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ABSTRACT 

A generalized log-logistic (GLL) family of lifetime distributions is one in which any pair 

of distributions are related through a GLL transformation, for some (non-negative) value 

of the transformation parameter  (the odds function of the second distribution is the -th 

power of the odds function of the first distribution).  We consider GLL families generated 

from an exponential distribution.  It is shown that the Maximum Likelihood Estimators 

(MLE’s) for the parameters of the generated, or composite, distribution have the properties 

of strong consistency and asymptotic normality and efficiency.  Data simulation is also 

found to support the condition of asymptotic efficiency.    
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1. Introduction.   
Gleaton and Rahman (2010) examined the asymptotic properties of the maximum 
likelihood estimators for parameters of a distribution generated from a 2-parameter Weibull 
distribution through a generalized log-logistic (GLL) transformation, defined below.   It 
was shown that, under certain restrictions on the parameter space, the MLE’s are strongly 
consistent and asymptotically normal and efficient. 

In an earlier paper, Gleaton and Lynch (2006), discussed properties of lifetime 
distributions belonging to families generated by a GLL transformation: 

𝐺(𝑥) = Λ ∘ 𝐺(𝑥) =
൫𝐺(𝑥)൯



൫𝐺(𝑥)൯


+ ൫�̅�(𝑥)൯
 , 𝑓𝑜𝑟 𝑥 > 0, 

relating two lifetime distribution functions  G x  and  G x .  Here the distribution  G x  

may also be a function of an m-dimensional non-negative parameter vector 𝜽 =
(𝜃ଵ, 𝜃ଶ , … , 𝜃).  The transformation is defined for each  > 0 by 

Λ(𝑢) = ቈ1 + ൬
𝑢ത

𝑢
൰





ିଵ

, 𝑓𝑜𝑟 0 < 𝑢 < 1, 

where 𝑢ത = 1 − 𝑢. 
 
In introducing GLL families of lifetime distributions, Gleaton and Lynch (2006) showed 
that: 

 The set of GLL transformations forms an abelian group with the binary 
operation of composition. 

 The group partitions the set of all lifetime distributions, with any two 
members of an equivalence class being related to each other through a GLL 
transformation. 

 Either every distribution in an equivalence class has a moment generating 
function (m.g.f.), or none does, and every distribution in an equivalence 
class has the same number of moments. 

 Each equivalence class is linearly ordered according to the transformation 
parameter, with larger values of the parameter corresponding to smaller 
dispersion of a distribution about the common class median. 

 The log-odds rates,  

𝜔 =
𝑑

𝑑𝑥
[𝑙𝑛(𝐺/�̅�)] = 𝜅

𝑑

𝑑𝑥
[𝑙𝑛(𝐺/�̅�)] = 𝜅𝜔, 

for any two distributions in an equivalence class are the same apart from a 
multiplicative constant, which is the transformation parameter.  The above 
equation may be taken as the defining characteristic of GLL families. 

 Within an equivalence class, the Kullback-Leibler information is an 
increasing function of the ratio of transformation parameters. 

In each equivalence class, one arbitrarily chosen distribution (often taken to be the 
distribution whose c.d.f. is of simplest form) called the embedded distribution, may be 
considered the generator of the class.  The other distributions in the class are called 
composite distributions. 
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 Since the introduction of this family of distributions by Gleaton and Lynch (2006), 
other researchers have extended the family through composition of the GLL transformation 
with other monotone transformations and have applied the GLL family and the extended 
families to fitting data sets from various sources. 
 For example, Cordeiro, et. al. (2017) extended the family by composing the GLL 
transformation with a power transformation, leading to the generalized odd log-logistic 
(GOLL) family, which could also be called the GLL-Exponentiated family.  They applied 
this composite transformation to normal, Weibull, and gamma distributions.  In each case, 
they examined quantiles, moments, order statistics, hazard rates, and MLE’s.  They applied 
the distribution families to fitting a set of data consisting of lifetimes of a sample of n = 50 
industrial devices.  They found that the GOLL-Weibull(2) distribution provided a better fit 
than a Weibull(2) distribution. 
 In another example, Cordeiro, et. al. (2015) extended the family by composing the 
GLL transformation with a Zografos-Balakrishnan (2009) transformation, yielding what 
they termed a Zografos-Balakrishnan odd log-logistic (ZBOLL) family of distributions.  
They examined various generating distributions, including the Weibull(2), normal, and 
Gumbel distributions.  They examined quantiles, entropies, order statistics, and MLE’s for 
the resulting families of distributions.  They then applied these distributions to two data 
sets.  In the first case, they found that a ZBOLL-Weibull(2) distribution provided a good 
fit to as set of data consisting of the logarithm of the time to first calving for a sample of n 
= 897 female Brazilian Newlore breed cattle.  In the second case, the found that ZBOLL-
Normal distribution provided a good fit to a data set consisting of the daily temperatures 
for a city in Brazil over a one-year period. 
 Gleaton and Lynch followed their paper on GLL distributions (2006) with another 
paper extending the family by composing the GLL transformation with a proportional odds 
transformation (2010).  In this paper, they also found that a GLL-Exponential distribution, 
the subject of the current paper, provided a better fit than a Weibull(2) distribution to a set 
of data consisting of the tensile breaking strengths of n = 64 ten-millimeter-long carbon 
fibers. 

In this paper, we establish sufficient conditions for the asymptotic properties of the 
MLE’s of the parameters of GLL-Exponential distributions, in which the generating 
distribution is exponential, with c.d.f. given by: 
                                                    𝐺(𝑥|𝜆) = ൫1 − 𝑒ିఒ௫൯𝐼(,ஶ)(𝑥),                                         (𝟏. 𝟏)   
where 𝜆 > 0.  The c.d.f. of the transformed distribution is  

                                        𝐺(𝑥|𝜆) =
൫1 − 𝑒ିఒ ൯



(1 − 𝑒ିఒ௫) + 𝑒ିఒ
𝐼(,ஶ)(𝑥),                                (𝟏. 𝟐)   

In Section 2, we present the regularity conditions that must be satisfied for the 
desired asymptotic properties of the MLE’s to hold.  In Section 3, we prove a theorem that 
shows that, if the value of the transformation parameter exceeds 1, the likelihood equations 
have a sequence of solutions satisfying conditions of strong consistency and asymptotic 
normality and efficiency.  In Section 4, simulation is used to verify that asymptotic 
efficiency of the MLE’s is satisfied for various values of the parameters.  Throughout the 
following sections, whenever there is no ambiguity, the argument 𝑥 may be omitted as 
understood.   

 
2. Regularity conditions for asymptotic properties of MLE’s.   
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For a given probability p.d.f. 𝑓(𝑥; 𝜽) depending on an m-dimensional parameter 
vector 𝜽, it is well-known that the MLE’s of the parameters of the distribution are jointly 
strongly consistent and asymptotically normally distributed and efficient if certain 
regularity conditions are satisfied.  The conditions are (Schervish, 1995; Serfling, 1980; 
Stuart, et. al., 1999; Wijsman, 1973; Wilks, 1962): 

a) For almost all x, the derivatives 
𝜕𝑙𝑛(𝑓)

𝜕𝜃
,
𝜕ଶ𝑙𝑛(𝑓)

𝜕𝜃𝜕𝜃
, and

𝜕ଷ𝑙𝑛(𝑓)

𝜕𝜃𝜕𝜃𝜕𝜃
 

exist for all values of 𝜽 belonging to a nongenerate open parameter space, Ω. 
b) For all 𝜃 𝜖 Ω, where 

ฬ
𝜕𝑓

𝜕𝜃
ฬ < 𝐹ଵ(𝑥), ቤ

𝜕ଶ𝑓

𝜕𝜃𝜕𝜃
ቤ < 𝐹ଶ(𝑥), and ቤ

𝜕ଷ𝑓

𝜕𝜃𝜕𝜃𝜕𝜃
ቤ < 𝐻(𝑥), 

the functions 𝐹ଵ(𝑥) and 𝐹ଶ(𝑥) are integrable with respect to 𝑥 over (−∞, +∞), for all 
𝑖, 𝑗𝜖{1, 2, … , 𝑚}, and  

න 𝐻(𝑥)𝑓(𝑥; 𝜽)𝑑𝑥

ஶ

ିஶ

< 𝑀 , 

where 𝑀  is positive and independent of 𝜽, for all 𝑖, 𝑗, 𝑘𝜖{1,2, … , 𝑚}. 
c) For all 𝜽 𝜖 Ω, 

න ቆ
𝜕𝑙𝑛(𝑓)

𝜕𝜃
ቇ

ଶ

𝑓(𝑥; 𝜽)

ஶ

ିஶ

𝑑𝑥 

is positive and finite for 𝑖𝜖{1, 2, … , 𝑚}.   
 
3. Asymptotic properties of MLE’s for distributions generated by a 
GLL transformation of an exponential distribution.   

In this section, the regularity conditions will be verified for the class of continuous 
lifetime distributions generated from an exponential distribution by a GLL transformation.  
Throughout, the value of the transformation parameter κ is assumed to be greater than 1. 

If the embedded, or generating, distribution for a GLL equivalence class has a p.d.f. 
of exponential-class form, then the other members of the equivalence class are not 
members of exponential families, since their p.d.f.’s have the form 

        𝑔(𝑥) =
𝜅൫𝐺(𝑥)�̅�(𝑥)൯

ିଵ
𝑔(𝑥)

ൣ൫𝐺(𝑥)൯


+ ൫�̅�(𝑥)൯


൧
ଶ =

𝜅𝜆

𝐺(𝑥)
Λ൫𝐺(𝑥)൯Λ൫�̅�(𝑥)൯, 𝑓𝑜𝑟 𝑥 ≥ 0.          (𝟑. 𝟏) 

It is not possible to write this function in exponential-class form, unless κ =1. 
 The hazard rate for the GLLE distribution is then 

ℎ(𝑥) =
𝑔(𝑥)

�̅�(𝑥)
= 𝜅Λ൫𝐺(𝑥)൯

𝑔(𝑥)

𝐺(𝑥)�̅�(𝑥)
= 𝜅𝜆

𝐺(𝑥)

𝐺(𝑥)
. 

It is clear that, for κ = 1, ℎଵ(𝑥) =  𝜆, the exponential hazard rate. 
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LEMMA 3.1:  For a GLLE(λ, κ) distribution, the first, second, and third partial derivatives 
of the natural logarithm of the density function with respect to the components of the 
parameter vector exist for all 𝑥 ∈ (0, ∞), for 𝜅 > 1. 
PROOF:  Gleaton and Rahman (2010) proved that, for a two-parameter Weibull generating 
distribution, the first-, second-, and third partial derivatives of the natural logarithm of the 
GLL-Weibull(2) p.d.f. with respect to the parameters exist for all 𝑥 ∈ (0, +∞) for 𝜅 > 1.  
Since the GLLE distribution is a GLL-Weibull(2) with shape parameter 1, this shows that 
the first regularity condition holds for GLLE distributions.                                                

 
Gleaton and Rahman (2010) also showed that the remaining regularity conditions 

hold for a GLL-Weibull(2) distribution, provided 𝜅 > 3.  In this paper, the remaining 
regularity conditions will be addressed for the subset of GLLE distributions, with the 
restriction on κ relaxed. 
 It is straightforward to show that  

                                                  
∂Λ(𝑢)

𝜕𝜅
= Λ(𝑢)Λ(𝑢ത) ln ቀ

𝑢

𝑢ത
ቁ,                                        (𝟑. 𝟐. 𝒂) 

and that  

                                                  
∂Λ(𝑢)

𝜕𝜆
= κΛ(𝑢)Λ(𝑢ത)

𝜕𝑢
𝜕𝜆
𝑢𝑢ത

.                                           (𝟑. 𝟐. 𝒃) 

 
3.1  First partial derivatives of the density function with respect to the 
parameters 
LEMMA 3.2:  For a GLLE(λ, κ) distribution, the first partial derivatives of the density 
function with respect to the components of the parameter vector are bounded in absolute 
value by integrable functions for 𝜅 > 1.   
PROOF:  We have, using (3.1) and (3.2.b),  

       
𝜕𝑔

𝜕𝜆
=

1

𝜆
𝑔(𝑥) − 𝑥

�̅�(𝑥)

𝐺(𝑥)
𝑔(𝑥) + 𝜅

𝑥

𝐺(𝑥)
ቀΛ൫�̅�(𝑥)൯ − Λ൫𝐺(𝑥)൯ቁ 𝑔(𝑥).         (𝟑. 𝟑) 

Then, for 𝜅 > 1, we may use Lemmas 1 and 3 from the Appendix to obtain 

                 ฬ
𝜕𝑔

𝜕𝜆
ฬ ≤

1

𝜆
𝑔(𝑥) + 𝑀ఎ𝑔(𝑥) + 𝜅2ିଵ𝑀ఎ𝑔(𝑥) + 𝜅2ିଵ𝑥𝑔(𝑥).               (𝟑. 𝟒) 

Since all moments of the composite distribution exist (Gleaton and Lynch, 2006), all terms 
on the RHS are integrable.  Hence, the first partial derivative of the p.d.f. with respect to 
the scale parameter is bounded in absolute value by an integrable function. 
 Next, using (3.1) and (3.2.a),  

                   
𝜕𝑔

𝜕𝜅
=

1

𝜅
𝑔(𝑥) + 𝑔(𝑥) ቀΛ൫�̅�(𝑥)൯ − Λ൫𝐺(𝑥)൯ቁ 𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ.                   (𝟑. 𝟓) 

Using Lemma 1 in the Appendix, we find, for 𝜅 > 1, 

ฬ
𝜕𝑔

𝜕𝜅
ฬ ≤

1

𝜅
𝑔(𝑥) + 2𝑔(𝑥) ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ 

                       ≤
1

𝜅
𝑔(𝑥) + 2𝑔(𝑥)ห𝑙𝑛൫𝐺(𝑥)൯ห + 2𝑔(𝑥)ห𝑙𝑛൫�̅�(𝑥)൯ห.                       (𝟑. 𝟔) 
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The first term is integrable.  Each of the other two terms is integrable by Lemma 4 in the 
Appendix.  Hence, the first partial derivative of the p.d.f. with respect to the transformation 
parameter is bounded in absolute value by an integrable function for 𝜅 > 1.                                                                                                                             
 
3.2  Second partial derivatives of the density function with respect to the 
parameters 
LEMMA 3.3:  For a GLLE(λ, κ) distribution, the second partial derivatives of the density 
function with respect to the components of the parameter vector are bounded in absolute 
value by integrable functions for 𝜅 > 1.   
PROOF:    We have, using (3.3) and (3.2.b),  

𝜕ଶ𝑔

𝜕𝜆ଶ
= −

1

𝜆ଶ
𝑔(𝑥) +

1

𝜆

𝜕𝑔

𝜕𝜆
+

𝑥ଶ�̅�(𝑥)

൫𝐺(𝑥)൯
ଶ 𝑔(𝑥) −

𝑥�̅�(𝑥)

𝐺(𝑥)

𝜕𝑔

𝜕𝜆
 

−𝜅
𝑥ଶ�̅�(𝑥)

൫𝐺(𝑥)൯
ଶ ቀ1 − 2Λ൫𝐺(𝑥)൯ቁ 𝑔(𝑥) −

2𝜅ଶ𝑥ଶ

൫𝐺(𝑥)൯
ଶ Λ൫𝐺(𝑥)൯Λ൫�̅�(𝑥)൯𝑔(𝑥) 

                                              +
𝜅𝑥

𝐺(𝑥)
ቀ1 − 2Λ൫𝐺(𝑥)൯ቁ

𝜕𝑔

𝜕𝜆
.                                              (𝟑. 𝟕) 

Thus, for 𝜅 > 1, using Lemmas 1 and 3 in the Appendix, 

ቤ
𝜕ଶ𝑔

𝜕𝜆ଶ
ቤ ≤

1

𝜆ଶ
𝑔(𝑥) +

1

𝜆
ฬ
𝜕𝑔

𝜕𝜆
ฬ + 𝑀ఔ𝑔(𝑥) + 𝑀ఎ ฬ

𝜕𝑔

𝜕𝜆
ฬ 

                                +𝜅𝑀ఔ𝑔(𝑥) + 𝜅ଶ2ଶିଵ𝑀ఔ𝑔(𝑥) +
𝜅𝑥

𝐺(𝑥)
ฬ
𝜕𝑔

𝜕𝜆
ฬ.                              (𝟑. 𝟖) 

The first six terms on the RHS are obviously integrable.  We expand the seventh term on 
the RHS using (3.4).  Using (3.1) and Lemmas 1 and 3 in the Appendix and assuming 
𝜅 > 1, we have  

      
𝜅𝑥

𝐺(𝑥)
ฬ
𝜕𝑔

𝜕𝜆
ฬ ≤ 𝜅ଶ2ଶିଶൣ𝑀ఎ + 𝜆𝑀ఎ

ଶ + 𝜅𝜆2ିଵ𝑀ఎ
ଶ + 𝜅𝜆2ିଵ𝑀ఎ𝑥൧𝑒ି(ିଵ)ఒ௫.          (𝟑. 𝟗) 

The RHS of this inequality is integrable.  Thus, for 𝜅 > 1, the second partial derivative of 
the composite p.d.f. with respect to λ is bounded in absolute value by an integrable 
function. 
 
Using (3.5) and (3.2.a), we find that the second partial derivative of the p.d.f. with respect 
to the transformation parameter is  

𝜕ଶ𝑔

𝜕𝜅ଶ
= −

1

𝜅ଶ
𝑔(𝑥) +

1

𝜅

𝜕𝑔

𝜕𝜅
+

𝜕𝑔

𝜕𝜅
ቀΛ൫�̅�(𝑥)൯ − Λ൫𝐺(𝑥)൯ቁ 𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ 

                                   −2𝑔(𝑥)Λ൫𝐺(𝑥)൯Λ൫�̅�(𝑥)൯ ൭𝑙𝑛 ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଶ

.                                (𝟑. 𝟏𝟎) 

Using Lemma 1 in the Appendix, we have 

ቤ
𝜕ଶ𝑔

𝜕𝜅ଶ
ቤ ≤

1

𝜅ଶ
𝑔(𝑥) +

1

𝜅
ฬ
𝜕𝑔

𝜕𝜅
ฬ + ฬ

𝜕𝑔

𝜕𝜅
ฬ ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ 
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                               +2ଶିଵ𝑔(𝑥)  ൬
2
𝑗

൰ ቀ𝑙𝑛൫𝐺(𝑥)൯ቁ


ቀ𝑙𝑛൫�̅�(𝑥)൯ቁ
ଶି

ଶ

ୀ

.                     (𝟑. 𝟏𝟏) 

The first two terms on the RHS are obviously integrable.  Lemma 4 implies that the 
fourth term on the RHS of (3.11) is integrable.   
We expand the derivative in the third term, using (3.6), and also use Lemma 1, obtaining 

          ฬ
𝜕𝑔

𝜕𝜅
ฬ ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ ≤

1

𝜅
𝑔(𝑥) ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ + 2𝑔(𝑥) ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ

ଶ

.            (𝟑. 𝟏𝟐) 

By Lemma 4 in the Appendix, both terms on the RHS of (3.12) are integrable.  Hence, 
the second partial derivative of the p.d.f. with respect to the transformation parameter is 
bounded in absolute value by an integrable function. 

Using (3.5), we find the mixed second partial derivative of the p.d.f.: 
𝜕ଶ𝑔

𝜕𝜆𝜕𝜅
=

1

𝜅

𝜕𝑔

𝜕𝜆
+

𝜕𝑔

𝜕𝜆
ൣ1 − 2Λ൫𝐺(𝑥)൯൧ ln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ − 2𝑔(𝑥)

∂Λ൫𝐺(𝑥)൯

𝜕𝜆
ln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ 

                                      +𝑔(𝑥)ൣ1 − 2Λ൫𝐺(𝑥)൯൧ ቆ
𝑥�̅�(𝑥)

𝐺(𝑥)
+ 𝑥ቇ.                                     (𝟑. 𝟏𝟑) 

Then, using (3.2.b), we have   

ቤ
𝜕ଶ𝑔

𝜕𝜆𝜕𝜅
ቤ ≤

1

𝜅
ቤ
𝜕𝑔(𝑥)

𝜕𝜆
ቤ + ቤ

𝜕𝑔(𝑥)

𝜕𝜆
ቤ ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ +

2

𝜆
𝑥൫𝑔(𝑥)൯

ଶ
ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ 

                                                      +𝑔(𝑥) ቆ
𝑥�̅�(𝑥)

𝐺(𝑥)
+ 𝑥ቇ.                                                     (𝟑. 𝟏𝟒) 

The first term on the RHS is integrable; using Lemma 3 in the Appendix and the fact that 
all moments of the distribution exist, we find that the fourth term on the RHS is also 
integrable.  For the second and third terms, if we use (3.4) and Lemma 1 in the Appendix, 
we have 

ฬ
𝜕𝑔

𝜕𝜆
ฬ ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ +

2

𝜆
𝑥൫𝑔(𝑥)൯

ଶ
ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ 

     ≤ 
1

𝜆
+ 𝑀ఎ + 𝜅2ିଵ𝑀ఎ + 𝜅2ିଵ𝑥൨ 𝑔(𝑥) ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ 

                                                   +𝜅2ଶିଵ𝑥𝑔(𝑥) ቤln ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇቤ.                                            (𝟑. 𝟏𝟓) 

Assuming 𝜅 > 1 and using Lemma 4 in the Appendix and (3.1), we find that both terms 
on the RHS of (3.15) are integrable. 

Hence, all second partial derivatives of 𝑔(𝑥) with respect to the parameter 
components are bounded in absolute value by integrable functions, so long as 𝜅 > 1.     ∎    
 
3.3 Third partial derivatives of the p.d.f. with respect to the parameter 
components. 
LEMMA 3.4:  For a GLLE(λ, κ) distribution, the third partial derivatives of the density 
function with respect to the components of the parameter vector are bounded in absolute 
value by functions with finite expectations for 𝜅 > 1.   
PROOF:  The third partial derivative of the p.d.f. with respect to the transformation 
parameter is: 
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𝜕ଷ𝑔

𝜕𝜅ଷ
=

2

𝜅ଷ
𝑔(𝑥) −

2

𝜅ଶ

𝜕𝑔

𝜕𝜅
+

1

𝜅

𝜕ଶ𝑔

𝜕𝜅ଶ
+

𝜕ଶ𝑔

𝜕𝜅ଶ
ൣ1 − 2Λ൫𝐺(𝑥)൯൧ ln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ 

−4
𝜕𝑔

𝜕𝜅
Λ൫𝐺(𝑥)൯Λ൫�̅�(𝑥)൯ ൭𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଶ

 

             −2𝑔(𝑥)Λ൫𝐺(𝑥)൯Λ൫�̅�(𝑥)൯ൣ1 − 2Λ൫𝐺(𝑥)൯൧ ൭𝑙𝑛 ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଷ

.              (𝟑. 𝟏𝟔) 

Hence, for 𝜅 > 1, using Lemma 1 in the Appendix and the boundedness of the c.d.f, 

ቤ
𝜕ଷ𝑔

𝜕𝜅ଷ
ቤ ≤

2

𝜅ଷ
𝑔(𝑥) +

2

𝜅ଶ
ฬ
𝜕𝑔

𝜕𝜅
ฬ +

1

𝜅
ቤ
𝜕ଶ𝑔

𝜕𝜅ଶ
ቤ + ቤ

𝜕ଶ𝑔

𝜕𝜅ଶ
ቤ ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ 

                  +2ଶ ฬ
𝜕𝑔

𝜕𝜅
ฬ ൭𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଶ

 + 2ଶିଵ𝑔(𝑥) ቤ𝑙𝑛 ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇቤ

ଷ

.                  (𝟑. 𝟏𝟕) 

The first three terms on the RHS of (3.17) are obviously integrable.  Lemma 4 in the 
Appendix implies that the last term on the RHS of (3.17) is integrable.  
 Using (3.5), (3.6) and Lemma 1 from the Appendix, we may write the fifth term on 
the RHS of (3.17) as  

2ଶ ฬ
𝜕𝑔

𝜕𝜅
ฬ ൭𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଶ

 

                     ≤ 2ଶ ቈ
1

𝜅
𝑔(𝑥) + 2𝑔(𝑥) ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ ൭𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଶ

.                    (𝟑. 𝟏𝟖) 

It is clear from Lemma 4 in the Appendix that the RHS of (3.18) is integrable. 
 If we expand the fourth term on the RHS of (3.17) using (3.11), we find 

ቤ
𝜕ଶ𝑔

𝜕𝜅ଶ
ቤ ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ ≤

1

𝜅ଶ
𝑔(𝑥) ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ +

1

𝜅
ฬ
𝜕𝑔

𝜕𝜅
ฬ ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ 

                            + ฬ
𝜕𝑔

𝜕𝜅
ฬ ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ

ଶ

+ 2ଶିଵ𝑔(𝑥) ቤln ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇቤ

ଷ

.                            (𝟑. 𝟏𝟗) 

From Lemma 4 in the Appendix, the first and last terms on the RHS of (3.19) are integrable.  
It was shown above that the second term on the RHS of (3.19) is integrable. 
If we expand the third term on the RHS of (3.19) using (3.5) and (3.6), we find 

          ฬ
𝜕𝑔

𝜕𝜅
ฬ ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ

ଶ

≤
1

𝜅
𝑔(𝑥) ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ

ଶ

+ 2𝑔(𝑥) ቤ𝑙𝑛 ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇቤ

ଷ

.          (𝟑. 𝟐𝟎) 

From Lemma 4 in the Appendix, we find that the RHS of (3.20) is integrable.  
 Hence the third partial derivative of 𝑔(𝑥) with respect to the transformation 
parameter is bounded in absolute value by an integrable function.  Since 𝑔(𝑥) is also 

bounded by Lemma 1, it follows that 
డయഉ

డయ
 is bounded in absolute value by a function with 

finite expectation. 
The third partial derivative of the p.d.f. with respect to the scale parameter is: 
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𝜕ଷ𝑔

𝜕𝜆ଷ
=

2

𝜆ଷ
𝑔(𝑥) −

2

𝜆ଶ

𝜕𝑔

𝜕𝜆
+

1

𝜆

𝜕ଶ𝑔

𝜕𝜆ଶ
−

𝑥ଷ�̅�(𝑥)

൫𝐺(𝑥)൯
ଷ ൫1 + �̅�(𝑥)൯𝑔(𝑥) + 2

𝑥ଶ�̅�(𝑥)

൫𝐺(𝑥)൯
ଶ

𝜕𝑔

𝜕𝜆
 

−
𝑥�̅�(𝑥)

𝐺(𝑥)

𝜕ଶ𝑔

𝜕𝜆ଶ
+ 𝜅

𝑥ଷ�̅�(𝑥)

൫𝐺(𝑥)൯
ଷ ൫1 + �̅�(𝑥)൯ ቀ1 − 2Λ൫𝐺(𝑥)൯ቁ 𝑔(𝑥) 

+
4𝜅

𝜆

𝑥ଷ�̅�(𝑥)

൫𝐺(𝑥)൯
ଶ ൫𝑔(𝑥)൯

ଶ
− 2𝜅

𝑥ଶ�̅�(𝑥)

൫𝐺(𝑥)൯
ଶ ቀ1 − 2Λ൫𝐺(𝑥)൯ቁ

𝜕𝑔

𝜕𝜆
 

     +
2𝜅

𝜆ଶ

𝑥ଶ

𝐺(𝑥)
൫𝑔(𝑥)൯

ଶ
−

6𝜅

𝜆

𝑥ଶ

𝐺(𝑥)
𝑔(𝑥)

𝜕𝑔

𝜕𝜆
+

𝜅𝑥

𝐺(𝑥)
ቀ1 − 2Λ൫𝐺(𝑥)൯ቁ

𝜕ଶ𝑔

𝜕𝜆ଶ
.     (𝟑. 𝟐𝟏) 

Hence, using Lemma 3 in the Appendix and the boundedness of the c.d.f., we find 

ቤ
𝜕ଷ𝑔

𝜕𝜆ଷ
ቤ ≤

2

𝜆ଷ
𝑔(𝑥) +

2

𝜆ଶ
ฬ
𝜕𝑔

𝜕𝜆
ฬ +

1

𝜆
ቤ
𝜕ଶ𝑔

𝜕𝜆ଶ
ቤ + 2(𝜅 + 1)

𝑥ଷ�̅�(𝑥)

൫𝐺(𝑥)൯
ଷ 𝑔(𝑥) + 𝑀ఎ ቤ

𝜕ଶ𝑔

𝜕𝜆ଶ
ቤ 

+
4𝜅

𝜆
𝑥𝑀జ൫𝑔(𝑥)൯

ଶ
+ 2(𝜅 + 1)𝑀జ ฬ

𝜕𝑔

𝜕𝜆
ฬ +

2𝜅

𝜆ଶ

𝑥ଶ

𝐺(𝑥)
൫𝑔(𝑥)൯

ଶ
 

                                       +
6𝜅

𝜆

𝑥ଶ

𝐺(𝑥)
𝑔(𝑥) ฬ

𝜕𝑔

𝜕𝜆
ฬ +

𝜅𝑥

𝐺(𝑥)
ቤ
𝜕ଶ𝑔

𝜕𝜆ଶ
ቤ.                                      (𝟑. 𝟐𝟐) 

It is clear that terms 1, 2 ,3, 5, and 7 on the RHS of (3.22) are bounded in absolute value 
by integrable functions, and thus have finite expectations.  The other terms will be 
considered individually. 
 Assuming 𝜅 > 1, we use Lemmas 1 and 3 in the Appendix, together with (3.1) and 
(3.2.b) to find that the expectation of the absolute value of term 4 on the RHS of (3.22) is  

2𝜅ଶ(𝜅 + 1)𝜆ଶ න
𝑥ଷ൫�̅�(𝑥)൯

ଷ

൫𝐺(𝑥)൯
ଷ

൫𝐺(𝑥)൯
ଶିଶ

൫�̅�(𝑥)൯
ଶିଶ

ൣ൫𝐺(𝑥)൯


+ ൫�̅�(𝑥)൯


൧
ସ

ஶ



𝑑𝑥

≤ 𝜅ଶ(𝜅 + 1)𝜆ଶ2ସିଷ𝑀ఎ
ଷ න 𝑒ିଶ(ିଵ)ఒ௫𝑑𝑥

ஶ



 

=
𝜅ଶ(𝜅 + 1)𝜆

𝜅 − 1
2ସ(ିଵ)𝑀ఎ

ଷ. 

 Since the p.d.f. is bounded and all moments of the distribution exist, the expectation 
of term 6 on the RHS of (3.22) is finite.    
 Assuming 𝜅 > 1, we use Lemmas 1 and 3 in the Appendix, together with (3.1) and 
(3.2.b) to find that the expectation of the absolute value of term 8 on the RHS of (3.22) is  

2𝜅

𝜆ଶ
න

𝑥ଶ

𝐺(𝑥)

ஶ



൫𝑔(𝑥)൯
ଷ

𝑑𝑥 = 2𝜅ସ𝜆 න
𝑥ଶ�̅�(𝑥)

𝐺(𝑥)

൫𝐺(𝑥)൯
ଷ(ିଵ)

൫�̅�(𝑥)൯
ଷିଵ

ൣ൫𝐺(𝑥)൯


+ ൫�̅�(𝑥)൯


൧


ஶ



𝑑𝑥 

≤ 2𝜅ସ𝜆𝑀ఘ2(ିଵ) න 𝑒ି(ଷିଵ)ఒ௫𝑑𝑥

ஶ



=
2𝜅ସ

3𝜅 − 1
𝑀ఘ2(ିଵ). 

Let 𝛼൫𝜅, 𝜆, 𝑀ఎ൯ = 𝜅ଶ2ଶ(ିଵ)𝑀ఎ൫1 + 𝜆𝑀ఎ + 𝜅𝜆2ିଵ𝑀ఎ൯,  and 𝛽൫𝜅, 𝜆, 𝑀ఎ൯ =

𝜅ଷ𝜆2ଷ(ିଵ)𝑀ఎ .  Then, using Lemma 1 in the Appendix and (3.9), we find that the 
expectation of term 9 on the RHS of (3.22) is 
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𝐸 ቈ
6𝜅

𝜆

𝑋ଶ

𝐺(𝑋)
𝑔(𝑋) ฬ

𝜕𝑔

𝜕𝜆
ฬ =

6𝜅

𝜆
න

𝑥ଶ

𝐺(𝑥)

ஶ



൫𝑔(𝑥)൯
ଶ

ฬ
𝜕𝑔

𝜕𝜆
ฬ 𝑑𝑥 

≤
6

𝜆
𝛼൫𝜅, 𝜆, 𝑀ఎ൯ න 𝑥

ஶ



𝑒ି(ିଵ)ఒ௫൫𝑔(𝑥)൯
ଷ

𝑑𝑥 +
6

𝜆
𝛽൫𝜅, 𝜆, 𝑀ఎ൯ න 𝑥ଶ𝑒ି(ିଵ)ఒ௫൫𝑔(𝑥)൯

ଷ
𝑑𝑥

ஶ



  

≤ (3)2ିହ𝜅ଷ𝜆ଶ ൝𝛼൫𝜅, 𝜆, 𝑀ఎ൯ න 𝑥𝑒ି(ିଵ)ఒ௫𝑑𝑥

ஶ



+ 𝛽൫𝜅, 𝜆, 𝑀ఎ൯ න 𝑥ଶ𝑒ି(ିଵ)ఒ௫𝑑𝑥

ஶ



ൡ . (𝟑. 𝟐𝟑) 

Both integrals on the RHS of (3.23) exist. 

 Let 𝐶ଵ =
ଵ

ఒమ
+ 𝑀ఔ(𝜅 + 1 + 𝜅ଶ2ଶିଵ), and 𝐶ଶ =

ଵ

ఒ
+ 𝑀ఎ .  Then, using (3.8), we 

find that the expectation of the tenth term on the RHS of (3.22) is: 

𝐸 ቈ
𝜅𝑋

𝐺(𝑋)
ቤ
𝜕ଶ𝑔

𝜕𝜆ଶ
ቤ = 𝜅 න

𝑥

𝐺(𝑥)
𝑔(𝑥) ቤ

𝜕ଶ𝑔

𝜕𝜆ଶ
ቤ 𝑑𝑥

ஶ



≤ 𝜅𝐶ଵ න
𝑥

𝐺(𝑥)
൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



 

                 +𝜅𝐶ଶ න
𝑥

𝐺(𝑥)
𝑔(𝑥) ฬ

𝜕𝑔

𝜕𝜆
ฬ 𝑑𝑥

ஶ



+ 𝜅 න
𝑥ଶ

൫𝐺(𝑥)൯
ଶ 𝑔(𝑥) ฬ

𝜕𝑔

𝜕𝜆
ฬ 𝑑𝑥

ஶ



.                  (𝟑. 𝟐𝟒) 

Using Lemma 5 in the Appendix, we find that the first integral in (3.24) is  

න
𝑥

𝐺(𝑥)
൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



≤ 𝜅ଶ𝜆ଶ2ସ(ିଵ) න
𝑥൫�̅�(𝑥)൯

ଶ

𝐺(𝑥)
𝑑𝑥

ஶ



, 

which is finite.  If we let 𝐶ଷ =
ଵ

ఒ
+ 𝑀ఎ + 𝜅2ିଵ, and 𝐶ସ = 𝜅2ିଵ, and use (3.4), we find 

that the second integral in (3.24) is  

න
𝑥

𝐺(𝑥)
𝑔(𝑥) ฬ

𝜕𝑔

𝜕𝜆
ฬ 𝑑𝑥

ஶ



≤ 𝐶ଷ න
𝑥

𝐺(𝑥)
൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



+ 𝐶ସ න
𝑥ଶ

𝐺(𝑥)
൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



. 

Lemma 5 in the Appendix implies that both integrals on the RHS of the above equation are 
finite.  Likewise, the last integral on the RHS of (3.24) was shown above to be finite. 
 Hence, the third partial derivative of the p.d.f. with respect to the scale parameter 
is bounded in absolute value by a function with finite expectation. 
 Third mixed partial derivatives.  We have 

𝜕ଷ𝑔

𝜕𝜅𝜕𝜆ଶ
= −

1

𝜆ଶ

𝜕𝑔

𝜕𝜅
+

1

𝜆

𝜕ଶ𝑔

𝜕𝜅𝜕𝜆
+

𝑥ଶ�̅�(𝑥)

൫𝐺(𝑥)൯
ଶ

𝜕𝑔

𝜕𝜅
−

𝑥�̅�(𝑥)

𝐺(𝑥)

𝜕ଶ𝑔

𝜕𝜅𝜕𝜆
 

−
𝑥ଶ�̅�(𝑥)

൫𝐺(𝑥)൯
ଶ ቀ1 − 2Λ൫𝐺(𝑥)൯ቁ 𝑔(𝑥) + 2𝜅

𝑥ଶ�̅�(𝑥)

൫𝐺(𝑥)൯
ଶ Λ൫𝐺(𝑥)൯Λ൫�̅�(𝑥)൯ ln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ 𝑔(𝑥) 

−
𝜅𝑥ଶ�̅�(𝑥)

൫𝐺(𝑥)൯
ଶ ቀ1 − 2Λ൫𝐺(𝑥)൯ቁ

𝜕𝑔

𝜕𝜅
−

4𝜅𝑥ଶ

൫𝐺(𝑥)൯
ଶ Λ൫𝐺(𝑥)൯Λ൫�̅�(𝑥)൯𝑔(𝑥) 

−
2𝜅ଶ𝑥ଶ

൫𝐺(𝑥)൯
ଶ Λ൫𝐺(𝑥)൯ ቀΛ൫�̅�(𝑥)൯ቁ

ଶ

𝑙𝑛 ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇ 𝑔(𝑥) 
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+
2𝜅ଶ𝑥ଶ

൫𝐺(𝑥)൯
ଶ ቀΛ൫𝐺(𝑥)൯ቁ

ଶ

Λ൫�̅�(𝑥)൯𝑙𝑛 ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇ 𝑔(𝑥) −

2𝜅ଶ𝑥ଶ

൫𝐺(𝑥)൯
ଶ Λ൫𝐺(𝑥)൯Λ൫�̅�(𝑥)൯

𝜕𝑔

𝜕𝜅
 

+
𝑥

𝐺(𝑥)
ቀ1 − 2Λ൫𝐺(𝑥)൯ቁ

𝜕𝑔

𝜕𝜆
− 2

𝜅𝑥

𝐺(𝑥)
Λ൫𝐺(𝑥)൯Λ൫�̅�(𝑥)൯ ln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ

𝜕𝑔

𝜕𝜆
 

                                            +
𝜅𝑥

𝐺(𝑥)
ቀ1 − 2Λ൫𝐺(𝑥)൯ቁ

𝜕ଶ𝑔

𝜕𝜅𝜕𝜆
.                                             (𝟑. 𝟐𝟓) 

Then, using Lemmas 1 and 3 in the Appendix, we find 

ቤ
𝜕ଷ𝑔

𝜕𝜅𝜕𝜆ଶ
ቤ ≤

1

𝜆ଶ
ฬ
𝜕𝑔

𝜕𝜅
ฬ +

1

𝜆
ቤ
𝜕ଶ𝑔

𝜕𝜅𝜕𝜆
ቤ + 𝑀ఔ ฬ

𝜕𝑔

𝜕𝜅
ฬ + 𝑀ఎ ቤ

𝜕ଶ𝑔

𝜕𝜅𝜕𝜆
ቤ 

+𝑀ఔ𝑔(𝑥) + 2ଶିଵ𝜅𝑀ఔ ቤln ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇቤ 𝑔(𝑥) + 𝜅𝑀ఔ ฬ

𝜕𝑔

𝜕𝜅
ฬ + 2ଶ𝜅𝑀ఔ𝑔(𝑥) 

+2ଷିଵ𝜅ଶ𝑀ఔ ቤln ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇቤ 𝑔(𝑥) + 2ଶିଵ𝜅ଶ𝑀ఔ ฬ

𝜕𝑔

𝜕𝜅
ฬ +

𝑥

𝐺(𝑥)
ฬ
𝜕𝑔

𝜕𝜆
ฬ 

                            +2ଶିଵ𝜅
𝑥

𝐺(𝑥)
ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ ฬ

𝜕𝑔

𝜕𝜆
ฬ + 𝜅

𝑥

𝐺(𝑥)
ቤ
𝜕ଶ𝑔

𝜕𝜅𝜕𝜆
ቤ.                           (𝟑. 𝟐𝟔) 

The first, second, third, fourth, fifth, seventh, eighth, and tenth terms on the RHS of (3.26) 
are clearly integrable.  Lemma 4 in the Appendix implies that the sixth and ninth terms are 
also integrable.  Hence, all of these terms have finite expectations. 
 Using (3.4), we find that the expectation of the eleventh term is 

𝐸 
𝑋

𝐺(𝑋)
ฬ
𝜕𝑔

𝜕𝜆
ฬ൨ ≤ ൬

1

𝜆
+ 𝑀ఎ + 𝜅2ିଵ𝑀ఎ൰ න

𝑥

𝐺(𝑥)
൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



 

+𝜅2ିଵ න
𝑥ଶ

𝐺(𝑥)
൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



 

Applying (3.1) and Lemmas 1 and 3 in the Appendix, we find 

𝐸 
𝑋

𝐺(𝑋)
ฬ
𝜕𝑔

𝜕𝜆
ฬ൨ ≤ 𝜅𝜆2ଶ(ିଵ)𝑀ఎ ൬

1

𝜆
+ 𝑀ఎ + 𝜅2ିଵ𝑀ఎ൰ + 𝜅ଶ𝜆2ଷ(ିଵ)𝑀ఎ𝐸[𝑋]. 

The expectation of the twelfth term is  

2ଶିଵ𝜅𝐸 ቈ
𝑋

𝐺(𝑋)
ቤln ቆ

𝐺(𝑋)

�̅�(𝑋)
ቇቤ ฬ

𝜕𝑔

𝜕𝜆
ฬ = 2ଶିଵ𝜅 න

𝑥

𝐺(𝑥)
ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ ฬ

𝜕𝑔

𝜕𝜆
ฬ 𝑔(𝑥)𝑑𝑥.

ஶ



 

Using (3.4), we find 

𝐸 ቈ
𝑋

𝐺(𝑋)
ቤln ቆ

𝐺(𝑋)

�̅�(𝑋)
ቇቤ ฬ

𝜕𝑔

𝜕𝜆
ฬ ≤ ൬

1

𝜆
+ 𝑀ఎ + 𝜅2ିଵ𝑀ఎ൰ න

𝑥

𝐺(𝑥)
ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ ൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



 

                                         +𝜅2ିଵ න
𝑥ଶ

𝐺(𝑥)
ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ ൫𝑔(𝑥)൯

ଶ
𝑑𝑥.

ஶ



                                       (𝟑. 𝟐𝟕) 

If we apply (3.1) and Lemma 1 in the Appendix, we find the first integral on the RHS of 
(3.27) is 
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න
𝑥

𝐺(𝑥)
ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ ൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



≤ 𝜅𝜆2ଶ(ିଵ)𝑀ఎ න ቤln ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇቤ 𝑔(𝑥)𝑑𝑥

ஶ



. 

The integral on the RHS above exists, by Lemma 4 in the Appendix.  Similarly, the 
second integral on the RHS of (3.27) is 

න
𝑥ଶ

𝐺(𝑥)
ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ ൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



≤ 𝜅𝜆2ଶ(ିଵ)𝑀ఎ න 𝑥 ቤln ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇቤ 𝑔(𝑥)𝑑𝑥

ஶ



. 

Again, Lemma 4 in the Appendix implies that the integral on the RHS above exists. 
 The expectation of the thirteenth term on the RHS of (3.26) is 

𝐸 ቈ𝜅
𝑋

𝐺(𝑋)
ቤ
𝜕ଶ𝑔

𝜕𝜅𝜕𝜆
ቤ = 𝜅 න

𝑥

𝐺(𝑥)
ቤ
𝜕ଶ𝑔

𝜕𝜅𝜕𝜆
ቤ 𝑔(𝑥)𝑑𝑥.

ஶ



 

 Using (3.14), we find 

𝐸 ቈ𝜅
𝑋

𝐺(𝑋)
ቤ
𝜕ଶ𝑔

𝜕𝜅𝜕𝜆
ቤ ≤ 𝐸 

𝑋

𝐺(𝑋)
ฬ
𝜕𝑔

𝜕𝜆
ฬ൨ + 𝜅𝐸 ቈ

𝑋

𝐺(𝑋)
ቤln ቆ

𝐺(𝑋)

�̅�(𝑋)
ቇቤ ฬ

𝜕𝑔

𝜕𝜆
ฬ 

+
2𝜅

𝜆
න

𝑥ଶ

𝐺(𝑥)
ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ ൫𝑔(𝑥)൯

ଷ
𝑑𝑥

ஶ



 

                                       +𝜅 න
𝑥

𝐺(𝑥)
ቆ𝑥 +

𝑥�̅�(𝑥)

𝐺(𝑥)
ቇ ൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



.                                       (𝟑. 𝟐𝟖) 

It was shown above that the first two terms on the RHS of (3.28) are finite.   For the third 
term on the RHS of (3.28), if we use (3.1) and Lemmas 1 and 3 in the Appendix, we have  

    
2𝜅

𝜆
න

𝑥ଶ

𝐺(𝑥)
ቤln ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ ൫𝑔(𝑥)൯

ଷ
𝑑𝑥

ஶ



≤ 𝜅ଷ𝜆2ସିଷ𝑀ఔ න ቤln ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇቤ 𝑔(𝑥)𝑑𝑥

ஶ



    (𝟑. 𝟐𝟗) 

 The fourth term on the RHS of (3.28) may be written, using (3.1) and Lemmas 1 
and 3 in the Appendix, as 

𝜅 න
𝑥ଶ

൫𝐺(𝑥)൯
ଶ ൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



= 𝜅ଶ𝜆 න
𝑥ଶ

൫𝐺(𝑥)൯
ଷ Λ൫𝐺(𝑥)൯Λ൫�̅�(𝑥)൯𝑔(𝑥)𝑑𝑥

ஶ



 

≤ 𝜅ଶ𝜆2ଶ(ିଵ)𝑀ఔ . 

Hence, ቚ
డయഉ

డడఒమ
ቚ is bounded by a function with finite expectation. 

 Finally, using (3.10), we find 
𝜕ଷ𝑔

𝜕𝜆𝜕𝜅ଶ
= −

1

𝜅ଶ

𝜕𝑔

𝜕𝜆
+

1

𝜅

𝜕ଶ𝑔

𝜕𝜆𝜕𝜅
−

2

𝜆
𝑥𝑔(𝑥)

𝜕𝑔

𝜕𝜅
𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ 

+ ቀ1 − 2Λ൫𝐺(𝑥)൯ቁ
𝜕ଶ𝑔

𝜕𝜆𝜕𝜅
𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ +

𝑥

𝐺(𝑥)
ቀ1 − 2Λ൫𝐺(𝑥)൯ቁ

𝜕𝑔

𝜕𝜅
 

−
2

𝜅𝜆
𝑥�̅�(𝑥)൫𝑔(𝑥)൯

ଶ
൭𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଶ

−
4

𝜅𝜆
𝐺(𝑥)𝑔(𝑥)

𝜕𝑔

𝜕𝜆
൭𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଶ
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                                                   −
4

𝜅𝜆
𝑥൫𝑔(𝑥)൯

ଶ
𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ.                                                    (𝟑. 𝟑𝟎) 

Hence, 

ቤ
𝜕ଷ𝑔

𝜕𝜆𝜕𝜅ଶ
ቤ ≤

1

𝜅ଶ
ฬ
𝜕𝑔

𝜕𝜆
ฬ +

1

𝜅
ቤ
𝜕ଶ𝑔

𝜕𝜆𝜕𝜅
ቤ +

2

𝜆
𝑥𝑔(𝑥) ฬ

𝜕𝑔

𝜕𝜅
ฬ ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ 

+ ቤ
𝜕ଶ𝑔

𝜕𝜆𝜕𝜅
ቤ ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ +

𝑥

𝐺(𝑥)
ฬ
𝜕𝑔

𝜕𝜅
ฬ +

2

𝜅𝜆
𝑥൫𝑔(𝑥)൯

ଶ
൭𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଶ

 

                  +
4

𝜅𝜆
𝑔(𝑥) ฬ

𝜕𝑔

𝜕𝜆
ฬ ൭𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଶ

+
4

𝜅𝜆
𝑥൫𝑔(𝑥)൯

ଶ
ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ.                (𝟑. 𝟑𝟏) 

The first two terms on the RHS of (3.31) are bounded by integrable functions, and 
thus have finite expectations.  The boundedness of the p.d.f., together with Lemma 4 in the 
Appendix, imply that the sixth and eighth terms on the RHS of (3.31) are bounded by 
integrable functions, and thus have finite expectations. 
 Using the fact that the p.d.f. is bounded, we find that the expectation of the third 
term on the RHS of (3.31) is  

2

𝜆
𝐸 ቈ𝑋𝑔(𝑋) ฬ

𝜕𝑔

𝜕𝜅
ฬ ቤ𝑙𝑛 ቆ

𝐺(𝑋)

�̅�(𝑋)
ቇቤ ≤ 𝜅𝜆2ସିଷ න 𝑥𝑔(𝑥) ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ 𝑑𝑥

ஶ



 

+𝜅ଶ𝜆2ହିଷ න 𝑥𝑔(𝑥) ቤ𝑙𝑛 ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇቤ

ଶ

𝑑𝑥

ஶ



, 

which is finite by Lemma 4 in the Appendix. 
Using (3.14), we find that the expectation of the fourth term on the RHS of (3.31) 

is  

න ቤ
𝜕ଶ𝑔

𝜕𝜆𝜕𝜅
ቤ ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ 𝑔(𝑥)𝑑𝑥

ஶ



≤
1

𝜅
න ฬ

𝜕𝑔

𝜕𝜅
ฬ ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ 𝑔(𝑥)𝑑𝑥

ஶ



 

+ න ฬ
𝜕𝑔

𝜕𝜅
ฬ ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ

ଶ

𝑔(𝑥)𝑑𝑥

ஶ



+
2

𝜆
න 𝑥 ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ

ଶ

൫𝑔(𝑥)൯
ଷ

𝑑𝑥

ஶ



 

        + න 𝑥 ቤ𝑙𝑛 ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇቤ ൫𝑔(𝑥)൯

ଶ

𝑑𝑥

ஶ



+ න
𝑥�̅�(𝑥)

𝐺(𝑥)
ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ ൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



.            (𝟑. 𝟑𝟐) 

It was shown above that the first term – see (3.12) – and the second term – see (3.20) –   
on the RHS of (3.31) are finite. 

Using (3.6), we find that the expectation of the fifth term on the RHS of (3.31) is 

𝐸 
𝑋

𝐺(𝑋)
ฬ
𝜕𝑔

𝜕𝜅
ฬ൨ = න

𝑥

𝐺(𝑥)
ฬ
𝜕𝑔

𝜕𝜅
ฬ

ஶ



𝑔(𝑥)𝑑𝑥 ≤
1

𝜅
න

𝑥

𝐺(𝑥)
൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



 

+2 න
𝑥

𝐺(𝑥)
ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ ൫𝑔(𝑥)൯

ଶ
𝑑𝑥

ஶ



. 

Using (3.6) and Lemmas 1 and 3 in the Appendix, we find 
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𝐸 
𝑋

𝐺(𝑋)
ฬ
𝜕𝑔

𝜕𝜅
ฬ൨ ≤ 𝜆2ଶ(ିଵ)𝑀ఎ + 𝜅𝜆2ଷିଶ𝑀ఎ න ቤ𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇቤ 𝑔(𝑥)𝑑𝑥

ஶ



. 

The integral on the RHS above exists, by Lemma 4 in the Appendix.  Hence, the fifth 
term on the RHS of (3.31) is bounded by an integrable function. 

Using (3.1), (3.4), and Lemmas 1 and 3 in the Appendix, we find that the 
expectation of the seventh term on the RHS of (3.31) is 

4

𝜅𝜆
න ฬ

𝜕𝑔

𝜕𝜆
ฬ ൭𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଶ

൫𝑔(𝑥)൯
ଶ

𝑑𝑥

ஶ



 

≤ 𝜅𝜆2ସିଶ ൬
1

𝜆
+ 𝑀ఎ + 2ିଵ𝑀ఎ൰ න ൭𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଶ

𝑔(𝑥)𝑑𝑥

ஶ



 

+𝜅ଶ𝜆2ହିଷ න 𝑥 ൭𝑙𝑛 ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଶ

𝑔(𝑥)𝑑𝑥

ஶ



. 

Then, Lemma 4 in the Appendix implies that the integrals on the RHS above are finite.  
Thus, the expectation of the seventh term is bounded by an integrable function. 

Hence, the eighth term on the RHS of (3.31) is bounded by a function with finite 
expectation. 

 Thus, 
డయഉ

డఒడమ
 is bounded in absolute value by a function with finite expectation.   ∎ 

 
3.4.  Expectation of the squares of the first partial derivatives of the 
logarithm of the p.d.f. with respect to the two parameters 
LEMMA 3.5:  For a GLLE(λ, κ) distribution, the expectation of the square of the natural 
logarithm of the density function with respect to each component of the parameter vector 
is positive and finite for 𝜅 > 1.  
PROOF:   From (3.1), we have  

𝜕𝑙𝑛൫𝑔(𝑥)൯

𝜕𝜅
=

1

𝜅
+ ቀ1 − 2Λ൫𝐺(𝑥)൯ቁ 𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ. 

Then, using Lemma 4 in the Appendix, we find that 

𝐸 ቆ
𝜕𝑙𝑛൫𝑔(𝑋)൯

𝜕𝜅
ቇ

ଶ

൩ ≤
1

𝜅ଶ
+

2

𝜅
න 𝑙𝑛 ቆ

𝐺(𝑥)

�̅�(𝑥)
ቇ 𝑔(𝑥)𝑑𝑥

ஶ



+ න ൭𝑙𝑛 ቆ
𝐺(𝑥)

�̅�(𝑥)
ቇ൱

ଶ

𝑔(𝑥)𝑑𝑥

ஶ



 

is finite. 
 Also from (3.1), we have  

𝜕𝑙𝑛൫𝑔(𝑥)൯

𝜕𝜆
=

1

𝜆
−

𝑥�̅�(𝑥)

𝐺(𝑥)
+

𝜅𝑥

𝐺(𝑥)
ቀ1 − 2Λ൫𝐺(𝑥)൯ቁ. 

Thus, by Lemma 3 in the Appendix, we have 

ቤ
𝜕𝑙𝑛൫𝑔(𝑥)൯

𝜕𝜆
ቤ ≤

1

𝜆
+ 𝑀ఎ +

𝜅𝑥

𝐺(𝑥)
, 

and 
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𝐸 ቆ
𝜕𝑙𝑛൫𝑔(𝑋)൯

𝜕𝜆
ቇ

ଶ

൩ ≤ ൬
1

𝜆
+ 𝑀ఎ൰

ଶ

+ 2𝜅 ൬
1

𝜆
+ 𝑀ఎ൰ න

𝑥

𝐺(𝑥)
𝑔(𝑥)𝑑𝑥

ஶ



 

+𝜅ଶ න
𝑥ଶ

൫𝐺(𝑥)൯
ଶ 𝑔(𝑥)𝑑𝑥

ஶ



 

Using (3.1) and Lemmas 1 and 3 in the Appendix, we find that the first integral on the 
RHS above is 

න
𝑥

𝐺(𝑥)
𝑔(𝑥)𝑑𝑥

ஶ



≤ 𝜅𝜆𝑀ఎ2ଶ(ିଵ) න 𝑒ି(ିଵ)ఒ௫𝑑𝑥

ஶ



=
𝜅𝑀ఎ2ଶ(ିଵ)

𝜅 − 1
. 

Also using (3.1) and Lemmas 1 and 3 in the Appendix, we find that the second integral 
on the RHS above is 

න
𝑥ଶ

൫𝐺(𝑥)൯
ଶ 𝑔(𝑥)𝑑𝑥

ஶ



≤ 𝜅𝜆𝑀ఔ2ଶ(ିଵ) න 𝑒ି(ିଵ)ఒ௫𝑑𝑥

ஶ



=
𝜅𝑀ఔ2ଶ(ିଵ)

𝜅 − 1
. 

Thus the last regularity condition is satisfied for 𝜅 > 1.                                                    ∎ 
 
 
 
3.5.  Asymptotic properties theorem 
 As a result of the five preceding lemmas in this section, we may state (Schervish, 
1995; Serfling, 1980; Stuart, et. al., 1999; Wijsman, 1973; Wilks, 1962) the following 
theorem. 
 
THEOREM:  If X1, X2, …, Xn is a random sample from a distribution which is Generalized 
Log-Logistic Exponential, with scale parameter λ > 0 and transformation parameter κ > 1, 
then with probability 1, the likelihood equations admit a sequence of solutions ൛𝜽ൟ 
satisfying:  a)  strong consistency:  𝜽 → 𝜽 as 𝑛 → ∞, and b)  asymptotic normality and 
efficiency:  𝜽 is 𝐴𝑁൫𝜽, 𝒏ି𝟏𝑰𝜽

ି𝟏൯, where the information matrix 

                                             𝐼𝜽 = ቂ𝐸ீഉ
ቄ൫(𝑙𝑛𝑔)(ఏ)൯ ቀ(𝑙𝑛𝑔)൫ఏೕ൯ቁቅቃ.                                         

 
4. Simulation Results 

A simulation study was conducted to evaluate the joint asymptotic efficiency of the 
MLE’s of the parameters of the GLLE distribution.  Without loss of generality, we chose 
the scale parameter to be 1.  The chosen values of the transformation parameter were 3.0, 
2.0, 1.5, 1.0, 0.5, and 0.25.  The simulation study contained two parts.  In the first part, the 
MLE’s  and their variances were simulated.  In the second part, we evaluated the Cramer-
Rao Lower Bound (CRLB) by simulating the information matrix.  The results were 
compared to decide whether the variances of the MLE’s tended to approach the CRLB. 
 

Let 𝑈~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1).  To generate a random variate from a GLLE(λ, κ) 
distribution, with chosen values for λ and κ, we set 
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𝑢 =
൫𝑒ఒ௫ − 1൯



1 + (𝑒ఒ௫ − 1)
, 

and invert, obtaining 𝑥 =
ଵ

ఒ
ln ൬1 + ቀ

௨

ଵି௨
ቁ

ଵ/
൰.  We substitute n generated values of U 

into this equation to obtain a simulated random sample of size n from a GLLE(λ, κ) 
distribution. 
 
In terms of the baseline and composite distributions, the likelihood equations are: 

𝜕𝑙

𝜕𝜅
=

𝑛

𝜅
+  ln (𝐺(𝑥))



ୀଵ

− 𝜆  𝑥



ୀଵ

− 2  ln൫𝐺(𝑥)൯ 𝐺(𝑥)



ୀଵ

+ 2𝜆  𝑥�̅�(𝑥)



ୀଵ

, 

and 

𝜕𝑙

𝜕𝜆
=

𝑛

𝜆
+ (𝜅 − 1) 

𝑥�̅�(𝑥)

𝐺(𝑥)



ୀଵ

− 𝜅  𝑥



ୀଵ

− 2𝜅 
𝑥�̅�(𝑥)

𝐺(𝑥)



ୀଵ

𝐺(𝑥) + 2𝜅  𝑥Gഥ(𝑥)



ୀଵ

. 

These were set equal to 0 and solved numerically to find the MLE’s. 
 
 The algorithm for simulating the MLE’s and estimated covariance matrix: 

1. Generate a random sample of size n from a GLLE distribution. 
2. Calculate the MLE’s. 
3. Repeat the first two steps 1000 times. 
4. Calculate the estimated covariance matrix. 

The algorithm for evaluating the CRLB: 
1. Generate a random variate from a GLLE distribution with given scale parameter 

and transformation parameter. 
2. Evaluate the squares of the first partial derivatives of the logarithm of the density 

function with respect to the two respective parameters, and the product of the two 
first partial derivatives. 

3. Repeat the first two steps 5000 times. 
4. Find the averages of the above three quantities to estimate the four elements of the 

Fisher information matrix. 
5. Invert the matrix and multiply the diagonal elements by 1/n to obtain the estimated 

CRLB. 
 
The results of the simulation are presented in the tables below.  Tables 1  

to 6 present the simulation results for the MLE’s and estimated variances for both 
parameters.  Tables 7 to 12 present the differences between the estimated variances and the 
corresponding CRLB’s.  
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Table 1:   = 3 and   = 1 
 

n ˆˆ ( )E   ˆˆ ( )V   ˆ ˆ( )E   ˆ ˆ( )V   
100 1.001125749 0.001768968 3.013491483 0.065186515 
110 1.000785286 0.001456501 3.026518598 0.06318737 
120 0.999340124 0.001389415 3.0250789 0.053447569 
130 1.000480552 0.001241102 3.028950807 0.049939951 
140 1.001798459 0.001221275 3.016643976 0.042107998 
150 0.998726951 0.001071179 3.019782171 0.04155098 
160 1.000839726 0.001097054 3.013302705 0.040841092 
170 1.001673574 0.001030968 3.013898422 0.036684858 
180 1.001255294 0.00093284 3.005612011 0.03606937 
190 0.999299428 0.000808745 3.006299152 0.034189518 
200 1.000179172 0.000871689 3.016910752 0.031295812 

 
 

Table 2:   = 2 and  = 1 
 

n ˆˆ ( )E   ˆˆ ( )V   ˆ ˆ( )E   ˆ ˆ( )V   

100 1.002454292 0.003407492 2.005670216 0.027603 
110 1.004599604 0.003119688 2.01955518 0.027636 
120 1.001600936 0.003200932 2.016340406 0.023595 
130 1.001174895 0.002631337 2.00964898 0.022263 
140 1.003221361 0.002791891 2.009530121 0.020723 
150 1.001494831 0.002336678 2.007397904 0.017988 
160 1.002517937 0.002440983 2.00182019 0.01919 
170 0.999816102 0.002109983 2.010170053 0.017719 
180 1.002440618 0.002005028 2.013965088 0.015169 
190 1.0018852 0.001816137 2.013453912 0.014212 
200 1.002927173 0.001895421 2.014119136 0.014125 

 
 

Table 3:   = 1.5 and   = 1 
 

n ˆˆ ( )E   ˆˆ ( )V   ˆ ˆ( )E   ˆ ˆ( )V   

100 1.004913748 0.006099656 1.517384639 0.016007 
110 1.006263712 0.005472738 1.514604842 0.015646 
120 1.004553852 0.004468002 1.508908329 0.014388 
130 1.006066782 0.004892317 1.50626504 0.011974 
140 1.004739657 0.004056058 1.510753485 0.01136 
150 1.000800482 0.003649807 1.508005461 0.010293 
160 1.003654916 0.00371035 1.50338242 0.010151 
170 1.004894546 0.003607423 1.5075619 0.009785 
180 1.003217785 0.003473121 1.511898558 0.00975 
190 1.002131601 0.003104311 1.508210397 0.008309 
200 1.000240384 0.002893984 1.50458012 0.007536 
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Table 4:   = 1 and   = 1 
 

n ˆˆ ( )E   ˆˆ ( )V   ˆ ˆ( )E   ˆ ˆ( )V   

100 1.011348156 0.0109347 1.00296116 0.006757 
110 1.009089758 0.0096083 1.00565177 0.006626 
120 1.011014586 0.0094702 1.00480053 0.005552 
130 1.007037837 0.0083208 1.00284849 0.005512 
140 1.008081372 0.0075836 1.00753959 0.00503 
150 1.007591632 0.0072112 1.00991224 0.004845 
160 1.015388201 0.0067138 1.01033131 0.004435 
170 1.004809568 0.006134 1.00213605 0.004225 
180 1.008245478 0.0056417 1.00506997 0.003941 
190 1.01074676 0.0057851 1.00420861 0.004128 
200 1.002714724 0.0050746 1.00217774 0.003706 

 
 
 

Table 5:   = 0.5 and   = 1 
 

n ˆˆ ( )E   ˆˆ ( )V   ˆ ˆ( )E   ˆ ˆ( )V   

100 1.020816584 0.0173823 0.50495578 0.001771 
110 1.019769348 0.0161177 0.50395102 0.001558 
120 1.013707054 0.0138546 0.5020536 0.001503 
130 1.015732208 0.0131783 0.50238774 0.001395 
140 1.012712389 0.0130471 0.50467292 0.001401 
150 1.01657043 0.0105934 0.50265586 0.001205 
160 1.012332079 0.0108858 0.50260116 0.00112 
170 1.008269904 0.0095322 0.50120098 0.000924 
180 1.011543402 0.0090271 0.50109543 0.001026 
190 1.00863372 0.0083533 0.50291172 0.000886 
200 1.010423929 0.0081023 0.50164918 0.000907 

 
 

Table 6:   = 0.25 and   = 1 
 

n ˆˆ ( )E   ˆˆ ( )V   ˆ ˆ( )E   ˆ ˆ( )V   

100 1.023429598 0.016222 0.25241718 0.000438 
110 1.018713738 0.0166837 0.25180928 0.000451 
120 1.018160677 0.0157249 0.25189155 0.0004 
130 1.015540994 0.0143469 0.25167838 0.000352 
140 1.013978264 0.0111233 0.25179948 0.000336 
150 1.013925343 0.0111865 0.25144254 0.000301 
160 1.011180729 0.0108696 0.2513737 0.000283 
170 1.015184211 0.0105859 0.2514993 0.000282 
180 1.016492297 0.0096427 0.25162673 0.000237 
190 1.00933421 0.0087129 0.25136223 0.000224 
200 1.013720433 0.0085688 0.25238844 0.000223 

 
 



                                                          JPSS    Vol. 20 No. 1    August 2022     pp.204-227 
 

222 
 

 
Table 7:   = 3 and   = 1 

 
n ˆ( )CRLB   ˆˆ ( )V   ˆ( )CRLB   ˆ ˆ( )V   

100 1.63513E-05 0.001768968 0.000631778 0.065186515 
110 1.39208E-05 0.001456501 0.000524663 0.06318737 
120 1.16737E-05 0.001389415 0.000462971 0.053447569 
130 9.79998E-06 0.001241102 0.000379027 0.049939951 
140 8.81020E-06 0.001221275 0.000323560 0.042107998 
150 7.71129E-06 0.001071179 0.000291942 0.04155098 
160 6.45611E-06 0.001097054 0.000254583 0.040841092 
170 5.78695E-06 0.001030968 0.000226281 0.036684858 
180 5.27834E-06 0.00093284 0.000197507 0.03606937 
190 4.74250E-06 0.000808745 0.000179838 0.034189518 
200 4.25858E-06 0.000871689 0.000156712 0.031295812 

 
 

Table 8:   = 2 and   = 1 
 

n ˆ( )CRLB   ˆˆ ( )V   ˆ( )CRLB   ˆ ˆ( )V   

100 3.54035E-05 0.003407492 0.000292617 0.027603469 
110 3.12867E-05 0.003119688 0.000245548 0.027636468 
120 2.56908E-05 0.003200932 0.000198794 0.023594641 
130 2.20802E-05 0.002631337 0.000172064 0.022262681 
140 1.83566E-05 0.002791891 0.000153608 0.020723469 
150 1.67602E-05 0.002336678 0.000130659 0.017988025 
160 1.46984E-05 0.002440983 0.000115759 0.019189793 
170 1.27992E-05 0.002109983 0.000100777 0.017719104 
180 1.14493E-05 0.002005028 9.39030E-05 0.015169107 
190 1.00901E-05 0.001816137 8.24004E-05 0.014211697 
200 8.88526E-06 0.001895421 7.30947E-05 0.014125095 

 
 
 

Table 9:   = 1.5 and   = 1 
 

n ˆ( )CRLB   ˆˆ ( )V   ˆ( )CRLB   ˆ ˆ( )V   

100 6.20146E-05 0.006099656 0.00018024 0.016006769 
110 5.18892E-05 0.005472738 0.00013768 0.015646155 
120 4.30093E-05 0.004468002 0.000118736 0.014387556 
130 3.83645E-05 0.004892317 0.000102972 0.011973794 
140 3.30375E-05 0.004056058 9.03979E-05 0.011360234 
150 2.75008E-05 0.003649807 7.65130E-05 0.010293458 
160 2.45281E-05 0.00371035 6.73736E-05 0.010151349 
170 2.20230E-05 0.003607423 5.95262E-05 0.009785136 
180 1.92334E-05 0.003473121 5.34973E-05 0.009750133 
190 1.72763E-05 0.003104311 4.76184E-05 0.008308865 
200 1.62548E-05 0.002893984 4.29802E-05 0.007536144 
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Table 10:   = 1 and   = 1 
 

n ˆ( )CRLB   ˆˆ ( )V   ˆ( )CRLB   ˆ ˆ( )V   

100 0.000117654 0.010934718 8.43314E-05 0.006756552 
110 9.75270E-05 0.009608251 7.30740E-05 0.006626176 
120 8.32848E-05 0.009470224 5.82261E-05 0.005551558 
130 6.98807E-05 0.008320847 5.01450E-05 0.005511549 
140 6.07769E-05 0.00758364 4.30533E-05 0.005030476 
150 5.33687E-05 0.007211223 3.75767E-05 0.004844793 
160 4.87387E-05 0.0067138 3.28210E-05 0.004435137 
170 4.24524E-05 0.006134016 2.93007E-05 0.004224744 
180 3.75354E-05 0.005641733 2.62918E-05 0.003941071 
190 3.33194E-05 0.005785119 2.35158E-05 0.004127568 
200 3.03357E-05 0.005074613 2.12919E-05 0.003706077 

 
 

Table 11:   = 0.5 and   = 1 
 

n ˆ( )CRLB   ˆˆ ( )V   ˆ( )CRLB   ˆ ˆ( )V   

100 0.000239788 0.017382284 2.64371E-05 0.001770712 
110 0.000204437 0.016117651 2.17209E-05 0.001558213 
120 0.00017332 0.013854568 1.85515E-05 0.001503341 
130 0.000143753 0.013178294 1.6404E-05 0.001395243 
140 0.000126519 0.013047066 1.38956E-05 0.001400904 
150 0.000111575 0.010593407 1.21155E-05 0.001204757 
160 9.54672E-05 0.010885846 1.05242E-05 0.001120218 
170 8.48157E-05 0.009532231 9.29180E-06 0.000924 
180 7.56372E-05 0.009027064 8.24801E-06 0.001026008 
190 6.85013E-05 0.008353267 7.43450E-06 0.000886202 
200 6.14205E-05 0.008102274 6.64519E-06 0.000906536 

 
 

 
 

Table 12:   = 0.25 and   = 1 
 

n ˆ( )CRLB   ˆˆ ( )V   ˆ( )CRLB   ˆ ˆ( )V   

100 Indeterminate 0.016222038 Indeterminate 0.000438493 
110 Indeterminate 0.016683656 Indeterminate 0.000450572 
120 Indeterminate 0.015724927 Indeterminate 0.000399894 
130 Indeterminate 0.014346928 Indeterminate 0.000352489 
140 Indeterminate 0.0111233 Indeterminate 0.000336 
150 Indeterminate 0.01118653 Indeterminate 0.000300584 
160 Indeterminate 0.010869561 Indeterminate 0.000282979 
170 Indeterminate 0.010585914 Indeterminate 0.000282421 
180 Indeterminate 0.009642659 Indeterminate 0.000237439 
190 Indeterminate 0.008712918 Indeterminate 0.000223855 
200 Indeterminate 0.008568814 Indeterminate 0.000222519 
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From examination of the tabulated results, it is apparent that both estimators tend 

to overestimate the parameters slightly.  There appears to be a somewhat stronger tendency 
for �̂� to overestimate. 

It is clear that the estimated variances approach the CRLB as the sample size 
increases, albeit somewhat slowly.  We were unable to assess the efficiency for 𝜅 =
0.25, 𝜆 = 1.0, since we were unable to compute the CRLB for that case.     

 
6.  Conclusion. 
 We have proved that, for any positive value of the scale parameter and for any value 
of the transformation parameter exceeding 1, the Generalized Log-Logistic Exponential 
distribution family satisfies the standard regularity conditions.  Hence, the MLE’s of the 
parameters, in this parameter space, are strongly consistent and jointly asymptotically 
normally distributed and efficient.   
 In addition, the simulation results imply that the MLE’s are jointly efficient, with 
the variances of the estimators approaching the Cramer-Rao Lower Bounds, not only for 
the parameter values in the space mentioned in the preceding paragraph, but also for some 
values of the transformation parameter less than 1.  Only for κ = 0.25 were we unable to 
assess the asymptotic efficiency.  
 Some practical implications of these results are that standard normally-based 
statistical inferential procedures may be used in situations in which a GLLE distribution 
appears to provide a good fit to a data set.  For example, in Section 1, it was mentioned that 
Gleaton and Lynch (2010) found that a GLLE distribution appeared to provide a better fit 
than a 2-parameter Weibull distribution to a data set consisting of measured tensile 
breaking strengths of a sample of n = 64 ten-millimeter-long carbon fibers. 
 
 
Appendix I:  Lemmas 
 
LEMMA 1:  Let 𝐺(𝑥) = ൫1 − 𝑒ିఒ௫൯𝐼(,ାஶ)(𝑥), for λ ≥ 0, and let 𝐺(𝑥) = Λ൫𝐺(𝑥)൯. 
Then, for κ ≥ 1, we have 

a) ൣ൫𝐺(𝑥)൯


+ ൫�̅�(𝑥)൯


൧
ିଵ

≤ 2ିଵ, and 
b)  0 ≤ 𝑔(𝑥) = 𝐺′(𝑥) ≤ 2ଶ(ିଵ)𝜅𝜆.  

PROOF:  Assume that κ ≥ 1.  Let 𝑢 = ൫1 − 𝑒ିఒ௫൯𝐼(,ାஶ)(𝑥), 𝑢ത = 1 − 𝑢, and let 
ℎ(𝑢) = 𝑢 + 𝑢ത . 

We have lim
௨↓

ℎ(𝑢) = lim
௨→ଵ

ℎ(𝑢) = 1, and ℎ(0.5) = 2ି(ିଵ) ≤ 1, with ℎ(0.5) = 1 if 

and only if κ = 1. 
Differentiating, we have 

ℎ
ᇱ (𝑢) = 𝜅(𝑢ିଵ − 𝑢തିଵ). 

Now, ℎ
ᇱ (0.5) = 0.  In addition, it is clear that, for 0 < u < 0.5, ℎ

ᇱ (𝑢) < 0, and that for 
0.5 < u < 1, ℎ

ᇱ (𝑢) > 0.  Since ℎ(𝑢) is differentiable on the unit interval, it follows that 

ℎ(𝑢) has a minimum at u = 0.5.  Thus, ℎ(𝑢) ≥ 2ି(ିଵ), or ൫ℎ(𝑢)൯
ିଵ

≤ 2(ିଵ). 
 For κ ≥ 1, it is clear that 𝑢ିଵ ≤ 1 and that 𝑢ത ≤ 1  Then, using the result above, 
we have  
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                                                 𝑔(𝑢) =
𝜅𝜆𝑢ିଵ𝑢ത

(𝑢 + 𝑢ത)ଶ
≤ 2ଶ(ିଵ)𝜅𝜆.                                               ■ 

   

LEMMA 2:  Let κ ≥ 1, let Λ(𝑢) =
௨ഉ

௨ഉା௨ഥഉ
𝐼(,ଵ)(𝑢), and Λഥ(𝑢) = 1 − Λ(𝑢) = Λ(𝑢ത).  

Then, for any positive integers n, m, there exists positive constants 𝐴 and 𝛽 such that 
 Λ

൫𝐺(𝑥)൯ Λ
൫�̅�(𝑥)൯ ≤ 𝐴𝑒ିఉ௫ ,   

for all x. 
PROOF:  Let κ ≥ 1, and let n, m be positive integers.  We have 

 Λ
൫𝐺(𝑥)൯ Λ

൫�̅�(𝑥)൯ =
൫𝐺(𝑥)൯


൫�̅�(𝑥)൯



൫൫𝐺(𝑥)൯


+ ൫�̅�(𝑥)൯


൯
ା. 

Now, 0 ≤ 𝐺(𝑥) ≤ 1, so that 0 ≤ ൫𝐺(𝑥)൯


≤ 1, and 

Λ
൫𝐺(𝑥)൯Λ

൫�̅�(𝑥)൯ ≤
൫�̅�(𝑥)൯



൫൫𝐺(𝑥)൯


+ ൫�̅�(𝑥)൯


൯
ା. 

Using part (a) of Lemma 1, we have  
Λ

൫𝐺(𝑥)൯Λ
൫�̅�(𝑥)൯ ≤ 2(ା)(ିଵ)൫�̅�(𝑥)൯


= 2(ା)(ିଵ)𝑒ି ,  

for all x.  Thus, 𝐴 = 2(ା)(ିଵ), and 𝛽 = 𝑚𝜅𝜆.                                                        ■                                         
 

LEMMA 3:  The functions 𝜂(𝑥) = 𝑥
ீ̅(௫)

ீ(௫)
 , 𝜈(𝑥) = 𝑥ଶ ீ̅(௫)

൫ீ(௫)൯
మ, 𝜌(𝑥) = 𝑥ଶ ீ̅(௫)

ீ(௫)
, and 𝜏(𝑥) =

𝑥ଷ ீ̅(௫)

൫ீ(௫)൯
మ are bounded. 

PROOF:  It is straightforward to show, using L’Hopital’s Rule, that   
lim
௫→ஶ

𝜂(𝑥) = 0, lim
௫→ஶ

𝜈(𝑥) = 0, lim
௫→ஶ

𝜌(𝑥) = 0, lim
௫→ஶ

𝜏(𝑥) = 0, 

and that  

lim
௫↓

𝜂(𝑥) =
1

𝜆
, lim

௫↓
𝜈(𝑥) =

1

𝜆ଶ
, lim

௫↓
𝜌(𝑥) = 0, lim

௫↓
𝜏(𝑥) = 0. 

Each function is non-negative, bounded, and continuously differentiable on (0, +∞).   
Thus, they have maxima, 𝑀ఎ,  𝑀ఔ ,  𝑀ఘ, and 𝑀ఛ , respectively.                                          ∎ 
 
LEMMA 4:  If 𝜅 ≥ 1, then for any positive integers n and m, the functions 
 𝑖)  𝜑ଵ(𝑥) = 𝑔(𝑥)ห𝑙𝑛൫𝐺(𝑥)൯ห


,        𝑖𝑖)  𝜑ଶ(𝑥) = 𝑔(𝑥)ห𝑙𝑛൫�̅�(𝑥)൯ห


,  

𝑖𝑖𝑖)  𝜑ଷ(𝑥) = 𝑥𝑔(𝑥)ห𝑙𝑛൫𝐺(𝑥)൯ห


, and  𝑖𝑣)   𝜑ସ(𝑥) = 𝑥𝑔(𝑥)ห𝑙𝑛൫�̅�(𝑥)൯ห


   
are integrable for 𝜅 ≥ 1. 
PROOF:  

i)  Using the change of variable 𝑢 = 𝐺(𝑥) = 1 − 𝑒ିఒ௫ ,  it is straightforward to 
show that, for 𝜅 ≥ 1 and using Lemma 1 and Gradshteyn (2015), we have  

න 𝜑ଵ(𝑥)𝑑𝑥

ஶ



= 𝜅 න
1

𝑢𝑢ത

ଵ



Λ(𝑢)Λ(𝑢ത)|𝑙𝑛(𝑢)|𝑑𝑢 ≤ 𝜅2ଶିଶ න|𝑙𝑛(𝑢)|𝑑𝑢

ଵ



= 𝜅2ଶିଶ𝑛!. 

ii) Similarly, letting 𝑢 = �̅�(𝑥) = 𝑒ିఒ௫ , we find  
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                                                        න 𝜑ଶ(𝑥)𝑑𝑥

ஶ



≤ 𝜅2ଶିଶ𝑛!.                                                            

iii) The common class median of the distribution is 𝑚 =
(ଶ)

ఒ
.  If we let 𝑢 =

𝐺(𝑥) = 1 − 𝑒ିఒ௫ , then, using Lemma 1 and Gradshteyn (2015), we have 

න 𝜑ଷ(𝑥)𝑑𝑥

ஶ



= 𝜅2ଶିଶ න|𝑙𝑛(𝑢)||𝑙𝑛(𝑢ത)|𝑑𝑢

ଵ



. 

For 0 < 𝑢 < 0.5, we have |𝑙𝑛(𝑢ത)| ≤ 𝑙𝑛(2), so that, using Gradshteyn (2015), we 
have 

න 𝜑ଷ(𝑥)𝑑𝑥





≤ 𝜅2ଶିଶ൫𝑙𝑛(2)൯


න |ln(𝑢)|𝑑𝑢

.ହ



≤ 𝜅2ଶିଶ൫𝑙𝑛(2)൯


𝑛!. 

For 0.5 < 𝑢 < 1, we have |𝑙𝑛(𝑢)| ≤ 𝑙𝑛(2), so that, using Gradshteyn (2015), we 
have 

න 𝜑ଷ(𝑥)𝑑𝑥

ஶ



≤ 𝜅2ଶିଶ൫𝑙𝑛(2)൯


න|ln(𝑢ത)|𝑑𝑢

ଵ

.ହ

≤ 𝜅2ଶିଶ൫𝑙𝑛(2)൯


𝑚!. 

Hence, 

න 𝜑ଷ(𝑥)𝑑𝑥

ஶ



≤ 𝜅2ଶିଶൣ൫𝑙𝑛(2)൯


𝑛! + ൫𝑙𝑛(2)൯


𝑚!൧, 

iv) Similarly, if we let 𝑢 = �̅�(𝑥) = 𝑒ିఒ  and use Lemma 1 and Gradshteyn 
(2015), we have 

                             න 𝜑ସ (𝑥)𝑑𝑥

ஶ



≤ 𝜅2ଶିଶൣ൫𝑙𝑛(2)൯


𝑛! + ൫𝑙𝑛(2)൯


𝑚!൧.                            ∎ 

 
LEMMA 5:  Let n be a positive integer.  Let a and b be real numbers with 𝑎 > 𝑏.  Then the 
following function is integrable: 

𝑓(𝑥) =
𝑥𝑒ି௫

1 − 𝑒ି௫
𝐼(,ஶ)(𝑥). 

PROOF:  First, it will be shown that the (strictly positive) function is bounded above.  
Then, it will be shown that the tail of the function is bounded by an integrable function. 
 First, we have  

lim
௫→ஶ

𝑓(𝑥) = 0. 

Then, using L’Hopital’s Rule, we find that 

lim
௫↓

𝑓(𝑥) = ൝

1

𝜆
, 𝑓𝑜𝑟 𝑛 = 1, 𝑜𝑟

0, 𝑓𝑜𝑟 𝑛 > 1.      
 

Then, since the function is strictly positive and continuously differentiable, it is bounded 
above. 

Next, let 𝑥 > 0.  Then, we have  
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                          න 𝑓(𝑥)𝑑𝑥

ஶ

௫బ

≤
1

1 − 𝑒ି௫బ
න 𝑥𝑒ି௫𝑑𝑥

ஶ



=
Γ(𝑛 + 1)

𝑎ାଵ(1 − 𝑒ି௫బ)
.                        ∎ 

  
 
Acknowledgements:  The authors wish to thank the referees for their time and 
consideration in reviewing this paper. 
 

REFERENCES 
 
[1]  G. M. CORDEIRO, M. ALIZADEH, E. ORTEGA, and L. VALDIVIESO (2015)  
The Zografos-Balakrishnan odd log-logistic family of distributions: Properties and 
Applications.  Hacettepe Journal of Mathematics and Statistics, 46, 
DOI:10.15672/HJMS.20159714145 
[2]  G. M. CORDEIRO, M. ALIZADEH, G. OZEL, B. HOSSEINI, E. M. M. ORTEGA, 
and E. ALTUN(2017),  The generalized odd log-logistic family of distributions:  
properties, regression models and applications, Journal of Statistical Computation and 
Simulation, 87,  908-932. 
[3]  J. U. GLEATON and J. D. LYNCH, (2004) Properties of generalized log-logistic 
families of lifetime distributions, Journal of Probability and Statistical Science, 4, 51-64. 
[4]  J. U. GLEATON and J. D. LYNCH, (2006) Extended generalized log-logistic families 
of lifetime distributions, with an application, Journal of Probability and Statistical Science, 
4,  1-17.  
[5]  J. U. GLEATON and M. M. RAHMAN (2010), Asymptotic properties of MLE’s for 
distributions generated from a 2-parameter Weibull distribution by a generalized log-
logistic transformation, Journal of Probability and Statistical Science, 8, 199-214. 
[5]  I. S. GRADSHTEYN, I. M. RYZHIK, D. ZWILLINGER, and V. MOLL (2015), Table 
of Integrals, Series, and Products, Eighth Edition, Boston:  Academic Press,. 
[6]  M. J. SCHERVISH (1995), Theory of Statistics, Springer-Verlag, New York. 
[7]  R. J. SERFLING (1980), Approximation Theorems of Mathematical Statistics,  John 
Wiley & Sons, Inc., New York. 
[8]  A. STUART, J. K. ORD, S. ARNOLD (1999), Kendall’s Advanced Theory of 
Statistics, Vol. 2A, 6th Ed.,  Oxford University Press, Inc., New York. 
[9]  R. A. WIJSMAN (1973), On the attainment of the Cramer-Rao lower bound, Annals 
of Statistics, 1, 538-542. 
[10]  S. S. WILKS, (1962) Mathematical Statistics, John Wiley & Sons, Inc., New York,. 
[11] K. ZOGRAFOS, and N. BALAKRISHNAN (2009) On families of beta- and 
generalized gamma-generated distributions and associated inference, Statistical 
Methodology, 6, 344-362. 
 
 


