf given by 𝐺(𝑥; 𝑎) = 1 − 𝑒ିఒ௫ೌ
 and 𝑔(𝑥; 𝑎) =

𝜆𝑎𝑥ିଵ𝑒ିఒ௫ೌ
, for 𝑎, 𝜆 > 0 respectively, as the baseline distribution. The cdf and pdf of the Gom-

TL-W distribution are given by 

𝐹(𝑥; 𝛾, 𝑏, 𝜆, 𝑎) = 1 − exp ቄ
ଵ

ఊ
[1 − (1 − [1 − 𝑒ିଶఒ௫ೌ

])ିఊ]ቅ 
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and 

𝑓(𝑥; 𝛾, 𝑏, 𝜆, 𝑎) = 2𝑏𝜆𝑎𝑥ିଵ𝑒ିଶఒ௫ೌ
[1 − 𝑒ିଶఒ௫ೌ

]ିଵ(1 − [1 − 𝑒ିଶఒ௫ೌ
])ିఊିଵ

× exp ቄ
ଵ

ఊ
[1 − (1 − [1 − 𝑒ିଶఒ௫ೌ

])ିఊ]ቅ,                                         
 

respectively, for 𝛾, 𝑏, 𝜆, 𝑎 > 0. The pdf of the Gom-TL-W distribution can handle data that has 
decreasing, left or right-skewed and almost symmetric shapes. Also, the hrf of the distribution 
exhibit increasing, decreasing, bathtub, J and reverse-J shapes. 

 

       Figure 2: Plots of the pdf and hrf for the Gom-TL-W distribution                                                                                     

2.3 Gompertz-Topp-Leone-Lindley (Gom-TL-L) Distribution 

If we take the baseline distribution to be the Lindley distribution with cdf and pdf 𝐺(𝑥; 𝜆) = 1 −

𝑒ିఒ (1 +
ఒ௫

ଵାఒ
) and 𝑔(𝑥; 𝜆) = 𝜆ଶ షഊ

ଵାఒ
(1 + 𝑥), for 𝜆 > 0, respectively, we obtain the Gom-TL-L 

distribution with cdf and pdf 

𝐹(𝑥; 𝛾, 𝑏, 𝜆) = 1 − exp ൝భ

ം
൭1 − ቈ1 − ൬𝑒ିఒ௫ ቀ1 +

ఒ௫

ଵାఒ
ቁ൰

ଶ





൱

ିఊ

൩ൡ  

and 

𝑓(𝑥; 𝛾, 𝑏, 𝜆) = 2𝑏𝜆ଶ షమഊೣ

ଵାఒ
(1 + 𝑥)(1 +

ఒ௫

ଵାఒ
)[1 − (𝑒ିఒ௫(1 +

ఒ௫

ଵାఒ
))ଶ]ିଵ

× (1 − [1 − ቀ𝑒ିఒ௫ ቀ1 +
ఒ௫

ଵାఒ
ቁ)ଶቃ)ିఊିଵ                                    

× exp ൝భ

ം
൭1 − ቈ1 − ൬𝑒ିఒ ቀ1 +

ఒ௫

ଵାఒ
ቁ൰

ଶ





൱

ିఊ

൩ൡ,                 

  

respectively, for 𝛾, 𝑏, 𝜆 > 0. The pdf of the Gom-TL-L distribution exhibits symmetric, left or 
right-skewed, J and reverse-J shapes. The hrf can handle data that is increasing, decreasing, bathtub 
and J-shaped. 
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                   Figure 3: Plots of the pdf and hrf for the Gom-TL-W distribution                                                                                    

3. Statistical Properties 

In this section, we provide some statistical properties of the Gom-TL-G family of distributions 
including the distribution of the 𝑖௧ order statistics, Rényi entropy, moments and the quantile 
function. 

4.1 Distribution of Order Statistics 

Let 𝑋ଵ, 𝑋ଶ, . . . , 𝑋 be random variables from the Gom-TL-G family of distributions and suppose 
that 𝑋ଵ: < 𝑋ଶ: <. . . < 𝑋: denotes the corresponding order statistics. The pdf of the 𝑖௧ order 
statistic is given by 

𝑓:(𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
 

(−1)ାାାା௦ା௭2𝑏(𝑘 + 1)

𝛾𝑝! (𝑧 + 1)

ି

ୀ

ஶ

,,,,,௦,௭ୀ

൬
𝑛 − 𝑖

𝑗
൰                                

× ൬
𝑗 + 𝑖 − 1

𝑘
൰ ൬

𝑝

𝑞
൰ ൬

−𝛾(𝑞 + 1) − 1

𝑟
൰ ൬

𝑏(𝑟 + 1) − 1

𝑠
൰                                                                     

× ൬
2𝑠 + 1

𝑧
൰ (𝑧 + 1)𝑔(𝑥; 𝜁)𝐺௭(𝑥; 𝜁)                                                                                                   

=  𝜂௭ାଵ

ஶ

௭ୀ

𝑔௭ାଵ(𝑥; 𝜁),                                                                                                                            

 

where 𝑔௭ାଵ(𝑥; 𝜁) = (𝑧 + 1)𝑔(𝑥; 𝜁)𝐺௭(𝑥; 𝜁) is an Exp-G distribution with power parameter   (𝑧 +
1) and linear component 
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𝜂௭ାଵ =
𝑖!

(𝑖 − 1)! (𝑛 − 𝑖)!
 

(−1)ାାାା௦ା௭2𝑏

𝛾𝑝! (𝑧 + 1)

ି

ୀ

ஶ

,,,,,௦ୀ

൬
𝑛 − 𝑖

𝑗
൰                   

× ൬
𝑗 + 𝑖 − 1

𝑘
൰ ൬

𝑝

𝑞
൰ ൬

−𝛾(𝑞 + 1) − 1

𝑟
൰ ൬

𝑏(𝑟 + 1) − 1

𝑠
൰ ൬

2𝑠 + 1

𝑧
൰.                 

 

Visit the appendix for derivations. 

4.2  Rényi Entropy 

Rényi entropy (Rényi[16]) is an extension of Shannon entropy (Shannon[19]). Rényi entropy of 
the Gom-TL-G family of distributions is given by 

𝐼ோ(𝜐) =
1

1 − 𝜐
log ቌ 𝜙ାଵ

ஶ

ୀ

𝑒(ଵିజ)ூೃಶಸቍ, 

where 

𝐼ோாீ =
1

1 − 𝜐
log ቆන ቀቂ1 +

𝑝

𝜐
ቃ 𝑔(𝑥; 𝜁)𝐺


జ(𝑥; 𝜁)ቁ

జஶ



𝑑𝑥ቇ, 

is the Rényi entropy of the Exp-G distribution with power parameter ቂ1 +


జ
ቃ and 

𝜙ାଵ = 
(−1)ାାା(2𝑏)జ𝜐

𝛾𝑖!

ஶ

,,,ୀ

൬
𝑖

𝑗
൰ ൬

−𝛾(𝜐 + 𝑗) − 𝜐

𝑘
൰

× ൬
𝑏(𝑘 + 𝜐) − 𝜐

𝑙
൰ ൬

2𝑙 + 𝜐

𝑝
൰.                                             

 

Therefore, Rényi entropy of the Gom-TL-G family of distributions can be readily derived from 
Rényi entropy of the Exp-G distribution. See the appendix for derivations. 

4.3  Moments and Generating Function 

Let 𝑋 ∼ Gom-TL-G(𝛾, 𝑏, 𝜁) and 𝑌 follow an Exp-G distribution with power parameter (𝑞 + 1). 
The 𝑟௧ ordinary moment of the Gom-TL-G family of distributions is given as 

𝐸(𝑋)  𝜈ାଵ

ஶ

ୀ

𝐸(𝑌), 

where 𝜈ାଵ is as given in equation (3) and 𝐸(𝑌) is the 𝑟௧ moment of the Exp-G distribution. The 
𝑟௧ incomplete moment of 𝑋 is given by 

𝜙(𝑧) = න 𝑥
௭

ିஶ

𝑓(𝑥; 𝑏, 𝛾, 𝜁)𝑑𝑥 =  𝜈ାଵ

ஶ

ୀ

න 𝑥
௭

ିஶ

𝑔(𝑥; 𝜁)𝑑𝑥. 
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The moment generating function (mgf) of 𝑋 is given as 

𝑀(𝑡) = 𝐸(𝑒௧) =  𝜈ାଵ

ஶ

ୀ

𝑀(𝑡), 

where 𝑀(𝑡) is the mgf of the Exp-G distribution. 

Figures 4 and 5 shows the 3D plots of skewness and kurtosis for the Gompertz-Topp-Leone-Log-
Logistic (Gom-TL-LLoG) and Gompertz-Topp-Leone-Lindley (Gom-TL-L) distributions. As 
observed from the figures, the Gom-TL-LLoG distribution can handle various levels of skewness 
and kurtosis when we fix different parameters. 

 

                                   

 

       Figure 4: Plots of skewness and kurtosis for the Gom-TL-LLoG distribution 

   

        Figure 5: Plots of skewness and kurtosis for the Gom-TL-L distribution 

4.3.1 Probability Weighted Moments 

The probability weighted moments (PWMs) of the GOM-TL-G family of distributions is defined 
as 
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𝜗, = 𝐸(𝑋𝐹(𝑋)) = න 𝑥
ஶ

ିஶ

𝑓(𝑥)[𝐹(𝑥)]𝑑𝑥. 

Using similar expansions from Section 4.1, we can write 

𝑓(𝑥)[𝐹(𝑥)] = 
(−1)ାାା௦ା௭2𝑏(𝑘 + 1)

𝛾𝑝!

ஶ

,,,,,௦,௭ୀ

൬
𝑖

𝑘
൰ ൬

𝑝

𝑞
൰                        

× ൬
−𝛾(𝑞 + 1) − 1

𝑟
൰ ൬

𝑏(𝑟 + 1) − 1

𝑠
൰ ൬

2𝑠 + 1

𝑧
൰ 𝑔(𝑥; 𝜁)𝐺௭(𝑥; 𝜁),

 

which can be written as 

𝑓(𝑥)𝐹(𝑥) =  𝜌௭ାଵ

ஶ

௭ୀ

𝑔௭ାଵ(𝑥; 𝜁), 

where 

𝜌௭ାଵ = 
(−1)ାାାା௦ା௭2𝑏(𝑘 + 1)

𝛾𝑝! (𝑧 + 1)
                        

ஶ

,,,,,௦ୀ

× ൬
𝑖

𝑘
൰ ൬

𝑝

𝑞
൰ ൬

−𝛾(𝑞 + 1) − 1

𝑟
൰ ൬

𝑏(𝑟 + 1) − 1

𝑠
൰ ൬

2𝑠 + 1

𝑧
൰ .

 

As such, the PWM of the Gom-TL-G family of distributions is given by 

𝜗, =  𝜌௭ାଵ

ஶ

௭ୀ

න 𝑥
ஶ

ିஶ

𝑔௭ାଵ(𝑥; 𝜁)𝑑𝑥 =  𝜌௭ାଵ

ஶ

௭ୀ

𝐸(𝑌), 

where 𝐸(𝑌) is the 𝑗௧ power of an Exp-G distribution with power parameter (𝑧 + 1). 

4.4 Quantile Function 

We invert the cdf of the Gom-TL-G family of distributions to obtain the quantile function. The 
quantile function for the Gom-TL-G family of distributions is given by 

𝑄(𝑢) = 𝐺ିଵൣ1 − (1 − [1 − (1 − 𝛾ln(1 − 𝑢))ଵ/ఊ]ଵ/)ଵ/ଶ൧. 

Visit the appendix for the derivations. 

4. Maximum Likelihood Estimation 

Let 𝑋 ∼ Gom-TL-G(𝛾, 𝑏, 𝜁) and 𝛥 = (𝛾, 𝑏, 𝜁)் be the parameter vector. The log-likelihood ℓ =
ℓ(𝛥) from a random sample of size n is given by 
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ℓ(𝛥) = 𝑛log(2𝑏) +  ln



ୀଵ

[𝑔(𝑥; 𝜁)] +  ln



ୀଵ

[𝐺‾(𝑥; 𝜁)] + (𝑏 − 1)  ln



ୀଵ

[1 − 𝐺‾ଶ(𝑥; 𝜁)]

− (𝛾 + 1)  ln



ୀଵ

[1 − [1 − 𝐺‾ଶ(𝑥; 𝜁)]] + 
1

𝛾



ୀଵ

[1 − (1 − [1 − 𝐺‾ଶ(𝑥; 𝜁)])ିఊ].

 

The elements of the score vector are given in the appendix. The maximum likelihood estimates of 

the parameters, are determined by solving the non-linear equation ቀ
డℓ

డఊ
,

డℓ

డ
,

డℓ

డೖ
ቁ = 𝟎, using a 

numerical method such as Newton-Raphson procedure. The multivariate normal distribution 
𝑁ାଶ(𝟎, 𝐽(𝜟)ିଵ), where the mean vector 𝟎 = (0,0, 0)் and 𝐽(𝜟)ିଵis the observed Fisher 
information matrix evaluated at 𝜟 can be used to construct confidence intervals and confidence 
regions for the individual model parameters and for the survival and hazard rate functions. 

5. Simulation Study 

The consistency of the maximum likelihood estimates is examined is this section by conducting a 
simulation study for the Gom-TL-LLoG model. We simulated for the sample sizes n=25, 50, 100, 
200, 400, 800 and 1000 for N=1000 for each sample. If the model performs better, we expect the 
mean to approximate the true parameter values, the Root Mean Square Error (RMSE) to decrease 
and the average bias to decay toward zero for an increase in sample size. From the results shown 
in Table 1, the mean values approximate the true parameter values, RMSE decreases and bias 
decay towards zero for all the parameter values with increasing sample size. 

Table 1:  Monte Carlo Simulation Results for Gom-TL-LLoG Distribution:Mean, RMSE and 
Average Bias 

   
𝛾 = 0.1, 𝑏 = 0.9, 𝑐 = 0.9 

  
𝛾 = 1.0, 𝑏 = 1.0, 𝑐 = 1.5 

 
Parameter n Mean RMSE Bias Mean RMSE Bias 

        
 25 2.4420 4.7691 1.4420 2.0594 6.1418 1.9594 
 50 1.7943 2.2077 0.7943 0.8825 1.6980 0.7825 
 100 1.6588 2.2381 0.6588 0.5146 0.8118 0.4146 

𝛾 200 1.5650 1.4388 0.5650 0.3340 0.4574 0.2340 
 400 1.3386 1.0098 0.3386 0.2027 0.1857 0.1027 
 800 1.2483 0.8553 0.2483 0.1534 0.1248 0.0534 
 1000 1.2043 0.7306 0.2043 0.1386 0.0959 0.0386 
 25 1.5296 1.1846 0.5296 1.8725 1.5882 0.9725 
 50 1.3477 0.8758 0.3477 1.4851 0.9772 0.5851 
 100 1.2773 0.8461 0.2773 1.2833 0.6381 0.3833 

𝑏 200 1.2752 0.7667 0.2752 1.1479 0.4272 0.2479 

 

400 
800 

1.1696 
1.1224 

0.5981 
0.5232 

0.1696 
0.1224 

1.0268 
0.9686 

0.2244 
0.1567 

0.1268 
0.0686 

1000 1.1031 0.4668 0.1031 0.9527 0.1228 0.0527 
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 25 1.6006 1.4186 0.1006 0.6161 0.4148 -0.2839 

𝑐 

50 
100 

1.5554 
1.6294 

0.9855 
0.9612 

0.0554 
0.1294 

0.6860 
0.7340 

0.3349 
0.2696 

-0.2140 
-0.1660 

200 
400 

1.5859 
1.5895 

0.8821 
0.7252 

0.0859 
0.0895 

0.7757 
0.8253 

0.2136 
0.1449 

-0.1243 
-0.0747 

 
800 
1000 

1.5792 
1.5694 

0.6155 
0.5682 

0.0792 
0.0694 

0.8582 
0.8675 

0.1111 
0.0929 

-0.0418 
-0.0325 

 
 

 
𝛾 = 1.5, 𝑏 = 1.1, 𝑐 = 1.5 

 
𝛾 = 0.3, 𝑏 = 0.7, 𝑐 = 0.7 

 
Parameter n Mean RMSE Bias Mean RMSE Bias 

        
 25 2.6994 5.1845 1.1994 1.5159 2.3441 1.2159 
 50 2.1332 2.1682 0.6332 1.1071 1.3022 0.8071 
 100 2.0676 2.1983 0.5676 0.9407 1.0320 0.6407 

𝛾 200 1.8996 1.2653 0.3996 0.7658 0.7301 0.4658 
 400 1.7683 1.0095 0.2683 0.6678 0.5420 0.3678 
 800 1.6793 0.8579 0.1793 0.5341 0.2598 0.2341 
 1000 1.6684 0.7913 0.1684 0.5182 0.2238 0.2182 
 25 1.4570 1.0134 0.3570 1.4538 1.1349 0.7538 
 50 1.3171 0.7757 0.2171 1.2776 0.8524 0.5776 
 100 1.2936 0.7707 0.1936 1.1932 0.7232 0.4932 

𝑏 200 1.2537 0.6535 0.1537 1.0977 0.5773 0.3977 
 400 1.2050 0.5442 0.1050 1.0293 0.4630 0.3293 
 800 1.1638 0.4836 0.0638 0.9390 0.2531 0.2390 
 1000 1.1634 0.4482 0.0634 0.8984 0.2081 0.1984 
 25 1.8362 1.8039 0.3362 0.5133 0.3976 -0.1867 
 50 1.7942 1.4149 0.2942 0.5252 0.3088 -0.1748 
 100 1.7491 1.1559 0.2491 0.5307 0.2611 -0.1693 

𝑐 200 1.6920 0.9223 0.1920 0.5572 0.2491 -0.1428 
 400 1.6356 0.7130 0.1356 0.5682 0.2234 -0.1318 
 800 1.6276 0.6087 0.1276 0.5674 0.1435 -0.1326 
 1000 1.5950 0.5372 0.0950 0.5832 0.1224 -0.1168 

 

6. Applications 

In this section, we present real data examples to demonstrate the usefulness of the Gom-TL-LLoG 
distribution. The proposed model is compared to various competing non-nested models. Different 
goodness-of-fit statistics are used to examine the performance of the model and these are: -
2loglikelihood (-2 log L), Akaike Information Criterion (AIC), Consistent Akaike Information 
Criterion (AICC), Bayesian Information Criterion (BIC), Cramér-von Mises (𝑊∗), Andersen-
Darling (𝐴∗) (Chen and Balakrishnan [4]), Kolmogorov-Smirnov (K-S) and its p-value. The model 
that has the smallest values of the goodness-of-fit statistics and a bigger p-value for the K-S statistic 
is deemed as the best fitting model.  
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The maximum likelihood estimation technique using the nlm package in R software was used to 
estimate model parameters. Tables 2, 3, 4 and 5 contains parameter estimates of the model 
alongside their standard errors which are shown in parenthesis, as well as the goodness-of-fit-
statistics for the two data sets. Additionally, fitted Empirical Probability Distribution Function 
(EPDF), Probability plots, Kaplan-Meier, Empirical Cumulativ Distribution function (ECDF), 
Total Time on Test (TTT) and Hazard Rate Funtion (HRF) plots are presented to show how the 
Gom-TL-LLoG model fits the selected data sets. The measure of closeness of the probability plots 
to the diagonal line was determined and is given by the sum of squares 

𝑆𝑆 =  𝐹൫𝑥(); 𝛾ො, 𝑏, 𝜁መ൯ − ൬
𝑖 − 0.375

𝑛 + 0.25
൰൨

ଶ

ୀଵ

. 

The non-nested models considered in this paper are the Kumaraswamy inverse Gompertz (KulG) 
by El-Morshedy et al. [9], generalized Gompertz (GG) by El-Gohary et al. [8], Topp-Leone Lomax 
(TLLo) by Oguntunde et al. [15], Topp-Leone generalized exponential (TL-GE) by Sangsanit and 
Bodhisuwan [18], Topp-Leone-Marshall-Olkin-log logistic (TL-MO-LLo) by Chipepa et al. [5] 
and alpha power Weibull (APW) (Nassar et al. [14]) distributions. The pdfs of the non-nested 
models are: 

𝑓௨ீ(𝑥; 𝛼, 𝛽, 𝛾) =
𝛼𝛾

𝑥ଶ
𝑒

ఉ
௫ 𝑒

ି
ఈ
ఉ


ഁ
ೣ ିଵ

(1 − 𝑒
ି

ఈ
ఉ


ഁ
ೣ ିଵ

)ఊିଵ, 

for 𝛼, 𝛽, 𝛾 > 0, 

𝑓 ீ(𝑥; 𝜆, 𝑐, 𝜃) = 𝜃𝜆𝑒ି
ఒ


(ೣିଵ) 

for 𝜆, 𝑐, 𝜃 > 0, 

𝑓 (𝑥; 𝑎, 𝑏, 𝑐) = 2𝑎𝑏𝑐(1 + 𝑐𝑥)ି(ଶାଵ)[1 − (1 + 𝑐𝑥)ିଶ]ିଵ, 

for 𝑎, 𝑏, 𝑐 > 0, 

𝑓 ିெைି(𝑥; 𝑏, 𝛿, 𝑐) =
2𝑏𝛿ଶ𝑐𝑥ିଵ(1 + 𝑥)ିଷ

[1 − 𝛿‾(1 + 𝑥)ିଵ]ଷ
[1 −

𝛿ଶ(1 + 𝑥)ିଶ

[1 − 𝛿‾(1 + 𝑥)ିଵ]ଶ
]ିଵ, 

for 𝑏, 𝛿, 𝑐 > 0, 

𝑓 ିீா(𝑥; 𝛼, 𝛽, 𝜆) = 2𝛼𝛽𝜆𝑒ିఒ௫(1 − (1 − 𝑒ିఒ௫)ఉ(1 − 𝑒ିఒ௫)ఉఈିଵ(2 − (1 − 𝑒ିఒ௫)ఉ))ఈିଵ, 

for 𝛼, 𝛽, 𝜆 > 0, and 

𝑓ௐ(𝑥; 𝛼, 𝛽, 𝜃) =
log(𝛼)

(𝛼 − 1)
𝛽𝜃𝑥ఉିଵ𝑒ିఏ௫ഁ

𝛼ଵିషഇೣഁ

, 

for 𝛼, 𝛽, 𝜃 > 0. 
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7.1 Survival Times Data 

The first data represents survival times in weeks for male rats that were exposed to a high level of 
radiation. The data was reported by Lawless [13] and the observations are: 40, 62, 69, 77, 83, 88, 
94, 101, 109, 115, 123, 125, 128, 136, 137, 152, 152, 153, 160, 165.               

            Table 2 Parameter estimates for various models fitted for survival times data set 

Model 𝛾 b c 

Gom-TL-LLoG 10.7072 
(5.1081) 

182.8135 
(0.1988) 

0.4695 
(0.0227)  

𝛼 𝛽 𝛾 

KulG 348.6700 
(75.6200) 

5.1950 × 10ି 
(0.0868) 

17.9060 
(11.3840)  

𝜆 𝑐 𝜃 

GG 0.0275 
(5.6764 × 10ିଷ) 

2.2161 × 10ି 
(3.2946 × 10ିଷ) 

12.9460 
(9.7046 × 10ି) 

 
𝑎 𝑏 𝑐 

TLLo 13.0860 
(2.1272 × 10ିଵଵ) 

142.3300 
(5.7970 × 10ିଵଶ) 

9.7644 × 10ିହ 
(8.3970 × 10ି) 

 
𝛼 𝛽 𝜆 

TL-GE 0.2424 
(0.0916) 

43.0850 
(4.3233 × 10ିସ) 

0.0234 
(3.0587 × 10ିଷ) 

 𝑏 𝛿 𝑐 

TL-MO-LLo 1.1568 
(0.3632) 

7.2778 × 10 
(3.6089 × 10ିଵ) 

3.7108 
(0.0847) 

 𝛼 𝛽 𝜆 

APW 6.4700 × 10ଽ 
(5.1975 × 10ିଵସ) 

0.6110 
(0.0778) 

0.1951 
(0.7085) 

 
Table 3 Goodness-of-fit statistics for various models fitted for survival times data set 

 

Model -2 log 
L AIC AICC BIC W* A* KS P-value 

SS 

Gom-TL-LLoG 197.1 203.1 204.6 206.1 0.0255 0.1971 0.1240 0.9184 0.0334 

KulG 202.6 208.6 210.1 211.6 0.0756 0.5224 0.1617 0.6723 0.0888 

GG 203.1 209.1 210.6 212.1 0.0805 0.5496 0.1401 0.8274 0.0698 

TLLo 203.1 209.1 210.6 212.1 0.0811 0.5532 0.1409 0.8220 0.0712 

TL-GE 201.1 207.1 208.6 210.1 0.0601 0.4223 0.1393 0.8328 0.0594 

TL-MO-LLo 201.4 207.4 208.9 210.4 0.0604 0.4106 0.1457 0.7899 0.0655 

APW 208.4 214.4 215.9 217.4 0.0825 0.5615 0.2384 0.2057 0.1484 

The estimated variance-covariance matrix from the survival times data is given by 
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26.0923 1.0157 −0.1131
1.0157 0.0395 −0.0044

−0.1131 −0.0044 0.0005

൩ 

and the 95% confidence intervals for the model parameters are given by 𝛾 ∈ [10.7072 ±
10.0118], 𝑏 ∈ [182.8135 ± 0.3897] and 𝑐 ∈ [0.4695 ± 0.0444].  

Results in Tables 2 and 3 indicate that the Gom-TL-LLoG model performs better than the non-
nested models considered on survival times data because it has the lowest values of the goodness-
of-fit statistics, K-S (and the largest p-value for the K-S statistic) and the SS values. The EPDF 
and probability plots in Figure 6 shows how well the new model fits the data. Furthermore, we 
conclude that our model is performing well because the observed and fitted Kaplan-Meier and 
ECDF curves are close to each other as illustrated in Figure 7. The TTT plot is above the diagonal 
line indicating an increasing HRF as shown in Figure 8. 

             

Figure 6: Fitted Density and Probability plots for survival times data 

           

          Figure 7: Fitted Kaplan-Meier and ECDF plots for survival times data 
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        Figure 8: Fitted TTT and HRF plots for survival times data 

7.2 Maximum Rainfall Data 

The second data set considered by Bakouch et al. [3] describes the maximum rainfall in mm of the 
whole year of Jiwani town located along the Gulf of Oman in the Gwadar district of the Balochistan 
province in Pakistan from 1981 to 2010. The observations are: 21.7, 172.9, 69.5, 96.5, 12.6, 265.5, 
154, 28, 142.8, 14.2, 74.8, 32.5, 25, 28.5, 113.8, 25.7, 116.3, 28, 16.9, 6, 9, 17.6, 47.3, 55, 129, 72, 
92, 28, 113, 194. 

Table 4 Parameter estimates for various models fitted for maximum rainfall data set 

Model 𝛾 b c 

Gom-TL-LLoG 1.2426 
(1.0485) 

35.7013 
(17.7949) 

0.4178 
(0.1056) 

 𝛼 𝛽 𝛾 

KulG 1.0000 
(0.5711) 

28.7642 
(5.3004) 

0.2942 
(0.0675) 

 𝜆 𝑐 𝜃 

GG 0.0065 
(0.0035) 

0.0070 
(0.0038) 

0.8564 
(0.2831) 

 𝑎 𝑏 𝑐 

TLLo 1.3575 
(1.5971 × 10ିଽ) 

56.3250 
(6.2835 × 10ିଵଵ) 

1.4747 × 10ିସ 

(2.3798 × 10ିହ) 

 𝛼 𝛽 𝜆 

TL-GE 0.0180 
(4.2848 × 10ିଷ) 

72.2050 
(1.0063 × 10ି) 

0.0154 
(3.0172 × 10ିଷ) 

 𝑏 𝛿 𝑐 

TL-MO-LLo 26.4112 
(6.4742) 

0.5899 
(0.1067) 

0.3355 
(0.0469) 

 𝛼 𝛽 𝜆 

APW 1.0647× 10ଵଵ 
(3.2013 × 10ିଵସ) 

0.3420 
(0.0404) 

0.9397 
(0.1514) 
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Table 5 Goodness-of-fit statistics for various models fitted for maximum rainfall data set 
 

Model 
-2 log 

L AIC AICC BIC W* A* KS P-value 
SS 

Gom-TL-LLoG 314.7 320.7 321.6 324.9 0.0760 0.3935 0.1541 0.4746 0.0885 

KulG 349.1 355.1 356.1 359.3 0.3381 2.1410 0.3050 0.0075 0.8894 

GG 319.0 325.0 325.9 329.2 0.1041 0.6241 0.2021 0.1725 0.1745 

TLLo 316.5 322.5 323.4 326.7 0.0948 0.5081 0.1678 0.3671 0.1002 

TL-GE 316.2 322.2 323.1 326.4 0.0910 0.4920 0.1690 0.3580 0.0977 

TL-MO-LLo 341.3 347.3 348.3 351.5 0.0906 0.5163 0.2685 0.0265 0.6527 

APW 317.0 323.0 324.0 327.2 0.0916 0.4979 0.1671 0.3724 0.1187 

The estimated variance-covariance matrix from the maximum rainfall data is given by 


1.0994 −14.6116 −0.1025

−14.6116 316.6586 1.7727
−0.1025 1.7727 0.0112

൩ 

and the 95% confidence intervals for the model parameters are given by 𝛾 ∈ [1.2426 ± 2.0551], 
𝑏 ∈ [35.7013 ± 34.8780] and 𝑐 ∈ [0.4178 ± 0.2070]. The Gom-TL-LLoG model performs 
better than the non-nested models considered in this paper on maximum rainfall data as shown by 
Table 3. The fitted density plot and probability plot in Figure 9 shows how well the new model fits 
the data. The EPDF plot also indicates that our model can be applied to heavy tailed data. The 
observed and fitted Kaplan-Meier and ECDF curves are close to each other as illustrated by Figure 
10, a clear indication that the model is performing well. The HRF plot which is an updside-down 
bathtub is reflecting what is suggested by the TTT plot in Figure 11. 

  

Fitted 9: Fitted Density and Probability plots for maximum rainfall data 
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           Figure 10: Fitted Kaplan-Meier and ECDF plots for maximum rainfall data 

 

                                 

                 Figure 11: Fitted TTT and HRF plots for maximum rainfall data                        

8 Concluding Remarks 

A new family of distributions called the Gompertz-Topp-Leone-G distribution have been 
developed. Distributional properties of this model are derived. Estimation of the model parameters 
via the method of maximum likelihood is presented. A simulation study to assess the performance 
of the maximum likelihood estimates was conducted. Application of the Gom-TL-LLoG model to 
real data sets is presented to illustrate its applicability and usefulness. 

Appendix 

The following URL contains derivations of statistical properties and elements of the score vector. 
https://drive.google.com/file/d/1276L6LZn2_Qz_hrOf1YOga6qeds3Kg1E/view?usp=sharing 
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