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ABSTRACT

A generalized log-logistic (GLL) family of lifetime distributions is one in which any pair
of distributions are related through a GLL transformation, for some (non-negative) value
of the transformation parameter k (the odds function of the second distribution is the k-th
power of the odds function of the first distribution). We consider GLL families generated
from an exponential distribution. It is shown that the Maximum Likelihood Estimators
(MLE’s) for the parameters of the generated, or composite, distribution have the properties
of strong consistency and asymptotic normality and efficiency. Data simulation is also

found to support the condition of asymptotic efficiency.
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1. Introduction.
Gleaton and Rahman (2010) examined the asymptotic properties of the maximum
likelihood estimators for parameters of a distribution generated from a 2-parameter Weibull
distribution through a generalized log-logistic (GLL) transformation, defined below. It
was shown that, under certain restrictions on the parameter space, the MLE’s are strongly
consistent and asymptotically normal and efficient.

In an earlier paper, Gleaton and Lynch (2006), discussed properties of lifetime
distributions belonging to families generated by a GLL transformation:

()
(G(x))K +(G())

relating two lifetime distribution functions G(x) and G, (x). Here the distribution G(x)

Ge(x) = Ay o G(x) =

=, for x >0,

may also be a function of an m-dimensional non-negative parameter vector 6 =
(64,6,, ...,0,,). The transformation is defined for each k > 0 by

A(u) = [1 + (S)Kl Jfor0 <u <1,

wheret =1 — u.

In introducing GLL families of lifetime distributions, Gleaton and Lynch (2006) showed
that:

e The set of GLL transformations forms an abelian group with the binary
operation of composition.

e The group partitions the set of all lifetime distributions, with any two
members of an equivalence class being related to each other through a GLL
transformation.

e FEither every distribution in an equivalence class has a moment generating
function (m.g.f.), or none does, and every distribution in an equivalence
class has the same number of moments.

e FEach equivalence class is linearly ordered according to the transformation
parameter, with larger values of the parameter corresponding to smaller
dispersion of a distribution about the common class median.

e The log-odds rates,

0 = 106 /6] = e~ In(G/B)] = o

for any two distributions in an equivalence class are the same apart from a
multiplicative constant, which is the transformation parameter. The above
equation may be taken as the defining characteristic of GLL families.
e Within an equivalence class, the Kullback-Leibler information is an
increasing function of the ratio of transformation parameters.
In each equivalence class, one arbitrarily chosen distribution (often taken to be the
distribution whose c.d.f. is of simplest form) called the embedded distribution, may be
considered the generator of the class. The other distributions in the class are called
composite distributions.
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Since the introduction of this family of distributions by Gleaton and Lynch (2006),
other researchers have extended the family through composition of the GLL transformation
with other monotone transformations and have applied the GLL family and the extended
families to fitting data sets from various sources.

For example, Cordeiro, et. al. (2017) extended the family by composing the GLL
transformation with a power transformation, leading to the generalized odd log-logistic
(GOLL) family, which could also be called the GLL-Exponentiated family. They applied
this composite transformation to normal, Weibull, and gamma distributions. In each case,
they examined quantiles, moments, order statistics, hazard rates, and MLE’s. They applied
the distribution families to fitting a set of data consisting of lifetimes of a sample of n = 50
industrial devices. They found that the GOLL-Weibull(2) distribution provided a better fit
than a Weibull(2) distribution.

In another example, Cordeiro, et. al. (2015) extended the family by composing the
GLL transformation with a Zografos-Balakrishnan (2009) transformation, yielding what
they termed a Zografos-Balakrishnan odd log-logistic (ZBOLL) family of distributions.
They examined various generating distributions, including the Weibull(2), normal, and
Gumbel distributions. They examined quantiles, entropies, order statistics, and MLE’s for
the resulting families of distributions. They then applied these distributions to two data
sets. In the first case, they found that a ZBOLL-Weibull(2) distribution provided a good
fit to as set of data consisting of the logarithm of the time to first calving for a sample of
= 897 female Brazilian Newlore breed cattle. In the second case, the found that ZBOLL-
Normal distribution provided a good fit to a data set consisting of the daily temperatures
for a city in Brazil over a one-year period.

Gleaton and Lynch followed their paper on GLL distributions (2006) with another
paper extending the family by composing the GLL transformation with a proportional odds
transformation (2010). In this paper, they also found that a GLL-Exponential distribution,
the subject of the current paper, provided a better fit than a Weibull(2) distribution to a set
of data consisting of the tensile breaking strengths of n = 64 ten-millimeter-long carbon
fibers.

In this paper, we establish sufficient conditions for the asymptotic properties of the
MLE’s of the parameters of GLL-Exponential distributions, in which the generating
distribution is exponential, with c.d.f. given by:

G(x|A) = (1 — e™)Ig,m) (), (1.1)
where A > 0. The c.d.f. of the transformed distribution is

(1—e?)"
(1 — e—lx)zc 4 o KA I(O'W)(x)' (1' 2)

In Section 2, we present the regularity conditions that must be satisfied for the
desired asymptotic properties of the MLE’s to hold. In Section 3, we prove a theorem that
shows that, if the value of the transformation parameter exceeds 1, the likelihood equations
have a sequence of solutions satisfying conditions of strong consistency and asymptotic
normality and efficiency. In Section 4, simulation is used to verify that asymptotic
efficiency of the MLE’s is satisfied for various values of the parameters. Throughout the
following sections, whenever there is no ambiguity, the argument x may be omitted as
understood.

Gy (x|A) =

2. Regularity conditions for asymptotic properties of MLE’s.
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For a given probability p.d.f. f(x; @) depending on an m-dimensional parameter
vector @, it is well-known that the MLE’s of the parameters of the distribution are jointly
strongly consistent and asymptotically normally distributed and efficient if certain
regularity conditions are satisfied. The conditions are (Schervish, 1995; Serfling, 1980;
Stuart, et. al., 1999; Wijsman, 1973; Wilks, 1962):

a) For almost all x, the derivatives

aln(f) 9%In(f) q 0°Iin(f)
36, 00,00, """ 96,00,00,
exist for all values of @ belonging to a nongenerate open parameter space, 2.
b) Forall 6 € Q, where

of 0%f 0% f
2 < |2 o _
00; 06,00; 06,0000,
the functions Fy;(x) and F,;;(x) are integrable with respect to x over (—oo, +00), for all
i,je{1,2,...,m}, and

< inj(x),and < Hijk(x)l

o)

f Hij () f (x; 8)dx < My,

where M; . is positive and independent of @, for all i, j, ke{1,2, ..., m}.

c) Forall @€ Q,
[ (3N’
f( 26, )f(x;@)dx

— 00

is positive and finite for ie{1, 2, ..., m}.

3. Asymptotic properties of MLE’s for distributions generated by a

GLL transformation of an exponential distribution.

In this section, the regularity conditions will be verified for the class of continuous
lifetime distributions generated from an exponential distribution by a GLL transformation.
Throughout, the value of the transformation parameter « is assumed to be greater than 1.

If the embedded, or generating, distribution for a GLL equivalence class has a p.d.f.
of exponential-class form, then the other members of the equivalence class are not
members of exponential families, since their p.d.f.’s have the form

K(G(x)G_(x))K_lg(x) _ KA
[(600) +(Gw)] ¢

It is not possible to write this function in exponential-class form, unless k =1.
The hazard rate for the GLLE distribution is then

9. 90 G
h) = = M) eeem = 6o

It is clear that, for k = 1, h; (x) = A, the exponential hazard rate.

A (G())A(G(x)), for x = 0. (3.1)
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LEMMA 3.1: For a GLLE(A, ) distribution, the first, second, and third partial derivatives
of the natural logarithm of the density function with respect to the components of the
parameter vector exist for all x € (0, ), for k > 1.

PROOF: Gleaton and Rahman (2010) proved that, for a two-parameter Weibull generating
distribution, the first-, second-, and third partial derivatives of the natural logarithm of the
GLL-Weibull(2) p.d.f. with respect to the parameters exist for all x € (0, +o0) for x > 1.
Since the GLLE distribution is a GLL-Weibull(2) with shape parameter 1, this shows that
the first regularity condition holds for GLLE distributions.

Gleaton and Rahman (2010) also showed that the remaining regularity conditions
hold for a GLL-Weibull(2) distribution, provided k¥ > 3. In this paper, the remaining
regularity conditions will be addressed for the subset of GLLE distributions, with the
restriction on « relaxed.

It is straightforward to show that

00 _ 4 A (@) n 3). 3.2.0)
1) u
and that
6u
0N () = kA (WA, (7)) 2L 3.2.b
a1 e(U) () : (3.2.b)

3.1 First partial derivatives of the density function with respect to the

parameters

LEMMA 3.2: For a GLLE(A, ) distribution, the first partial derivatives of the density
function with respect to the components of the parameter vector are bounded in absolute
value by integrable functions for k¥ > 1.

PROOF: We have, using (3.1) and (3.2.b),

P
J _ﬂ, K( ) —x E ;gk( )+KG( )(A (G(x)) A (G(x)))g;c(x) 3.3)

oA
Then, for k > 1, we may use Lemmas 1 and 3 from the Appendix to obtain
agi| _1 _ _
EMK < zg,c(x) + M, g, (x) + kK2"*M, g, (x) + k2" x g, (x). (3.4)

Since all moments of the composite distribution exist (Gleaton and Lynch, 2006), all terms
on the RHS are integrable. Hence, the first partial derivative of the p.d.f. with respect to
the scale parameter is bounded in absolute value by an integrable function.

Next, using (3.1) and (3.2.a),

g, 1 - G(x)
2 == 9x () + 900 (A (6@) = A (6()) ) In <@> (3.5)
Using Lemma 1 in the Appendix, we find, for k > 1,
99y
agk <- gk(x) +25g,(x) ln( E §>|
1
< Eg,c(x) + ZKgK(x)|ln(G(x))| + ZKgK(x)|ln(G(x))|. (3.6)
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The first term is integrable. Each of the other two terms is integrable by Lemma 4 in the
Appendix. Hence, the first partial derivative of the p.d.f. with respect to the transformation
parameter is bounded in absolute value by an integrable function for k¥ > 1.

3.2 Second partial derivatives of the density function with respect to the

parameters
LEMMA 3.3: For a GLLE(A, x) distribution, the second partial derivatives of the density
function with respect to the components of the parameter vector are bounded in absolute
value by integrable functions for k¥ > 1.
PrROOF: We have, using (3.3) and (3.2.b),

0% g, 1 lagk x%G(x) xé(x) 09y

oz - I35 ( x))z 9« =0y aa

200 () ZAK(G(x))) 900 —

—K 7 8 (G () A (G (X)) g (x)
™) (G(x)) (G))A(G)
G( ) ( —2A (G(x))) 3.7)
Thus, for k > 1, using Lemmas 1 and 3 in the Appendlx
0%g, 1
a/igz Sﬁgk(x)-l_ | +MVgK(x)+M |
+KkM, g, (x) + k?22%7IM, g, (x) + GK();) aag; : (3.8)

The first six terms on the RHS are obviously integrable. We expand the seventh term on
the RHS using (3.4). Using (3.1) and Lemmas 1 and 3 in the Appendix and assuming
K > 1, we have

KX |09

G(x) oA
The RHS of this inequality is integrable. Thus, for k > 1, the second partial derivative of
the composite p.d.f. with respect to A is bounded in absolute value by an integrable
function.

k22272 [My, + AM} + kA2K"IMZ + kA2% M x|e ("D (3.9)

Using (3.5) and (3.2.a), we find that the second partial derivative of the p.d.f. with respect
to the transformation parameter is

0% g, 1 lagk agK = G(x)
=7 =~ 59 + ==L+ = (A, (C() = A(6()) In (5@)

2
_ G
~20 A (G())A(G()) (ln (5&3)) . (3.10)
Using Lemma 1 in the Appendix, we have
azg,c 1 agK agK G(x)
Ox? ZgK( x) + | oK oK n((f(x))‘
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122571 (x) Z (?) (ln(c(x)))j (ln(G_(x)))z_j. (3.11)
=0

The first two terms on the RHS are obviously integrable. Lemma 4 implies that the
fourth term on the RHS of (3.11) is integrable.

We expand the derivative in the third term, using (3.6), and also use Lernma 1, obtaining
Qg (G(x)> L, ml (G( )>|+2K @ ln( (x ))

Ok G(x) G(x) G(x)
By Lemma 4 in the Appendlx, both terms on the RHS of (3.12) are integrable. Hence,
the second partial derivative of the p.d.f. with respect to the transformation parameter is
bounded in absolute value by an integrable function.

Using (3.5), we find the mixed second partial derivative of the p.d.f.:

09, _ 109 09« () A (G(), (G
220k~ xor *oa 1T 2 (G(x))]hl<a( )) 29053 hl(é(x))

(3.12)

+9,(0)[1 = 2A(6 ()] (xG(x) +x>- (3.13)
Then, using (3.2.b), we have
0%g.| _ 1|0g.(0) |agk<x) . (G( ))\ +2al (G(x))\
oAdk| ~ k| 01 oA G(x) G(x)
xG (x)
+9,.(x) <m + x). (3.14)

The first term on the RHS is integrable; using Lemma 3 in the Appendix and the fact that
all moments of the distribution exist, we find that the fourth term on the RHS is also
integrable. For the second and third terms, if we use (3.4) and Lemma 1 in the Appendix,

we have
(G o b (59)
G(x) ")

< 1 2K—1 2K—1 G(X)
< 1+Mn+" M, + k x| g, (x)

G(x)
| G(x)
h (G_ (x)) .

Assuming k > 1 and using Lemma 4 in the Appendix and (3.1), we find that both terms
on the RHS of (3.15) are integrable.

Hence, all second partial derivatives of g, (x) with respect to the parameter
components are bounded in absolute value by integrable functions, so longas k > 1. m

09y

+2%(g(x )’

In

+x2%% 1xg, (x)

(3.15)

3.3 Third partial derivatives of the p.d.f. with respect to the parameter

components.

LEMMA 3.4: For a GLLE(A, x) distribution, the third partial derivatives of the density
function with respect to the components of the parameter vector are bounded in absolute
value by functions with finite expectations for k > 1.

PROOF: The third partial derivative of the p.d.f. with respect to the transformation
parameter is:
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0°gx _ 2 2 0g  10%g, 0°gx G (x)
ox3 _Fg"(x) T2k Tk T o [1-2(6C0)]n G_(x)>

(n(52))

=20k ()A(G())A(GED)[1 = 24(G())] <ln (Cf(x)>> : (3.16)

G(x)
Hence, for k > 1, using Lemma 1 in the Appendix and the boundedness of the c.d.f,
0’| _ 2 agK 1|10%g| , [0%9x||, (GG
< = 9x(x) — In (=
0k3 K3 K| 0Kk? dK? G(x)
Ag|(, (6(0) G\’
+2% |—|| In| = + 22K—1 In| = 3.17

The first three terms on the RHS of (3.17) are obviously integrable. Lemma 4 in the
Appendix implies that the last term on the RHS of (3.17) is integrable.

Using (3.5), (3.6) and Lemma 1 from the Appendix, we may write the fifth term on
the RHS of (3.17) as

09, <ln (G(x)>)2
G (%)

2
1 . G(x) G(x)
=% lEg"(x) 2 g i (é(x))” <l" (G‘(@)) | G19

It is clear from Lemma 4 in the Appendix that the RHS of (3.18) is integrable.
If we expand the fourth term on the RHS of (3.17) using (3.11), we find

22K

9%g, || (G GO\| . 119g4|], (Gx)
Ox2 1(6( ))‘ "“| (G(x))h drc 1“<é<x>>
agx||, (G c0\|”
In <G_(x)> +2 Gie(x) |In (G_(x)> (3.19)

From Lemma 4 in the Appendix, the first and last terms on the RHS of (3.19) are integrable.
It was shown above that the second term on the RHS of (3.19) is integrable.
If we expand the third term on the RHS of (3 19) using (3.5) and (3 6), we find

0gic G(x) G ( ) G(x)
In l

o (a() < 900 | 9600 |\ 70y

From Lemma 4 in the Appendlx we find that the RHS of (3.20) is integrable.

Hence the third partial derivative of g, (x) with respect to the transformation
parameter is bounded in absolute Value by an integrable function. Since g, (x) is also

(3.20)

finite expectation.
The third partial derivative of the p.d.f. with respect to the scale parameter is:
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9°g, 2 20g, 10°g, x°G(x) x%G(x) 0gy
613 /13 gK( ) AZ eV +A EYP ( (x ) (1 + G(X))gk(x) —( (x))za
2@ g, x6() .
oo o HE Gy (1+G(x))(1 20,(G(x))) guc(x)
4x x3G(x) 2G(x)
9e(x)) — 2K 1-2A,(6G(x)
@Y 5 (9:(0)’ (G(x)) 5 ( i ))
2K x? 2 6K x? agK KX %Gy

+ 250 @) = T M 53+ gy (1 2 (60)) % @21

Hence, using Lemma 3 in the Appendix and the boundedness of the c.d.f., we find

63gK 2 2109, 1]0%g, x3G(x) 62g,c
R ENE gx(x)+ 23z +2(K+1)(G(—x))39x( x)+ M ¥
4K 09, 21c x?
6K x? agK kx 029,
N )| te oz | (3.22)

It is clear that terms 1, 2 ,3, 5, and 7 on the RHS of (3.22) are bounded in absolute value
by integrable functions, and thus have finite expectations. The other terms will be
considered individually.

Assuming k > 1, we use Lemmas 1 and 3 in the Appendix, together with (3.1) and
(3.2.b) to find that the expectation of the absolute value of term 4 on the RHS of (3.22) is

202 (1c + 1)A? f°° 2(6) (@) ([GE@)™
(6@)" [(66)" + ()" i
< Kk?(k + D)A22*3 M ] e 20 DAX gy
K+ DA 4(rx-1 30
= ———2"Im,

Since the p.d.f. is bounded and all moments of the distribution exist, the expectation
of term 6 on the RHS of (3.22) is finite.

Assuming k > 1, we use Lemmas 1 and 3 in the Appendix, together with (3.1) and
(3.2.b) to ﬁnd that the expectation of the absolute value of term 8 on the RHS of (3.22) is

2w [ x 2600 (60)" T (6w) "
> (9:()) dx = 2ic*2
p fc() f 6O [(6@) +(E@)

4-

[ee)

< 2K4/1Mp26(1c—1)] e—(3x—1)/'lxdx — M 26(K 1)

3k—1

0
Let a(x, 4, M) = k2220"DM, (1 + AM,, + kA2*"1M,), and B(x, A, M,)) =
k32230~ M, Then, using Lemma 1 in the Appendix and (3.9), we find that the
expectation of term 9 on the RHS of (3.22) is
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6K X2
7600

09«

—~ (X )|

l 6KfG(x) (9 (x ))

6
< za(ic,/l, Mn)f xe‘("_l)’lx(g,c(x))gdx+zﬁ(K,A,Mn)J- xze‘("_l)’lx(g,c(x))gdx
0 0

< (3)26% 5,322 [Q(K, A MU)J- xe " (K—DAx gy + B (x4, MU)J- xze‘("_l)’lxdx}.(S.ZS)

Both integrals on the RHS of (3.23) exist.
Let C; = /11—2 + M, (k+ 1+ k222 1), and C, = % + M,,. Then, using (3.8), we
find that the expectation of the tenth term on the RHS of (3.22) is:

0%g, r X

91z
X2
+rC f ()| f (x >|
2 G( ) 7T NI X ( x )2 I\ X
Using Lemma 5 in the Appendix, we find that the first 1ntegra1 in (3.24) is

G
fc( )(gk(x)) dx < k222240 1>Of %dx,

which is finite. Ifwe let C; = % + M, + k21 and C, = k2%, and use (3.4), we find
that the second integral in (3.24) is

kX
e

(3.24)

X agK ‘ X 2 ° x2 )
f AR il <c ! Goo (9:@) dx + ¢4 Of 0 (@) ax

0
Lemma 5 in the Appendix implies that both integrals on the RHS of the above equation are
finite. Likewise, the last integral on the RHS of (3.24) was shown above to be finite.
Hence, the third partial derivative of the p.d.f. with respect to the scale parameter
is bounded in absolute value by a function with finite expectation.
Third mixed partial derivatives. We have
0° g, 109, 10%gc x*G(x) dg, xG(x)d%g,
0kdA2 A2 0k A 0kOA + (G(x))z ok G(x) 0koA

x2G (x) ( (x )>
— 1-2A,.(G ; 2 A (G(x) )AL (G 1 K
(G(x))z( ( (x)))g (x) + K(G(x)) ( (x )) ( (x)) n G(x) e (x)
kx2G(x) 4xx
———(1-21,(Gx) 7 A (G () A (G () g ()

2K x?

(6’

3 0(600) (A (G(x))) (C;Eg)g,c(x)
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2K%x? x) 2K%x?
+ A(G(x))) Ap(G(x) ln( > k(X)) ———= A
(6(x)° ( ol )) (6) G(x ) (6G(0)
G(x)\ 09y
e )(1 —2A (G(x))) G( )A (6G))A(G())In <G(x)>
e )(1—2/\ (G(x)))a e (3.25)
Then, using Lemmas 1 and 3 in the Appendix, we find
0°gi | _ 1199« , 1|0%9xk 09x| , s |229x
axa22| = 2o | T 7 |oxon | T M (aean
+M, g, (x) + 22 1kM,, |In (GE ;) e a +22KKMng(x)
3K—1,.2 @ agK x |09k
+2°" kM, m((f(x)) g IR
. G(x)\| |99 x |0%g.
+22 1KG(x) In (G_(x)> KG(x) FPETIE (3.26)

The first, second, third, fourth, fifth, seventh, eighth, and tenth terms on the RHS of (3.26)
are clearly integrable. Lemma 4 in the Appendix implies that the sixth and ninth terms are
also integrable. Hence, all of these terms have finite expectations.

Using (3.4), we find that the expectation of the eleventh term is

[Gz(X) aaik] <21L+M + k2K 1M )fc(x) (gk(x)) dx

[oe)

+K2K1 J-
G(x)
Applying (3.1) and Lemmas 1 and 3 in the Appendix, we find

2 1
L ] < kA220Bp, (Z + M, + xz’f—lm,,) + 22230V, E[X].
G(x)
G(x)

G(x)
In (5(;)‘ (gK(x))zdx

(x)) dx

deels

The expectation of the twelfth term is

. X | (GOON[109¢|] _ operr [ X
22 IKE[G(X) (G(X)>|| l—ZZ 1K!G(x) In

Using (3.4), we find
X G(X)\| 99 — X
ElG(X)|1n<G_(X)>|| l —+ M, + K2 1M>()fG(x)
| G(x)
“<é<x>>

+x2%1 f x
G(x)
0
If we apply (3.1) and Lemma 1 in the Appendix, we find the first integral on the RHS of
3.27) s

a9
; i (x)dx.

(gK(x))de. (3.27)
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[ x| (6k) o | < )
Of ey 1n(5(x)>( () dx < KA20M f e

The integral on the RHS above exists, by Lemma 4 in the Appendlx Similarly, the
second 1ntegral on the RHS of (3.27) is
n (G (x ))
G(x)

: G( ) 2(k—1
fGJEx) 1n<_ >‘( K(x)) dx < kA2 k=D pm f
0

gie(X)dx.

Gie(x)dx.

G(x)

Again, Lemma 4 in the Appendix implies that the 1ntegra1 on the RHS above exists.
The expectation of the thirteenth term on the RHS of (3.26) is

X |9%g.|] _ [ ox 029,

E[’cm DK l = Kof G0 |aran| 9xIdx:

Using (3.14), we find
el X 9%gx [ |6g,<] | X | (6 |agk
G(X) koA G(X) G(X) G(X)
G 3
(e
0
G
+KszCx)< xG((x))>(gK(x))2dx. (3.28)

It was shown above that the first two terms on the RHS of (3.28) are finite. For the third
term on the RHS of (3.28), if we use (3.1) and Lemmas 1 and 3 in the Appendix, we have
(g,c(x))sdx < K3/124K_3va

26 [ x2 G(x) ( G(x)
— f In{—= In|—=
1) G| \Gk) G(x)
0 0
The fourth term on the RHS of (3.28) may be written, using (3.1) and Lemmas 1
and 3 in the Appendix, as

gie(x)dx (3.29)

[ee)

f( (x))z (gk( )) X—Kzl]( (x)) s A (G(x))A (G(x))gk(x)dx

< k22220

is bounded by a function with finite expectation.

23gx
dKdA2
Finally, using (3.10), we find

0°g  10g. 10°g. 2 09, , (G(x)
9A0K2 _FHJ“EaAaK ~ X950 "<G(x)>
gk G (x) x 09,
(1 —20(G(x ))) e (G(x)> e (1 - ZAK(G(x))) o
2 2
2 G 4 9g.(. (G
~ = XG0 (9x(0))’ <ln (a%i)) - = 6()g ()~ (ln ( Gg;))
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4 2 G(x)
—ax(g,c(x)) In <(7(x)>' (3.30)
Hence,

0%g | _ 110g«| 1|0%gc| 2 0G| [, (GO

o2ak?| = k2 claoe] 1795 "(G‘(@)‘

02g.|| (6N x |09k . 2 2 (GO
MR ln(é(x)) +G(x) oK +ax(g,€(x)) (ln (G_(x)>>

N 99, G S 2| (G

+— gu(x )| g ( (;g)) +—x(g l"(éﬁﬁ)' (3.31)

The first two terms on the RHS of (3.31) are bounded by integrable functions, and
thus have finite expectations. The boundedness of the p.d.f., together with Lemma 4 in the
Appendix, imply that the sixth and eighth terms on the RHS of (3.31) are bounded by
integrable functions, and thus have finite expectations.

Using the fact that the p.d.f. is bounded, we find that the expectation of the third

term on the RHS of (3.31) is
G(X) m ()
(o || <2 ] vt [ (5

2 dg
~E |Xg [ 9100 [ 5
G(x)>r
In dx,
(7
which is finite by Lemma 4 in the Appendix.
Using (3.14), we find that the expectation of the fourth term on the RHS of (3.31)
[ 2%x||, (600 10 oo (6@
In|—= dx < —
f orok| | (G(x)) ge()dx < K] G( )
0 0
agk G(x) 2 j G (x)
+ In|—= dx + - —
f " (G(x) e (x)dx 2)x G(x)
0 0
[ (x )) xG (x) G(x)
+ f x|ln (x)) dx+ J- In(—=
) (G() (5:09) J 66 ["\Gw
It was shown above that the first term — see (3.12) — and the second term — see (3.20) —

on the RHS of (3.31) are finite.
Using (3.6), we find that the expectation of the fifth term on the RHS of (3.31) is

[sam ol - fa(x) oot < 1fc( o (e e

GX)| ok
. X G(x) 2
+2 !G(x) ln(G_(x)>|(gK(x)) dx.

Using (3.6) and Lemmas 1 and 3 in the Appendix, we find

+K2A25%73 f x g, (x)
0

1S

g (x)dx

(g,c(x))gdx

(g:(2)) dx. (3.32)
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X | [
[ L ] < 2220V, +K/123K_2Mnf ‘l ( (x )>
0

g (x)dx.

max G(x)

The integral on the RHS above exists, by Lemma 4 in the Appendix. Hence, the fifth
term on the RHS of (3.31) is bounded by an integrable function.

Using (3.1), (3.4), and Lemmas 1 and 3 in the Appendix, we find that the
expectation of the seventh term on the RHS of (3.31) is

2
09y G(x) 2
% o (+(383)) oo
® 2
< gA2%K~2 (% + M, + ZK‘an>f <ln (%)) g () dx
I 0 2
+K2)25€-3 ] X <ln (%)) gK(X)dX.

Then, Lemma 4 in the Appendix implies that the integrals on the RHS above are finite.
Thus, the expectation of the seventh term is bounded by an integrable function.

Hence, the eighth term on the RHS of (3.31) is bounded by a function with finite
expectation.

Thus

' 57 a > is bounded in absolute value by a function with finite expectation. m

3.4. Expectation of the squares of the first partial derivatives of the
logarithm of the p.d.f. with respect to the two parameters

LEMMA 3.5: For a GLLE(A, x) distribution, the expectation of the square of the natural
logarithm of the density function with respect to each component of the parameter vector
is positive and finite for k¥ > 1.

PROOF: From (3.1), we have

oin(g,(x)) 1 G(x)
o = (1-20¢(6()) In )
Then, using Lemma 4 in the Appendix, we find that

(g CON] 1 2(. (6 (x)
E[(T) SF-}_;O.I-I (G( )>9K(x)dx+f <ln<G( )>> gk(x)dx

is finite.
Also from (3.1), we have

aln(g,(x)) 1 xG(x)

X
a2 1 G G(x)(l_ZA"(G(x)))'

Thus, by Lemma 3 in the Appendix, we have
aln(g,c(x)) - 1

+ My + ——
a2

2 TGk

and
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2 e

< (%‘}'Mn) + 2k (%‘}'Mn)] %gk(x)dx

0

oA

. [<aln(gK(X))>2

[ee)

2 x2 d
+xK f(G(x))ng(x) X

0
Using (3.1) and Lemmas 1 and 3 in the Appendix, we find that the first integral on the

RHS above is

o)

KM, 220 1)

X
< 2(k-1) f —(k—-1)Ax —
f 7e)) i (0)dx < KkAM, 2 e dx —
0 0

Also using (3.1) and Lemmas 1 and 3 in the Appendix, we find that the second integral
on the RHS above is

[ : r 2(k—1)
0 (G(x)) o K —
Thus the last regularity condition is satisfied for k¥ > 1. =

3.5. Asymptotic properties theorem

As a result of the five preceding lemmas in this section, we may state (Schervish,
1995; Serfling, 1980; Stuart, et. al., 1999; Wijsman, 1973; Wilks, 1962) the following
theorem.

THEOREM: If X7, X5, ..., X, 1s a random sample from a distribution which is Generalized
Log-Logistic Exponential, with scale parameter A > 0 and transformation parameter kK > 1,
then with probability 1, the likelihood equations admit a sequence of solutions {@n}
satisfying: a) strong consistency: 8, — @ as n — oo, and b) asymptotic normality and
efficiency: @n is AN (0, n 1 0 1), where the information matrix

Iy = [EGK {((lngic)(Gi)) ((lng")(ei))}]'

4. Simulation Results

A simulation study was conducted to evaluate the joint asymptotic efficiency of the
MLE’s of the parameters of the GLLE distribution. Without loss of generality, we chose
the scale parameter to be 1. The chosen values of the transformation parameter were 3.0,
2.0, 1.5, 1.0, 0.5, and 0.25. The simulation study contained two parts. In the first part, the
MLE’s and their variances were simulated. In the second part, we evaluated the Cramer-
Rao Lower Bound (CRLB) by simulating the information matrix. The results were
compared to decide whether the variances of the MLE’s tended to approach the CRLB.

Let U~Uniform(0,1). To generate a random variate from a GLLE(A, «)
distribution, with chosen values for A and k, we set
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~ (e/‘lx _ 1)"
P PV TS

u

1/k
and invert, obtaining x = %ln (1 + ( ) ) We substitute n generated values of U

1-u
into this equation to obtain a simulated random sample of size n from a GLLE(A, k)
distribution.

In terms of the baseline and composite distributions, the likelihood equations are:

al n n n n B
i g + ; In (G(x;)) — A; X; — 2 ; ln(G(xi)) G (x;) + 2/1; x; G (x7),

and
n

al n = x,G (x;) . = x,G (x;) _
- Z-I_ (k — l)z Cr) Kin — 2K ) G (x;) + ZKle-GK(xl-).

i=1 i=1 i=1 i=1
These were set equal to 0 and solved numerically to find the MLE’s.

The algorithm for simulating the MLE’s and estimated covariance matrix:
Generate a random sample of size n from a GLLE distribution.

Calculate the MLE’s.

Repeat the first two steps 1000 times.

Calculate the estimated covariance matrix.

The algorithm for evaluating the CRLB:

alb e

1. Generate a random variate from a GLLE distribution with given scale parameter

and transformation parameter.

2. Evaluate the squares of the first partial derivatives of the logarithm of the density
function with respect to the two respective parameters, and the product of the two

first partial derivatives.
Repeat the first two steps 5000 times.

[98)

4. Find the averages of the above three quantities to estimate the four elements of the

Fisher information matrix.

5. Invert the matrix and multiply the diagonal elements by 1/n to obtain the estimated

CRLB.

The results of the simulation are presented in the tables below. Tables 1

to 6 present the simulation results for the MLE’s and estimated variances for both
parameters. Tables 7 to 12 present the differences between the estimated variances and the

corresponding CRLB’s.
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Table 1: K =3 and A =1

" E(A) V(4) E(K) V(K)
100 1.001125749 0.001768968 3.013491483 0.065186515
110 1.000785286 0.001456501 3.026518598 0.06318737
120 0.999340124 0.001389415 3.0250789 0.053447569
130 1.000480552 0.001241102 3.028950807 0.049939951
140 1.001798459 0.001221275 3.016643976 0.042107998
150 0.998726951 0.001071179 3.019782171 0.04155098
160 1.000839726 0.001097054 3.013302705 0.040841092
170 1.001673574 0.001030968 3.013898422 0.036684858
180 1.001255294 0.00093284 3.005612011 0.03606937
190 0.999299428 0.000808745 3.006299152 0.034189518
200 1.000179172 0.000871689 3.016910752 0.031295812

Table2: K =2 and A=1

" E(A) V(4) E(K) V(K)
100 1.002454292 0.003407492 2.005670216 0.027603
110 1.004599604 0.003119688 2.01955518 0.027636
120 1.001600936 0.003200932 2.016340406 0.023595
130 1.001174895 0.002631337 2.00964898 0.022263
140 1.003221361 0.002791891 2.009530121 0.020723
150 1.001494831 0.002336678 2.007397904 0.017988
160 1.002517937 0.002440983 2.00182019 0.01919
170 0.999816102 0.002109983 2.010170053 0.017719
180 1.002440618 0.002005028 2.013965088 0.015169
190 1.0018852 0.001816137 2.013453912 0.014212
200 1.002927173 0.001895421 2.014119136 0.014125

Table3: Kk =1.5and 4 =1

" E(1) V(A) E(K) V()
100 1.004913748 0.006099656 1.517384639 0.016007
110 1.006263712 0.005472738 1.514604842 0.015646
120 1.004553852 0.004468002 1.508908329 0.014388
130 1.006066782 0.004892317 1.50626504 0.011974
140 1.004739657 0.004056058 1.510753485 0.01136
150 1.000800482 0.003649807 1.508005461 0.010293
160 1.003654916 0.00371035 1.50338242 0.010151
170 1.004894546 0.003607423 1.5075619 0.009785
180 1.003217785 0.003473121 1.511898558 0.00975
190 1.002131601 0.003104311 1.508210397 0.008309
200 1.000240384 0.002893984 1.50458012 0.007536
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n E(A) V() E(K) V(K)
100 1.011348156 0.0109347 1.00296116 0.006757
110 1.009089758 0.0096083 1.00565177 0.006626
120 1.011014586 0.0094702 1.00480053 0.005552
130 1.007037837 0.0083208 1.00284849 0.005512
140 1.008081372 0.0075836 1.00753959 0.00503
150 1.007591632 0.0072112 1.00991224 0.004845
160 1.015388201 0.0067138 1.01033131 0.004435
170 1.004809568 0.006134 1.00213605 0.004225
180 1.008245478 0.0056417 1.00506997 0.003941
190 1.01074676 0.0057851 1.00420861 0.004128
200 1.002714724 0.0050746 1.00217774 0.003706

Table 5: K =0.5and A =1

n E(2) V(4) E(x) V(K)
100 1.020816584 0.0173823 0.50495578 0.001771
110 1.019769348 0.0161177 0.50395102 0.001558
120 1.013707054 0.0138546 0.5020536 0.001503
130 1.015732208 0.0131783 0.50238774 0.001395
140 1.012712389 0.0130471 0.50467292 0.001401
150 1.01657043 0.0105934 0.50265586 0.001205
160 1.012332079 0.0108858 0.50260116 0.00112
170 1.008269904 0.0095322 0.50120098 0.000924
180 1.011543402 0.0090271 0.50109543 0.001026
190 1.00863372 0.0083533 0.50291172 0.000886
200 1.010423929 0.0081023 0.50164918 0.000907

Table 6: K =0.25and A =1

" E(1) V(A) E(x) V(K)
100 1.023429598 0.016222 0.25241718 0.000438
110 1.018713738 0.0166837 0.25180928 0.000451
120 1.018160677 0.0157249 0.25189155 0.0004
130 1.015540994 0.0143469 0.25167838 0.000352
140 1.013978264 0.0111233 0.25179948 0.000336
150 1.013925343 0.0111865 0.25144254 0.000301
160 1.011180729 0.0108696 0.2513737 0.000283
170 1.015184211 0.0105859 0.2514993 0.000282
180 1.016492297 0.0096427 0.25162673 0.000237
190 1.00933421 0.0087129 0.25136223 0.000224
200 1.013720433 0.0085688 0.25238844 0.000223
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Table 7: K =3 and A =1

n CRLB(A) V(A) CRLB(K) V(%)
100 1.63513E-05 0.001768968 0.000631778 0.065186515
110 1.39208E-05 0.001456501 0.000524663 0.06318737
120 1.16737E-05 0.001389415 0.000462971 0.053447569
130 9.79998E-06 0.001241102 0.000379027 0.049939951
140 8.81020E-06 0.001221275 0.000323560 0.042107998
150 7.71129E-06 0.001071179 0.000291942 0.04155098
160 6.45611E-06 0.001097054 0.000254583 0.040841092
170 5.78695E-06 0.001030968 0.000226281 0.036684858
180 5.27834E-06 0.00093284 0.000197507 0.03606937
190 4.74250E-06 0.000808745 0.000179838 0.034189518
200 4.25858E-06 0.000871689 0.000156712 0.031295812

Table 8: K =2and A =1

n CRLB(A) V(A) CRLB(K) V(%)
100 3.54035E-05 0.003407492 0.000292617 0.027603469
110 3.12867E-05 0.003119688 0.000245548 0.027636468
120 2.56908E-05 0.003200932 0.000198794 0.023594641
130 2.20802E-05 0.002631337 0.000172064 0.022262681
140 1.83566E-05 0.002791891 0.000153608 0.020723469
150 1.67602E-05 0.002336678 0.000130659 0.017988025
160 1.46984E-05 0.002440983 0.000115759 0.019189793
170 1.27992E-05 0.002109983 0.000100777 0.017719104
180 1.14493E-05 0.002005028 9.39030E-05 0.015169107
190 1.00901E-05 0.001816137 8.24004E-05 0.014211697
200 8.88526E-06 0.001895421 7.30947E-05 0.014125095

Table9: K =1.5and A =1

n CRLB(A) V(A) CRLB(K) V(K)
100 6.20146E-05 0.006099656 0.00018024 0.016006769
110 5.18892E-05 0.005472738 0.00013768 0.015646155
120 4.30093E-05 0.004468002 0.000118736 0.014387556
130 3.83645E-05 0.004892317 0.000102972 0.011973794
140 3.30375E-05 0.004056058 9.03979E-05 0.011360234
150 2.75008E-05 0.003649807 7.65130E-05 0.010293458
160 2.45281E-05 0.00371035 6.73736E-05 0.010151349
170 2.20230E-05 0.003607423 5.95262E-05 0.009785136
180 1.92334E-05 0.003473121 5.34973E-05 0.009750133
190 1.72763E-05 0.003104311 4.76184E-05 0.008308865
200 1.62548E-05 0.002893984 4.29802E-05 0.007536144
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Table 10: K =1land A =1

n CRLB(A) V(A) CRLB(K) V(K)
100 0.000117654 0.010934718 8.43314E-05 0.006756552
110 9.75270E-05 0.009608251 7.30740E-05 0.006626176
120 8.32848E-05 0.009470224 5.82261E-05 0.005551558
130 6.98807E-05 0.008320847 5.01450E-05 0.005511549
140 6.07769E-05 0.00758364 4.30533E-05 0.005030476
150 5.33687E-05 0.007211223 3.75767E-05 0.004844793
160 4.87387E-05 0.0067138 3.28210E-05 0.004435137
170 4.24524E-05 0.006134016 2.93007E-05 0.004224744
180 3.75354E-05 0.005641733 2.62918E-05 0.003941071
190 3.33194E-05 0.005785119 2.35158E-05 0.004127568
200 3.03357E-05 0.005074613 2.12919E-05 0.003706077

Table I1: K =0.5and A =1

n CRLB(A) V(A CRLB(K) V(%)
100 0.000239788 0.017382284 2.64371E-05 0.001770712
110 0.000204437 0.016117651 2.17209E-05 0.001558213
120 0.00017332 0.013854568 1.85515E-05 0.001503341
130 0.000143753 0.013178294 1.6404E-05 0.001395243
140 0.000126519 0.013047066 1.38956E-05 0.001400904
150 0.000111575 0.010593407 1.21155E-05 0.001204757
160 9.54672E-05 0.010885846 1.05242E-05 0.001120218
170 8.48157E-05 0.009532231 9.29180E-06 0.000924
180 7.56372E-05 0.009027064 8.24801E-06 0.001026008
190 6.85013E-05 0.008353267 7.43450E-06 0.000886202
200 6.14205E-05 0.008102274 6.64519E-06 0.000906536

Table 12: K =0.25and A =1

n CRLB(A) V(A) CRLB(K) V(K)
100 Indeterminate 0.016222038 Indeterminate 0.000438493
110 Indeterminate 0.016683656 Indeterminate 0.000450572
120 Indeterminate 0.015724927 Indeterminate 0.000399894
130 Indeterminate 0.014346928 Indeterminate 0.000352489
140 Indeterminate 0.0111233 Indeterminate 0.000336
150 Indeterminate 0.01118653 Indeterminate 0.000300584
160 Indeterminate 0.010869561 Indeterminate 0.000282979
170 Indeterminate 0.010585914 Indeterminate 0.000282421
180 Indeterminate 0.009642659 Indeterminate 0.000237439
190 Indeterminate 0.008712918 Indeterminate 0.000223855
200 Indeterminate 0.008568814 Indeterminate 0.000222519
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From examination of the tabulated results, it is apparent that both estimators tend
to overestimate the parameters slightly. There appears to be a somewhat stronger tendency
for K to overestimate.

It is clear that the estimated variances approach the CRLB as the sample size
increases, albeit somewhat slowly. We were unable to assess the efficiency for k =
0.25,1 = 1.0, since we were unable to compute the CRLB for that case.

6. Conclusion.

We have proved that, for any positive value of the scale parameter and for any value
of the transformation parameter exceeding 1, the Generalized Log-Logistic Exponential
distribution family satisfies the standard regularity conditions. Hence, the MLE’s of the
parameters, in this parameter space, are strongly consistent and jointly asymptotically
normally distributed and efficient.

In addition, the simulation results imply that the MLE’s are jointly efficient, with
the variances of the estimators approaching the Cramer-Rao Lower Bounds, not only for
the parameter values in the space mentioned in the preceding paragraph, but also for some
values of the transformation parameter less than 1. Only for « = 0.25 were we unable to
assess the asymptotic efficiency.

Some practical implications of these results are that standard normally-based
statistical inferential procedures may be used in situations in which a GLLE distribution
appears to provide a good fit to a data set. For example, in Section 1, it was mentioned that
Gleaton and Lynch (2010) found that a GLLE distribution appeared to provide a better fit
than a 2-parameter Weibull distribution to a data set consisting of measured tensile
breaking strengths of a sample of n = 64 ten-millimeter-long carbon fibers.

Appendix I: Lemmas

LEMMA 1: Let G(x) = (1 - e"lx)I(O,Jroo)(x), for A = 0, and let G, (x) = AK(G(x)).
Then, for x > 1, we have

_ -1

a) [(G(x))K + (G(x))K] < 2¥71 and

b) 0 < g.(x) = G,'(x) < 220~y
PROOF: Assume that k> 1. Letu = (1 - e‘lx)1(0,+oo)(x), U =1-—u,and let

h,(u) = u* + uk.
We have lim h, (w) = lim h(u) = 1, and h, (0.5) = 2= < 1, with h,(0.5) = 1if
u u—
and only if k= 1.
Differentiating, we have
hi(u) = k(u* 1 — < 1),
Now, h,.(0.5) = 0. In addition, it is clear that, for 0 <u < 0.5, h;.(u) < 0, and that for
0.5<u<1,h,(u) > 0. Since h,(u) is differentiable on the unit interval, it follows that
h,(w) has a minimum at u = 0.5. Thus, h,(u) = 27D or (h, (u))_1 < 201,
For k > 1, it is clear that u*~1 < 1 and that & < 1 Then, using the result above,

we have
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KAu~ gk 20e-1)
9:() = (uu—ur«)zsz A "

LEMMA 2: Letk>1,let A (u) = I(O p@), and A, (w) =1 — A (W) = A ().

Then, for any positive integers n, m, there exists positive constants A,,, and f5,, such that
Aﬁ(G(x)) A(G(x)) < Apme™Pm*,

K+_K

for all x.
PROOF: Let k> 1, and let n, m be positive integers. We have

K(600) AR(GC) = —C <x2) ((_;(x))K i
((6@)" +(G)")
Now, 0 < G(x) <1,sothat 0 < (G(x))nk <1 and

R (A (C () < (Ga)™
AH(G))AR(G(0) < () 1 C))

Using part (a) of Lemma 1, we have
AQ(G(X))AT,?(G(X)) < 2(+m)(k-1) (G(x))mk — 2 (n+m)(k-1) 5 —mx ,
for all x. Thus, Ay = 2D and B, = mxA. m

LEMMA 3: The functions n(x) = x &Y
3 Gx)
X
(6’
PROOF: 1t is straightforward to show, using L’Hopital’s Rule, that
lim n(x) =0, lim v(x) =0, lim p(x) =0, lim 7(x) = 0,
X—00 X—00 X—00 X—00

2 (x) — 2 ()

are bounded.

and that

) 1 1
I):Egn(x) = z,l)g{)l v(x) = Az,hmp(x) =0, hm T(x) = 0.
Each function is non-negative, bounded, and continuously dlfferentlable on (0, +).

Thus, they have maxima, M,, M,, M,, and M, respectively. [

LEMMA 4: If k > 1, then for any positive integers n and m, the functions
. n .. = n
i) (pln(x) = gx(x)“n(G(x))l ) i) 902n(x) = gk(x)lln(G(x))l ’

i) Panm () = x| I(G®)|",  and V) @anm(x) = x™ g, (| In(G())|"
are integrable for k > 1.

PROOF:
1) Using the change of variable u = G(x) = 1 — e~**, it is straightforward to
show that, for k > 1 and using Lemma 1 and Gradshteyn (2015), we have
[e) 1 1

1
f P1n(x)dx = K ] EAK(u)AK(ﬁ)lln(u)I"du < g22K2 flln(u)l”du = K2%%"2n,
0 0
ii) Similarly, letting u = G (x) = e **, we find
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[ee)

] Qon(x)dx < K2%%72n),

0
111) The common class median of the distribution is m = % Ifweletu =

G(x) = 1 — e™**, then, using Lemma 1 and Gradshteyn (2015), we have
co 1

] Q3nm (X)dx = k2252 flln(u)l"lln(ﬁﬂmdu_

0 0
For 0 < u < 0.5, we have |In(%)| < [n(2), so that, using Gradshteyn (2015), we

have
m 0.5

f Panm () dx < 12272(In(2))" j lIn(w)|"du < ©22~2(in(2)) " n!.

0 0
For 0.5 < u < 1, we have |In(u)| < [n(2), so that, using Gradshteyn (2015), we

have

%) 1

f O3nm () dx < K22%72 (ln(Z))n flln(ﬂ)lmdu < K2%%-2 (ln(Z))nm!.
m 0.5
Hence,

[ee)

f Panm () dx < 1227 2[(In(2)) " n! + (In(2))"ml],

0

iv) Similarly, if we let u = G(x) = e™* and use Lemma 1 and Gradshteyn
(2015), we have
J- Qan (X)dx < KZZ"_Z[(ln(Z))mn! + (ln(Z))nm!]. ]

0

LEMMA 5: Let n be a positive integer. Let a and b be real numbers with a > b. Then the
following function is integrable:

n,—ax

fo(x) = ml(o,m)(x)-

PROOF: First, it will be shown that the (strictly positive) function is bounded above.
Then, it will be shown that the tail of the function is bounded by an integrable function.

First, we have
lim f,(x) = 0.
X—00

Then, using L’Hopital’s Rule, we find that

i ) = 3o/ = Lo
0,forn>1.

Then, since the function is strictly positive and continuously differentiable, it is bounded
above.

Next, let x, > 0. Then, we have
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( 1 [ F(n+1
f fa(x)dx < 1——] x"e Y dx = ( ) . [ |
Xo

e—bxo an+1(1 — e—bxo)
0
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