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ABSTRACT 
This paper proposes a new modification of the traditional Bayesian method for measurement uncertainty 
analysis.  The new modified Bayesian method is derived from the law of aggregation of information (LAI) 
and the rule of transformation between the frequentist view and Bayesian view.  It can also be derived from 
the original Bayes Theorem in continuous form.  We focus on a problem that is often encountered in 
measurement science: a measurement gives a series of observations.  We consider two cases: (1) there is no 
genuine prior information about the measurand, so the uncertainty evaluation is purely Type A, and (2) prior 
information is available and is represented by a normal distribution.  The traditional Bayesian method (also 
known as the reformulated Bayes Theorem) fails to provide a valid estimate of standard uncertainty in either 
case.  The new modified Bayesian method provides the same solutions to these two cases as its frequentist 
counterparts.  The differences between the new modified Bayesian method and the traditional Bayesian 
method are discussed.  This paper reveals that the traditional Bayesian method is not a self-consistent 
operation, so it may lead to incorrect inferences in some cases, such as the two cases considered.  In the 
light of the frequentist-Bayesian transformation rule and the law of aggregation of information (LAI), the 
frequentist and Bayesian inference are virtually equivalent, so they can be unified, at least in measurement 
uncertainty analysis.  The unification is of considerable interest because it may resolve the long-standing 
debate between frequentists and Bayesians.  The unification may also lead to an indisputable, uniform 
revision of the GUM (Evaluation of measurement data - Guide to the expression of uncertainty in 
measurement (JCGM 2008)). 

 
Keywords  Bayesian method · frequentist method · measurement uncertainty · prior   
                    information · probability distribution 
 
1. Introduction 

 
Measurement uncertainty analysis is an important task in many fields of science and engineering.  
It can be regarded as a statistical inference process that involves three components: (1) information 
about the measurand, (2) a probability model with one or more unknown parameters, and (3) a 
statistical method.  The information about the measurand may include prior information and the 
data obtained from current measurement (hence called current information).  A probability model 
describes the variability of the measurand due to measurement errors.  
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The probability model commonly used in measurement uncertainty analysis is the normal 
distribution, which is also known as the law of probability of errors.  A statistical method is a tool 
for inferring the unknown parameters of a probability model based on all available information: 
prior and current.  It should be noted that this three-component inference process takes place for a 
direct measurement only.  An indirect measurement may involve additional components: a 
measurement model that relates the quantity of interest (the measurand) to the measurable 
quantities and the law of propagation of uncertainty (LPU).  This paper deals with direct 
measurements only. 

In measurement science, an often-encountered problem is to estimate the true value of a 
physical quantity (the measurand) and the associated uncertainty from a measurement that gives a 
series of observations.  We consider two cases: (1) there is no genuine prior information about the 
measurand, and (2) prior information is available and is represented by a normal distribution.  We 
assume that the measurand is normally distributed with two unknown parameters: location 
parameter µ and scale parameter σ.  Let 𝜇̂ denote an estimator of µ and SU෢  denote the standard 
uncertainty (SU) of 𝜇̂.  So, our job is to obtain 𝜇̂ and SU෢  for Case 1 and Case 2 respectively. 

There are two different views and methodologies for the problem considered: frequentist 
and Bayesian.  Frequentists view the unknown parameters µ and σ as fixed constants (denoted by 
𝜇் and 𝜎் respectively).  For Case 1, the classical frequentist point estimation gives the sample 
mean as 𝜇̂ and the sample standard error with bias correction as the Type A SU (Huang 2014, 
2018a).  The frequentist Type A SU along with a uncertainty-based measurement quality control 
criterion (Huang 2015) is recently adopted in ISO:24578:2021(E) (ISO 2021).  For Case 2, two 
frequentist methods: LCD-based (LCD stands for the law of combination of distributions) and 
least squares, give the same results: 𝜇̂ = inverse-variance weighted-average of the prior mean and 
the sample mean, and SU෢  = square root of the combined variance (Huang 2020b) (see table 1). 

 
Table 1. Frequentist and Bayesian (traditional method) solutions to the problem considered 

Case 
Genuine prior 
information 

Frequentist solution Bayesian solution (traditional 
method) 

𝜇̂ SU෢  𝜇̂ SU෢  

1 None 𝑥̅஽ 
𝑠஽

𝑐ସ√𝑛
 𝑥̅஽ 

√𝑛 − 1

√𝑛 − 3

𝑠஽

√𝑛
 

2 𝑁(𝑥୮୰୧୭୰, 𝜎୮୰୧୭୰) 
𝑥prior ቀ

𝑠஽

𝑐ସ
ቁ

ଶ

+ 𝑛𝑥𝜎prior
ଶ

ቀ
𝑠஽

𝑐ସ
ቁ

ଶ

+ 𝑛𝜎prior
ଶ

 

𝜎prior ቀ
𝑠஽

𝑐ସ
ቁ

ටቀ
𝑠஽

𝑐ସ
ቁ

ଶ

+ 𝑛𝜎prior
ଶ

 see section 5 see section 5 

Note: 𝑥̅஽ = observed sample mean, 𝑠஽  = observed sample standard deviation, n = sample size 
(number of observations), 𝑥୮୰୧୭୰ = prior mean, 𝜎୮୰୧୭୰

ଶ  = prior variance, 𝑐ସ = bias correction factor, 

𝑐ସ = ට
ଶ

௡ିଵ
Γ ቀ

௡

ଶ
ቁ Γ ቀ

௡ିଵ

ଶ
ቁൗ , and Γ(. ) stands for Gamma function.   

 
In contrast to the frequentist view, Bayesians view the unknown parameters µ and σ as random 
variables.  Also, Bayesians view the measurement as part of an epistemic process that combines 
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prior knowledge (represented by prior distribution) with current knowledge (represented by 
likelihood function) about the unknown parameters through Bayes Theorem to obtain the updated 
knowledge (represented by posterior distribution) (Huang 2020a).  The mean of the marginal 
posterior distribution of µ is taken as 𝜇̂ and the standard deviation is the SU of 𝜇̂.  For Case 1, a 
traditional Bayesian solution is obtained by using the Jeffreys prior 1/σ, leading to the scaled and 
shifted t-distribution as the marginal posterior distribution.  The Bayesian estimate 𝜇̂ is the same 
as the frequentist estimate, i.e. the sample mean 𝑥̅஽ ; the Bayesian estimate SU෢  , known as the 

Bayesian Type A SU, is √௡ିଵ

√௡ିଷ

௦ವ

√௡
 (e.g. Kacker and Jones 2003).  Note that when the sample size n 

is less than 4, the Bayesian Type A SU is undefined.  The undefined factor ඥ(𝑛 − 1)/(𝑛 − 3) may 
be replaced with an ad hoc factor (Kacker and Jones 2003).   
 In the author’s belief, a valid Type A SU ought to meet the following criteria: 
 

(1) Unbiasedness, also known as conformity.  That is, the expectation of Type A SU must be 
equal to the true SU, the scale parameter SU = 𝜎்/√𝑛  (Huang 2020a).  

(2) On the average, Type A SU must meet the -1/2 power law, the physical law for the 
relationship between the measurement precision and the number of observations (Huang 
2018b). 

(3) Uncertainty analysis must be consistent with error analysis in the case that the true value 
about the measurand is known or assumed (Huang 2018b).  

(4) Transferability (Wubbeler and Elster 2020).  That is, “it should be possible to use directly 
the uncertainty evaluated for one result as a component in evaluating the uncertainty of 
another measurement in which the first result is used”.  

 
The frequentist Type A SU meets all four criteria, whereas the Bayesian Type A SU does not.  
Wubbeler and Elster (2020) demonstrated in terms of simple examples that the GUM-S1 type A 
evaluation of uncertainty (i.e. the Bayesian Type A SU) fails to generally ensure the requirement 
of transferability.  Additionally, the Bayesian Type A SU artificially dilates uncertainty, causing 
unrealistic estimates of uncertainty when the sample size is small.  Moreover, the use of the 
Bayesian Type A SU in the law of propagation of uncertainty (LPU) does not resolve the well-
known Ballico paradox (Huang 2018a).  Therefore, the Bayesian Type A SU is essentially invalid 
and should be abandoned (Huang 2020a). 
 It is a surprising fact that there is no Bayesian solution to Case 2 reported in the literature, 
neither analytical nor numerical.  This is confirmed by a discussion on ResearchGate in which five 
statisticians are participated (Huang 2019b).  In this study, we provided a numerical solution to 
Case 2 for several datasets using the traditional Bayesian method.  The estimated SUs, which are 
presented in section 5, are significantly biased with respect to the true SUs, so they are essentially 
invalid as far as the unbiasedness criterion is concerned.  
 The application of Bayesian statistics in metrology and measurement science has been 
studied for more than two decades, but it is still immature. Possolo and Bodnar (2018) stated, 
“…Metrologia alone has published more than 80 articles since 2002 including the word ‘Bayes’ 
and its derivatives.”  Most recently, Wubbeler et al. (2020) proposed a simple method for 
Bayesian uncertainty evaluation for measurement models that linearly depend on a single 
input quantity, Demeyer et al. (2021) provided Bayesian uncertainty evaluations for a large class 
of GUM measurement models, and Stoudt et al. (2021) illustrated the application of empirical 
Bayes methods to uncertainty evaluations.  In particularly, the revision of the GUM adopted the 
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Bayesian methodology (Bich 2014, Kyriazis 2015, Lira 2016, Bich et al. 2016).  However, some 
authors objected to the revision of the GUM based on Bayesian statistics (Willink and White 2011, 
Attivissimo et al. 2012, Giaquinto et al. 2014, Giaquinto and Fabbiano 2016, White 2016, Willink 
2016, Huang 2019c).  Willink and White (2011) stated, “It is our view that the GUM should be 
revised, but not according to the Bayesian philosophy.” The first draft of the revised GUM was 
released in December 2014; it received more than 1000 comments and the feedback was largely 
negative (Bich et al. 2016).  According to the news on the website of the working group 1 (WG1) 
of the Joint Committee for Guides in Metrology (JCGM) dated May 4, 2019, the JCGM-WG1 
plans to preserve the existing GUM and to generate several documents including JCGM 108: 
Bayesian methods, based on the rejected draft of the revised GUM.  In the author’s opinion, 
however, Bayesian methods should not be accepted for measurement uncertainty analysis unless 
they can provide valid solutions to Case 1 and Case 2.  

It is important to note that, the traditional (and current) Bayesian Theorem used for 
measurement uncertainty analysis and other applications is not the original Bayesian Theorem; it 
is a reformulated Bayesian Theorem, which remarkably deviates from the original Bayesian 
Theorem.  Box and Tiao (1992) provided a derivation of the reformulated Bayesian Theorem from 
the original Bayesian Theorem.  However, as demonstrated later in this paper, his derivation is far 
from rigorous and is actually faulty.  Therefore, the traditional Bayesian method is flawed, which 
is why it fails to provide a valid estimate of standard uncertainty in Case 1 or Case 2. 

The purpose of this study is to develop valid Bayesian solutions to Case 1 and Case 2.  The 
author accepts both the Bayesian view and frequentist view.  It has been the author’s thought for 
years that Bayesian and frequentist methods should give the same or approximately the same 
results in measurement uncertainty analysis.  Otherwise, come to think of it, a practitioner would 
be confused about different results from Bayesian and frequentist methods.  The author believes 
that, at least in measurement uncertainty analysis, Bayesian statistics and frequentist statistics 
should find some common grounds, and the unification of frequentist and Bayesian inference 
should be possible.  

In the following, section 2 presents a rule of transformation between the frequentist and 
Bayesian views.  Section 3 presents a new modified Bayesian method.  Section 4 presents the 
solution to the problem considered (Case 1 and Case 2) with the new modified Bayesian method.  
Section 5 compares the new modified Bayesian method with the traditional Bayesian method.  
Section 6 and 7 present discussion and conclusion respectively. 
 
2. Transformation between the frequentist view and Bayesian view 

 
Suppose we are considering a measurement problem that involves one unknown parameter 𝜃 in 
the probability model (e.g. the normal distribution with unknown mean μ, i.e. 𝜃 = 𝜇).  We assume 
that there exists a true value of 𝜃, denoted by 𝜃் , which is an unknown constant.  It should be 
mentioned that there are some confusion and misunderstanding about the concept of true values in 
the literature.  Huang (2020a) recently clarifies that the concept of true values is a common ground 
among the three approaches for computing measurement uncertainties: GUM’s confidence interval 
based, Bayesian, and probability interval based (i.e. the unified theory of measurement errors and 
uncertainties (Huang 2018a)).  That is, both frequentists and Bayesians accept the concept of true 
values and admit that there exists the true value 𝜃் (an unknown constant).  When discussing a 
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post by Mayo (2012), a guest statistician stated, “Bayesians describe what they know about 
parameters via probability calculus; this doesn’t rule out the truth being an unknown constant.” 

According to frequentist statistics, the sample statistic 𝜃෠ is an estimator of the true value 
𝜃் .  The estimator 𝜃෠ is a random variable that gives a fixed value 𝜃෠஽ for a given dataset, i.e. 𝜃෠஽ is 
a realization of 𝜃෠.  For example, in the normal distribution model, 𝜇் is the true location parameter.  
The sample mean 𝑥̅  is an estimator of 𝜇் , i.e. 𝜇̂ = 𝑥̅ .  The observed sample mean 𝑥ො஽  is a 
realization of 𝜇̂ = 𝑥̅ or an estimate of 𝜇்.  Note that throughout this paper, we use the subscript 
“T” to indicate the true value and “D” the realization of a random variable for a given dataset, any 
of which is a constant; the quantity without the subscript “T” or “D” represents a random variable, 
unless otherwise stated. 

In the frequentist view, a simple (and basic) measurement model is written as 
 
 
 

𝜃෠ = 𝜃் + 𝜀 (1) 

where 𝜀 is the error of 𝜃෠ relative to the true value 𝜃்.  We assume that the error 𝜀 is caused by a 
random effect (e.g. electronic noise of a measuring instrument) that is zero in the long run. Thus, 
𝜃෠ is an unbiased estimator of 𝜃்  
 
 E(𝜃෠) = 𝜃் + 0 

 
(2) 

and the variance of 𝜃෠ is the same as the variance of 𝜀 
 
 
 

Var൫𝜃෠൯ = 0 + Var(𝜀) 
 

(3) 

The true probability density function (PDF) of 𝜃෠ , from the frequentist view, is written as 
𝑝[𝜃෠|𝜃் , Var(𝜀)], where 𝜃்  is the location parameter and Var(𝜀) is the scale parameter.  For the 
normal distribution model, 𝜃෠ = 𝜇̂ = 𝑥̅, 𝜃் = 𝜇், and Var(𝜀) = 𝜎் .  Thus, the true frequentist PDF 
of 𝑋ത is 𝑝[𝑥̅|𝜇் , 𝜎்].   

Bayesians treat 𝜃 as a random variable.  In the Bayesian view, the measurement model is 
written as 
 
 
 

𝜃 = 𝜃෠஽ + 𝜀′ (4) 

where 𝜀′ is the error of θ relative to the observed value 𝜃෠஽.  Equation (4) can be rewritten as 
 

 
 

𝜃 = 𝜃෠஽ + 𝛿஽ + 𝜀 (5) 

where 𝛿஽ is the deviation of the observed value from the true value: 𝛿஽ = 𝜃் − 𝜃෠஽.   
The expectation of 𝜃 is  

 
 E(𝜃) = 𝜃෠஽ + 𝛿஽ + 0 = 𝜃் + 0 

 
(6) 

and the variance of  𝜃 is the same as the variance of 𝜀 
 
 Var(𝜃) = 0 + Var(𝜀) (7) 
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The true PDF of 𝜃 , from the Bayesian view, is written as 𝑝[𝜃|𝜃் , Var(𝜀)] .  For the normal 
distribution model, 𝜃 = 𝜇 , 𝜃் = 𝜇் , and Var(𝜀) = 𝜎்  .  Thus, the true Bayesian PDF of μ is 
𝑝[𝜇|𝜇் , 𝜎்].  

In Bayesian statistics, the given quantity is just a dataset (i.e. the observed value 𝜃෠஽) only.  
So Eq. (4) is approximately written as (Huang 2020a) 

 
 
 

𝜃 ≈ 𝜃෠஽ + 𝜀 (8) 

Consequently, E(𝜃) = 𝜃் ≈ 𝜃෠஽.  The usual Bayesian PDF of θ is written as [𝜃|𝜃෠஽ , Var(𝜀)] , which 
is an estimate (or approximation) of the true Bayesian PDF: 𝑝[𝜃|𝜃் , Var(𝜀)].  For the normal 
distribution model, 𝜃 = 𝜇 and 𝜃෠஽ = 𝑥̅஽.  Thus, the usual Bayesian PDF of μ is 𝑝[𝜇|𝑥̅஽ , 𝜎்]. 
 On the other hand, if we simply use 𝜃෠஽ as the estimate of 𝜃்  in Eq. (1), the frequentist 
view-based measurement model becomes 
 
 
 

𝜃෠ ≈ 𝜃෠஽ + 𝜀 (9) 

Consequently, E൫𝜃෠൯ = 𝜃் ≈ 𝜃෠஽.  The true frequentist PDF: 𝑝[𝜃෠|𝜃் , Var(𝜀)] may be replaced by 
the estimated frequentist PDF: 𝑝[𝜃෠|𝜃෠஽ , Var(𝜀)].  For the normal distribution model, 𝜃෠ = 𝑥̅ and 
𝜃෠஽ = 𝑥̅஽.  Thus, the estimated frequentist PDF of 𝑋ത is 𝑝[𝑥̅|𝑥̅஽ , 𝜎்]. 
 It is important to note that either 𝜃෠  or 𝜃  stands for a random variable; they can be 
exchanged with each other, or they can be replaced by a common symbol, such as Z.  That is, the 
left side of Eqs. (1), (5), (8), and (9) can be replaced with the common random variable Z.  
Therefore, Eq. (1) and Eq. (5) are mathematically equivalent; Eq. (8) and Eq. (9) are 
mathematically equivalent.  The equivalence is due to the fact that the true value (or its estimate) 
and the measurement error in these formulas are physical quantities that are independent of the 
viewpoint (or reference frame).  In other words, the true value and measurement error are the 
common ground for frequentist and Bayesian statistics for measurement uncertainty analysis.  
Moreover, if θ and 𝜃෠ are replaced with Z, the true Bayesian PDF of θ, 𝑝[𝜃|𝜃் , Var(𝜀)] is identical 
to the true frequentist PDF of 𝜃෠, 𝑝[𝜃෠|𝜃் , Var(𝜀)] and the usual Bayesian PDF: 𝑝[𝜃|𝜃෠஽ , Var(𝜀)] is 
identical to the estimated frequentist PDF: 𝑝[𝜃෠|𝜃෠஽ , Var(𝜀)].  That is, the usual Bayesian PDF of 𝜃, 
𝑝[𝜃|𝜃෠஽ , Var(𝜀)], is nothing but the estimated frequentist PDF of 𝜃෠, 𝑝[𝜃෠|𝜃෠஽ , Var(𝜀)]. 
 The above analysis suggests that the frequentist view can be transformed to the Bayesian 
view, and vice versa.  The rule of the transformation between the two views can be written as 
 
 
 frequentist: ൜

𝜃෠

𝜃் ≈ 𝜃෠஽
ൠ ↔ Bayesian: ൜

𝜃
𝜃෠஽

ൠ 
(10) 

 
This transformation requires that the observed value 𝜃෠஽ is an unbiased estimate of the true value 
𝜃் .  Equation (10) is referred to as the frequentist-Bayesian transformation rule hereafter. 

It should be pointed out that in the Bayesian view, Eq. (8) is an "epistemic" formulation 
for the measurement problem considered when no prior knowledge is involved (Huang 2020a).  In 
this situation, 𝜃 only represents the current knowledge about the measurand, based on the observed 
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value 𝜃෠஽.  However, this knowledge has uncertainty due to the measurement error ε (Huang 2020a).  
Moreover, E(𝜃) ≈ 𝜃෠஽ is the Bayesian estimate of 𝜃் for a given dataset when no prior information 
is involved in the analysis.  The value of E(𝜃)  or 𝜃෠஽  will be different for different datasets.  
Therefore, the Bayesian estimator of 𝜃்   is E(𝜃) ≈ 𝜃෠஽ , which is essentially the same as 𝜃෠ , the 
frequentist estimator of 𝜃் .  And the standard uncertainty is ඥVar(𝜀), regardless of the viewpoint. 

In summery, for the simple (and basic) measurement model without involving prior 
information, the parameter space Ω(𝜃) in the Bayesian view is identical to the sample space Ω(𝜃෠) 
in the frequentist view.  That is, the set of possible values of the parameter θ is the same as the set 
of the possible values of the sample statistic 𝜃෠, which is a specified exhaustive set of possibilities 
(Loredo 1990).  Both the usual Bayesian PDF of θ and the estimated frequentist PDF of 𝜃෠ share 
the same probability model, e.g. the normal distribution model in which 𝜃 = 𝜇, and 𝜃෠ = 𝑥̅.  The 
true Bayesian PDF of θ, given 𝜃்  (there may be a special case where 𝜃෠஽ = 𝜃்) is identical to the 
true frequentist PDF of 𝜃෠ when 𝜃்  is known; both PDFs come from a common ground: the PDF 
of measurement error. 

However, theoretically, Bayesian methods require the use of prior knowledge (information).  
This is because Bayesians consider the measurement as part of an epistemic process that combines 
prior knowledge with current knowledge through Bayes Theorem to obtain the updated knowledge 
(Huang 2020a). 

 
3. The new modified Bayesian method 
 
According to Shannon’s information theory, the information content of an outcome {z} that is 
drawn from the probability distribution 𝑝௝(𝑧) is written as (Shannon 1948) 
 
 𝐼௝(𝑧) = −log [𝑝௝(𝑧)]               (11) 

 
where j is the index of information sources.  Information can be viewed as a real, physical quantity 
(Landauer 1961, Clemen and Winkler 1999, Wile 2012).  The information that comes from 
different (independent) sources is additive to give aggregated information, denoted by 𝐼ୡ(𝑧), as 
stated by the law of aggregation of information (LAI) (Huang 2020b) 
 
 𝐼ୡ(𝑧) = ∑ 𝐼௝(𝑧)ே

௝ୀଵ − 𝐼଴               (12) 
 

where N is the number of information sources and 𝐼଴ is a constant that is due to the scale factor in 
the law of combination of distribution (LCD).  The LCD is written as (Huang 2020b) 
 
 

𝑝ୡ(𝑧) =
∏ ௣ೕ(௭)ಿ

ೕసభ

∫ ∏ ௣ೕ(௭)ௗ௭ಿ
ೕసభ

               
(13) 

 
where ∫ ∏ 𝑝௝(𝑧)𝑑𝑧ே

௝ୀଵ   is the scale factor that ensures the integration of 𝑝ୡ(𝑧)  is one.  So 𝐼଴ =

−log [∫ ∏ 𝑝௝(𝑧)𝑑𝑧ே
௝ୀଵ ].  The LAI and the LCD are virtually equivalent. 

It should be pointed out that the essence of the LCD (or LAI) is the way of using probability 
distributions, regardless of whether a probability distribution is based on the frequentist view of 
probability or based on the Bayesian view of degree of belief (i.e. subjective probability) (Huang 
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2020b).  In other words, the LAI (or LCD) is applicable to either the information represented by 
frequency distributions in frequentist statistics or the information represented by state-of-
knowledge probability distributions in Bayesian statistics.  In the author’s opinion, however, it is 
always preferred that, in measurement uncertainty analysis, a state-of-knowledge probability 
distribution can be traced back to some kind of relative frequency.  In other words, measurement 
uncertainty analysis should be free of degree of belief or subjective probability whenever possible 
so that a uniform result can be obtained by different people. 
 For a problem involving one unknown parameter, we can deal with two random variables 
from different viewpoints: 𝜃෠ from the frequentist view and 𝜃 from the Bayesian view.  However, 
the information contained in the data obtained from current measurement must be the same, 
regardless of the viewpoint.  That is 
 
 𝐼ୡ୳୰୰ୣ୬୲൫𝜃෠൯ = 𝐼ୡ୳୰୰ୣ୬୲(𝜃)               (14) 

 
Equation (14) is valid because we have demonstrated in section 2 that the usual Bayesian PDF of 
𝜃, 𝑝[𝜃|𝜃෠஽ , Var(𝜀)], is nothing but the estimated frequentist PDF of 𝜃෠, 𝑝[𝜃෠|𝜃෠஽ , Var(𝜀)]. 

Suppose we have the prior information about 𝜃 in the Bayesian view, denoted by 𝐼୮୰୧୭୰(𝜃).  
We assume that the prior information is independent of the current information (measurement).  
Then, according to the LAI, Eq. (12), the aggregated information (i.e. posterior information), 
denoted by 𝐼୮୭ୱ୲(𝜃), can be written as 
 
 𝐼୮୭ୱ୲(𝜃) = 𝐼୮୰୧୭୰(𝜃) + 𝐼ୡ୳୰୰ୣ୬୲(𝜃) − 𝐼଴               (15) 

 
In terms of PDFs 
 
 𝑝post(𝜃) ∝ 𝑝prior(𝜃) ∙ 𝑝ୡ୳୰୰ୣ୬୲(𝜃)               (16) 

 
On the other hand, in the frequentist view, the posterior information can be written as 
 
 𝐼୮୭ୱ୲൫𝜃෠൯ = 𝐼୮୰୧୭୰൫𝜃෠൯ + 𝐼ୡ୳୰୰ୣ୬୲൫𝜃෠൯ − 𝐼଴               (17) 

 
or 
 𝑝post(𝜃෠) ∝ 𝑝prior(𝜃෠) ∙ 𝑝ୡ୳୰୰ୣ୬୲(𝜃෠)               (18) 

 
which is the same formula proposed by Huang (2020b) that gives the frequentist solution to Case 
2 shown in table 1.  

Thus, the LAI (or LCD) provides a unified framework for combing prior information with 
current measurement regardless of the viewpoint.  

Equation (16) is the proposed new modified Bayesian method for the one-dimensional 
problem that only deals with one unknown parameter θ.  It can be extended to two or higher 
dimensions when more than one unknown parameters are involved.  For example, if a problem 
involves two unknown parameters 𝜃ଵ and 𝜃ଶ, the joint posterior PDF of 𝜃ଵ and 𝜃ଶ can be written 
as 
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 𝑝post(𝜃ଵ, 𝜃ଶ) ∝ 𝑝prior(𝜃ଵ, 𝜃ଶ) ∙ 𝑝ୡ୳୰୰ୣ୬୲(𝜃ଵ, 𝜃ଶ)               (19) 
 
The key in using the new modified Bayesian method (MBM) is to obtain the current PDF, such as 
𝑝ୡ୳୰୰ୣ୬୲(𝜃) or 𝑝ୡ୳୰୰ୣ୬୲(𝜃ଵ, 𝜃ଶ). 
 
 
4. Solutions to the problem considered 
 
4.1. The joint current PDFs for the unknown parameters μ and σ 
 
For the problem considered, the probability model is assumed to be normal with two unknown 
parameters: μ and σ.  The elementary statistical analysis of the data obtained from a series of 
observations gives two sample statistics: sample mean 𝑥̅ and sample standard deviation s.  The 
(unbiased) measurement model for μ in the frequentist view is written as 
 
 
 

𝑥̅ = 𝜇் + 𝜀 (20) 

where 𝜇் is the true values of μ and 𝑥̅ is an unbiased estimator of 𝜇்.  Both 𝑥̅ and ε (error) are 
random variables.   The true PDF of 𝑥̅ can be written as 
 
 𝑝(𝑥̅|𝜇் , 𝜎்) = 𝑁 ቀ𝑥̅|𝜇் ,

ఙ೅

√௡
ቁ =

√௡

√ଶగఙ೅
exp ቀ−

௡

ଶ

(௫̅ିఓ೅)మ

ఙ೅
మ ቁ               (21) 

 
where 𝜎்  is the true value of σ; it is a fixed constant.    

On the other hand, the (unbiased) measurement model for σ in the frequentist view is 
written as 

 
 

𝑠

𝑐ସ
= 𝜎் + 𝜉 (22) 

 
where, 

௦

௖ర
 is an unbiased estimator of 𝜎் .  Both 

௦

௖ర
 and ξ (error) are random variables.  The true PDF 

of 𝑠/𝑐ସ  can be obtained from a slight modification to the distribution of the sample standard 
deviation given in WolfamMathworld (2020).  It is a function of 𝜎்  and n  
 
 

𝑝 ቀ
௦

௖ర
|𝜎்ቁ =

ଵ

୻(
೙షభ

మ
)

2
యష೙

మ √𝑛(𝑛 − 1)
೙షమ

మ

(
ೞ

೎ర
)೙షమ

ఙ೅
೙షభ exp ൭−

ଵ

ଶ
(𝑛 − 1)

ቀ
ೞ

೎ర
ቁ

మ

ఙ೅
మ ൱               

(23) 

 
Since 𝜀 = (𝑥̅ − 𝜇்) and s/c4 are independent random variables, the true joint PDF of 𝑥̅ and s/c4 
can be constructed as 
 
 𝑝 ቀ𝑥̅,

௦

௖ర
|𝜇் , 𝜎்ቁ = 𝑝(𝑥̅|𝜇் , 𝜎்) ∙ 𝑝 ቀ

௦

௖ర
|𝜎்ቁ = 𝑁 ቀ𝑥̅|𝜇் ,

ఙ೅

√௡
ቁ

ଵ

୻(
೙షభ

మ
)

2
యష೙

మ √𝑛(𝑛 −

1)
೙షమ

మ

(
ೞ

೎ర
)೙షమ

ఙ೅
೙షభ exp ൭−

ଵ

ଶ
(𝑛 − 1)

ቀ
ೞ

೎ర
ቁ

మ

ఙ೅
మ ൱               

(24) 
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According to the frequentist-Bayesian transformation rule, the joint current PDF of μ and σ can be 
obtained by replacing 𝑥̅ with μ, 

௦

௖ర
 with σ, 𝜇் with 𝑥̅஽, and 𝜎் with 

௦ವ

௖ర
 respectively in Eq. (24) 

 
 𝑝ୡ୳୰୰ୣ୬୲(𝜇, 𝜎|data) = 𝑁(𝜇|𝑥̅஽ ,

௦ವ

௖ర√௡
)

ଵ

୻ቀ
೙షభ

మ
ቁ

2
యష೙

మ √𝑛(𝑛 −

1)
೙షమ

మ
ఙ೙షమ

ቀ
ೞವ
೎ర

ቁ
೙షభ exp ൭−

ଵ

ଶ
(𝑛 − 1)

ఙమ

ቀ
ೞವ
೎ర

ቁ
మ൱               

(25) 

 
4.2. Solution to Case 1 
 
According to the new modified Bayesian method (MBM), Eq. (19), the joint posterior PDF of μ 
and σ can be written as 
 
 𝑝post(𝜇, 𝜎|prior, data) ∝ 𝑝prior(𝜇, 𝜎) ∙ 𝑝ୡ୳୰୰ୣ୬୲(𝜇, 𝜎|data)               (26) 

 
Since there is no genuine prior information about μ and σ in Case 1, we employ the flat priors over 
μ and σ.  The resulting joint posterior PDF of μ and σ is the same as the joint current PDF 
𝑝ୡ୳୰୰ୣ୬୲(𝜇, 𝜎|data), Eq. (25).  Consequently, the marginal posterior PDF of 𝜇 can be written as 
 
 
 

𝑝post(𝜇|data) = 𝑁(𝜇|𝑥̅஽ ,
௦ವ

௖ర√௡
) =

√௡

√ଶగ
ೞವ
೎ర

 
exp ൭−

௡

ଶ

(௫̅ವିఓ)మ

ቀ
ೞವ
೎ర

 ቁ
మ ൱               

(27) 

 
The expectation of 𝑝post(𝜇|data) is the Bayesian estimator 𝜇̂୑୆୑ 

 𝜇̂୑୆୑ = E(𝜇) = 𝑥̅஽               (28) 

and the standard deviation of 𝑝post(𝜇|data) is the Bayesian estimator SU෢
୑୆୑ 

 SU෢
୑୆୑ = ඥVar(𝜇) =

௦ವ

௖ర√௡
               (29) 

These results are the same as those obtained with the frequentist methods shown in table 1. 
 
4.3. Solution to Case 2 
 
In Case 2, the prior information about μ is represented by a normal PDF: 𝑝prior(𝜇, 𝜎) =

𝑁(𝜇|𝑥୮୰୧୭୰, 𝜎୮୰୧୭୰).  According to the new modified Bayesian method (MBM), the joint posterior 
PDF of μ and σ can be written as 
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 𝑝post(𝜇, 𝜎|prior, data) ∝

𝑁(𝜇|𝑥୮୰୧୭୰, 𝜎୮୰୧୭୰)𝑁(𝜇|𝑥̅஽ ,
௦ವ

௖ర√௡
)𝜎௡ିଶexp ൭−

ଵ

ଶ
(𝑛 − 1)

ఙమ

ቀ
ೞವ
೎ర

 ቁ
మ൱               

    (30) 

 
The marginal posterior PDF of 𝜇 can be written as 
 
 𝑝୮୭ୱ୲(𝜇|prior, data) ∝ 𝑁(𝜇|𝑥୮୰୧୭୰, 𝜎୮୰୧୭୰) ∙ 𝑁(𝜇|𝑥̅஽ ,

௦ವ

௖ర√௡
)               (31) 

 
which is a normal PDF.  The expectation and standard deviation of 𝑝୮୭ୱ୲(𝜇|prior, data) are the 
Bayesian estimators of the measurand and the SU respectively 
 

 
 

𝜇̂୑୆୑ = E(𝜇) =
௫priorቀ

ೞವ
೎ర

ቁ
మ

ା௡௫ఙprior
మ

ቀ
ೞವ
೎ర

ቁ
మ

ା௡ఙprior
మ

               
(32) 

 
 
 SU෢

୑୆୑ = ඥVar(𝜇) =
ఙpriorቀ

ೞವ
೎ర

ቁ

ටቀ
ೞವ
೎ర

ቁ
మ

ା௡ఙprior
మ

              
(33) 

 
These results are the same as those obtained with the frequentist methods (Huang 2020b) shown 
in table1. 
 
5. Comparing with the traditional Bayesian method (TBM) 
 
The Bayes Theorem, in its discrete form, relates the conditional probabilities of events A and B: 
 
 𝑃(𝐴|𝐵) =

௉(஺)∙௉(஻|஺)

௉(஻)
               (34) 

 
where 𝑃(𝐴|𝐵) is the probability of event A given event B, 𝑃(𝐵|𝐴) is the probability of event B 
given event A, 𝑃(𝐴)  is the probability of event A, and 𝑃(𝐵)  is the probability of event B.  
According to Sober (2001), Eq. (34) is true if each quantity (probability) mentioned in it is well 
defined. 
 However, the Bayes Theorem in discrete form, Eq. (34), is rarely used in measurement 
uncertainty analysis.  Instead, the Bayes Theorem in continuous form is usually used.  For a one-
dimensional problem (i.e. one unknown parameter θ), the traditional (and current) Bayes Theorem 
in continuous form is written as 
 
 𝑝post(𝜃|prior, data) ∝ 𝑝prior(𝜃) ∙ 𝐿(𝜃|data)               (35) 

 
where 𝐿(𝜃|data) is the likelihood function of 𝜃 given the data.  We also refer to Eq. (35) as the 
traditional Bayesian method (TBM).   
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The biggest difference between the new modified Bayesian method, Eq. (16), and the 
traditional Bayesian method, Eq. (35), is that in the former the current measurement (data) is 
represented by the current PDF, whereas in the latter the current measurement (data) is represented 
by the likelihood function.  In order to gain insight into the difference between the new method 
and the traditional method, the following subsections present several examples of Case 1 and Case 
2, solved with these two methods. 

 
5.1. Examples of Case 1 
 
We first consider a dataset randomly generated from a normal distribution 𝑁(𝜇் = 10, 𝜎் = 0.5), 
which gives four numerical values: 10.00, 9.79, 9.76, and 10.75.  The sample mean happens to be 
the same as the population mean, i.e. 𝑥̅஽ = 𝜇் = 10; the sample standard deviation after the bias 
correction happens to be the same as the population standard deviation, i.e. 

௦ವ

௖ర
= 𝜎் = 0.5 (where 

c4==0.9213 for n=4).  The Type A SU estimated with the frequentist method based on the 
unbiasedness criterion is the same as the true SU (i.e. Type B SU), i.e. 

௦ವ

௖ర√௡
=

ఙ೅

√௡
= 0.25. 

 Since there is no genuine prior information in Case 1, the marginal posterior PDF obtained 

with the new modified Bayesian method coincides with the current PDF 𝑁 ቀ𝜇ቚ𝑥̅஽ ,
௦ವ

௖ర√௡
ቁ =

𝑁(𝜇|10,0.25) that is the true posterior distribution at n=4.  Consequently, 𝜇̂୑୆୑=10 and SU෢
୑୆୑ =

0.25.  
On the other hand, according to the traditional Bayesian method, the joint posterior PDF 

of μ and σ is written as 
 
 𝑝post(𝜇, 𝜎|prior, data) ∝ 𝑝prior(𝜇, 𝜎) ∙ 𝐿(𝜇, 𝜎|data)               (36) 

 
where 𝐿(𝜇, 𝜎|data) is the joint likelihood function of μ and σ that can be written as (e.g. Edwards 
1992, Murphy 2007) 
 
 𝐿(𝜇, 𝜎|data) ∝ 𝜎ି௡exp ቀ−

௡

ଶ

(௫̅ವିఓ)మ

ఙమ
ቁ exp ቀ−

ଵ

ଶ
(𝑛 − 1)

௦ವ
మ

ఙమ
ቁ               (37) 

 
The solution of the traditional Bayesian method depends on the prior 𝑝prior(𝜇, 𝜎).  We consider 
two types of priors: Jeffreys prior and flat prior.  For this dataset (n=4), the Jeffreys prior results in 
a scaled and shifted t-distribution (marginal posterior PDF) with 𝜇̂୘୆୑=10 and SU෢

୘୆୑ = 0.374.  
The flat prior results in a marginal posterior PDF of 𝜇 with 𝜇̂୘୆୑=10 and SU෢

୘୆୑ = 0.603. 
Figure 1 shows the three marginal posterior distributions of 𝜇 for this dataset (n=4).  It can 

be seen from figure 1 that the scaled and shifted t-distribution has a lower peak and fatter tails than 
its normal distribution counterpart.  The marginal posterior PDF given by the traditional Bayesian 
method (TBM) with the flat prior has a lower peak and fatter tails than both the t-distribution and 
the normal distribution.  It can be seen that the two marginal posterior PDFs given by the traditional 
Bayesian method (TBM) are distorted with respect to the normal distribution, the true posterior 
distribution. 
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Figure 1.  Comparison of the marginal posterior distributions of 𝜇, given by the new modified 
Bayesian method (MBM) and the traditional Bayesian method (TBM) (with the Jeffreys prior and 
the flat prior) (Case 1, n=4) 
 
 
We then consider other two datasets at n=10 and 20, which are generated from the same normal 
distribution 𝑁(10, 0.5).  Each of the datasets gives 𝑥̅஽ = 𝜇் = 10 and 

௦ವ

௖ర
= 𝜎் = 0.5 (c4=0.9727 

at n=10 and c4=0.9869 at n=20).  Table 2 shows the Bayesian Type A SUs estimated with the new 
modified Bayesian method and the traditional Bayesian method.  Additionally, both methods give 
the same estimate (𝜇̂୑୆୑ = 𝜇̂୘୆୑=10) of the population mean (𝜇் = 10), regardless of the sample 
size.  

 
Table 2. Bayesian Type A SU (SU෢

୑୆୑ and  SU෢
୘୆୑) for the three datasets considered (Case 1) 

Sample size n 
New modified 

Bayesian method 

Traditional Bayesian 
method with Jeffreys 

prior 
Traditional Bayesian 
method with flat prior 

4 0.250 0.374 0.603 
10 0.158 0.174 0.188 
20 0.112 0.117 0.120 

 
Since these three datasets are drawn from the same normal distribution with 𝜇் = 10 and 𝜎் =

0.5, the true SU is 𝜎்/√𝑛= 0.250, 0.158, and 0.112 for n=4, 10, and 20, respectively.  Notice from 
table 2 that the Type A SU estimated with the new modified Bayesian method is the same as the 
true SU.  In contrast, the Type A SU estimated with the traditional Bayesian method, either with 
Jeffreys prior or flat prior, is positively biased with respect to the true SU.  The bias is high when 
the sample size is small (e.g. n=4); it decreases with increasing the sample size. 
 
5.2. Examples of Case 2 
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In Case 2, the prior information is represented by a normal PDF: 𝑁(𝜇|𝑥୮୰୧୭୰, 𝜎୮୰୧୭୰).  If the current 

information is represented by the true Bayesian distribution 𝑁(𝜇|𝜇் , 𝜎்/√𝑛), the true posterior 
distribution is also normal and can be obtained with the LAI (or LCD) or the least-squares method.  
Accordingly, the true posterior mean is 
 
 

𝜇୲୰୳ୣ =
௫priorఙ೅

మା௡ఓ೅ఙprior
మ

ఙ೅
మା௡ఙprior

మ                
(38) 

and the true posterior SU is 
 
 
 

SU୲୰୳ୣ =
ఙpriorఙ೅

ටఙ೅
మା௡ఙprior

మ
              (39) 

Again, we consider three datasets at n=4, 10 and 20, which are generated from the same normal 
distribution 𝑁(𝜇் = 10, 𝜎் = 0.5).  Each of the datasets gives 𝑥̅஽ = 𝜇் = 10 and 

௦ವ

௖ర
= 𝜎் = 0.5.   

For these three datasets, the posterior mean 𝜇̂୑୆୑ and posterior SU SU෢
୑୆୑ estimated with 

the new modified Bayesian method, Eq. (32) and Eq. (33), coincide with 𝜇୲୰୳ୣ and SU୲୰୳ୣ, Eq. (38) 
and Eq. (39), respectively. 
 On the other hand, according to the traditional Bayesian method, the joint posterior PDF 
of 𝜇 and 𝜎 is written as 
 
 𝑝post(𝜇, 𝜎|prior, data) ∝

𝑁(𝜇|𝑥୮୰୧୭୰, 𝜎୮୰୧୭୰)𝜎ି௡exp ቀ−
௡

ଶ

(௫̅ವିఓ)మ

ఙమ
ቁ exp ቀ−

ଵ

ଶ
(𝑛 − 1)

௦ವ
మ

ఙమ
ቁ               

(40) 

 
Equation (40) does not lead to an analytical solution of the marginal posterior PDF of 𝜇.  We 
employed a numerical method, known as probability domain simulation (PDS) developed by 
Huang and Fergen (1995), to solve Eq. (40).  

We consider two sceneries in calculating the marginal posterior PDF of 𝜇 using the PDS.  
In the first scenery, we assume that 𝑥୮୰୧୭୰ = 10 (fixed) and 𝜎୮୰୧୭୰ varies from 0.1 to 1.0.  The PDS 
solution gives 𝜇̂୘୆୑ = 10, the same as 𝜇୲୰୳ୣ, regardless of the sample size.  The PDS solution 
gives SU෢

୘୆୑ that is biased with respect to SU୲୰୳ୣ.  The bias depends on the value of 𝜎୮୰୧୭୰.  Figure 
2 shows the relative bias of SU෢

୘୆୑ as a function of 𝜎୮୰୧୭୰.   
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Figure 2.  The relative bias of SU෢

୘୆  as a function of the prior standard deviation for Case 2 with 
the datasets at n=4, 10, and 20 (the first scenery: 𝑥୮୰୧୭୰ = 10) 
 
 
In the second scenery, we assume that 𝜎୮୰୧୭୰ = 0.5 (fixed) and 𝑥୮୰୧୭୰varies from 9 to 11.  The PDS 
solution gives 𝜇̂୘୆୑ that is biased with respect to 𝜇୲୰୳ୣ and SU෢

୘୆୑ that is biased with respect to 
SU୲୰୳ୣ.  Both biases depend on the value of 𝑥୮୰୧୭୰.  Figure 3 and figure 4 show the relative bias of 
𝜇̂୘୆୑ and SU෢

୘୆୑, respectively, as a function of 𝑥୮୰୧୭୰.   
 
 

 
 
Figure 3.  The relative bias of 𝜇̂୘୆୑ as a function of the prior mean for Case 2 with the datasets at 
n=4, 10, and 20 (the second scenery: 𝜎୮୰୧୭୰ = 0.5) 
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Figure 4.  The relative bias of SU෢

୘୆୑ as a function of the prior mean for Case 2 with the datasets 
at n=4, 10, and 20 (the second scenery: 𝜎୮୰୧୭୰ = 0.5) 
 
 
It is interesting to note from figure 3 that the relative bias of 𝜇̂୘୆୑ is antisymmetric about 𝑥୮୰୧୭୰ =

10.  It is also interesting to note from figure 4 that the relative bias of SU෢
୘୆୑ is symmetric about 

𝑥୮୰୧୭୰ = 10.  
The results of these examples indicate that the traditional Bayesian method produce 

significant biases with respect to the true values in inferring SU in both Case 1 and Case 2.  Thus, 
the traditional Bayesian method is essentially invalid as far as the unbiasedness criterion is 
concerned.  In contrast, the new modified Bayesian method produces the unbiased estimates of SU 
in both Case 1 and Case 2, the same as its frequentist counterparts.  
 
6. Discussion 
 
6.1. The new modified Bayesian method is a self-consistent operation 
 
One of the important axioms of addition states, “Only numerical measures of magnitudes of the 
same nature when expressed in terms of a common unit of measure can be added” (Clark 1902).  
We designate this statement as “the principle of self-consistent operation”.  This principle is self-
evidently true because it does not make sense to add the quantities of different nature together. 
 The new modified Bayesian method is a self-consistent operation because it operates 
entirely on PDFs and the negative of the log-probability is the Shannon information that has a 
common unit, e.g. “bit” based on the binary logarithm.  Equation (15) can be rewritten as 
 
 posterior information = prior information + current information  (41) 
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We ignore the constant I0 in Eq. (41) because it does not affect the discussion in this section. 
 It is interesting to note that Eq. (41) can be regarded as a counterpart of the Method of 
Support proposed by Edwards (1992, p36) 
 
 posterior support = prior support + experimental support  (42) 

 
where “support” stands for “support function”, which is definded as “the naural logarithm of the 
likelihood function” (Edwards 1992, p.32).  In symbols, Eq. (42) is written as 
 
 lnൣ𝐿୮୭ୱ୲(𝜃|prior, data)൧ = ln[𝐿୮୰୧୭୰(𝜃)] + ln[𝐿(𝜃|data)]  (43) 

 
Edwards’ Method of Support is a self-consistent operation because it operates entirely on 
likelihoods, i.e. the two quantities of the right side of Eq. (42) or Eq. (43) have the same nature.  
Edwards’ Method of Support reduces to the method of maximum likelihood in the case of no 
genuine prior information by using a uniform prior support function (Edwards 1992).   
 It is important to note that the support function is not the Shannon information because 
likelihood function is not probability distribution.  Fisher (1921) stated, “… probability and 
likelihood are quantities of an entirely different nature.”  Edwards (1992) stated,  “… this 
[likelihood] function in no sense gives rise to a statistical distribution.”  In fact, the likelihood 
function supplies a nature order of preference among the possibilities under consideration 
(Edwards 1992).  Consequently, the mode of a likelihood function corresponds to the most 
preferred parameter value for the given data.  Thus, Edwards’ Method of Support or the method 
of maximum likelihood is a likelihood-based inference procedure that utilizes the mode only for 
point estimation of unknown parameters; it does not utilize the entire curve of likelihood functions.  
In contrast, a probability-based inference, either frequentist or Bayesian, usually requires the use 
of the entire curve of probability distributions for inference. 
 
6.2. The traditional Bayesian method is not a self-consistent operation 
 
Using the log-transformation, the traditional Bayes Theorem, Eq. (35), can be rewritten as 

 
 lnൣ𝑝୮୭ୱ୲(𝜃|prior, data)൧ = ln[𝑝୮୰୧୭୰(𝜃)] + ln[𝐿(𝜃|data)]  (44) 

 
That is, 
 
 posterior information = prior information + experimental support  (45) 

 
Recall that log-probability is the Shannon information that can be regarded as a physical quantity, 
whereas log-likelihood is not the Shannon information (although it might be regarded as an another 
physical quantity).  That is, prior information (log-probability) and experiment support (log-
likelihood) are the quantities of an entirely different nature; they should not be added together 
according to the principle of self-consistent operation.  Therefore, the traditional Bayes Theorem 
violates the self-consistent operation principle.  However, a Gaussian distribution model with 
known variance is an exception because the likelihood function of μ has the same mathematical 
form as the current PDF of μ (both are Gaussian).  
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In fact, Eq. (35) is known as the reformulated Bayes Theorem by some authors, e.g. Lira 
and Kyriazis (1999), because it is not the original Bayes Theorem.  The original Bayes Theorem 
in continuous form, which simply follows the axioms of conditional probability (distribution), is 
written as, e.g. formula (1.2.4) in Box and Tiao (1992, p10) (in their notations) 

 
 𝑝(𝛉|𝐲) = 𝑐 ∙ 𝑝(𝐲|𝛉)𝑝(𝛉)               (46) 

 
where y is the vector of n observations,  𝑝(𝐲|𝛉) is the (frequentist) probability distribution of y, 𝛉 
is the parameter vector, and c is the normalizing constant to ensure 𝑝(𝛉|𝐲) integrates to one.  The 
statement of Sober (2001) about the Bayes Theorem in discrete form, Eq. (34), also applies to Eq. 
(46).  That is, Eq. (46) is true if each probability distribution mentioned in it is well defined.  Note 
that the original Bayes Theorem in continuous form, Eq. (46), is a self-consistent operation because 
it operates entirely on probability distributions.  So is the Bayes Theorem in discrete form, Eq. 
(34), which operates entirely on probabilities. 

However, the original Bayes Theorem, Eq. (46), is not operational unless 𝑝(𝐲|𝛉) can be 
converted to a function of 𝛉, instead of a function of 𝐲.  According to Box and Tiao (1992), “Now 
given the data y, 𝑝(𝐲|𝛉) in (1.2.4) may be regarded as a function not of y but of 𝛉.  When so 
regarded, following Fisher (1922), it is called the likelihood function of 𝛉 for given y and can be 
written 𝐿(𝛉|𝐲).”  Consequently, 𝑝(𝐲|𝛉)is replaced with the likelihood function 𝐿(𝛉|𝐲), leading to 
the traditional (or reformulated) Bayes Theorem, e.g. formula (1.2.5) in Box and Tiao (1992, p10) 

 𝑝(𝛉|𝐲) ∝ 𝐿(𝛉|𝐲)𝑝(𝛉)               (47) 
 
To the author’s knowledge, the above is a formal derivation of the traditional (i.e. reformulated) 
Bayes Theorem, Eq. (47), from the original Bayes Theorem, Eq. (46).  However, this derivation is 
far from rigorous because it simply assumes that 𝑝(𝐲|𝜽) is equivalent to 𝐿(𝛉|𝐲) without a rigorous 
justification.  In fact, this derivation is faulty because likelihood function is not probability 
distribution as emphasized by Fisher (1921) and Edwards (1992).  A likelihood function is actually 
a distorted mirror of its probability distribution counterpart.  Appendix shows an example of the 
distortion.  Therefore, it is wrong to replace 𝑝(𝐲|𝛉) with 𝐿(𝛉|𝐲), and Eq. (47) is methodologically 
flawed.  Due to this flaw, the traditional Bayesian method may lead to incorrect inferences (e.g. 
significant biases) as shown in section 5.  

In summary, the original Bayes Theorem, Eq. (46), is valid, upon which the Bayesian 
statistics should be built.  The reformulated Bayes Theorem, Eq. (47), deviates markedly from the 
original Bayes Theorem, so it is invalid.   It is wrong to replace the probability distribution 𝑝(𝐲|𝛉) 
with the likelihood function 𝐿(𝛉|𝐲).  However, as the example in Appendix shows, the discrepancy 
between the likelihood function 𝐿(𝛉|𝐲)  and its probability distribution counterpart 𝑝(𝐲|𝛉)  is 
serious only when the sample size is small (say n<5).  𝐿(𝛉|𝐲) will approach 𝑝(𝐲|𝛉) when the 
sample size is large enough (say n>30). Perhaps this is the reason why this flaw has been 
overlooked for more than 250 years.  This flaw is the root cause of the inherent bias of the 
traditional Bayesian method; it is corrected in the new modified Bayesian method. 
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6.3. Deriving the new modified Bayesian method from the original Bayes Theorem 
 
The new modified Bayesian method derived in section 3 can also be derived directly from the 
original Bayes Theorem, Eq. (46).  It is important to note that, in 𝑝(𝐲|𝛉), 𝐲 is a random vector and 
𝛉 are the values of k parameters  𝜃ଵ , 𝜃ଶ…𝜃௞, which are constants.  That is, 𝐲~𝑝(𝐲|𝛉) depends on 
the values of the parameters 𝛉 (Box and Tiao 1992); it is the sampling distribution of 𝐲 (Loredo 
1990).  On the other hand, in 𝑝(𝛉|𝐲) (also in 𝑝(𝛉)), 𝛉 is a random vector and y are the observed 
values (constants).  That is, 𝛉~𝑝(𝛉|𝐲) depends on the observed values y; it is the distribution of 
the parameter vector 𝛉.  Apparently, the notations used by Box and Tiao (1992) in Eq. (46) and 
Eq. (47) are confusing because the same symbol 𝛉 (or 𝐲) represents the quantities with different 
natures: random and constant.  In contrast, the notations used in this paper are clear about which 
quantity is a random variable, which is a parameter (constant), and which is the observed value 
(constant).  In our notations, the original Bayes Theorem, Eq. (46), can be rewritten as 
 
 𝑝௣୭ୱ୲൫𝛉หprior, 𝛉෡஽൯ = 𝑐 ∙ 𝑝ୡ୳୰୰ୣ୬୲(𝛉෡|𝛉்)𝑝୮୰୧୭୰(𝛉)               (48) 

 
where 𝛉෡஽ are the observed values (i.e. the realizations of the sample statistics 𝛉෡) and 𝛉் are the 
true values of the parameters of the probability distributions of 𝛉෡; both 𝛉෡஽ and 𝛉் are constants.  
Note that 𝑝ୡ୳୰୰ୣ୬୲(𝛉෡|𝛉்) is the true sampling distribution when 𝛉் are known.  In this situation, 
Eq. (48) will lead to the true posterior distribution as demonstrated in the examples of Case 2 in 
section 5.  Since 𝛉் are usually unknown, we replace them with their estimates 𝛉෡஽ based on the 
point estimation method.  Thus, 𝑝ୡ୳୰୰ୣ୬୲(𝛉෡|𝛉்) ≈ 𝑝ୡ୳୰୰ୣ୬୲(𝛉෡|𝛉෡஽).  Note that 𝑝ୡ୳୰୰ୣ୬୲(𝛉෡|𝛉෡஽) is the 
estimated probability distribution of 𝛉෡ .  According to the proposed frequentist-Bayesian 
transformation rule, Eq. (10), we substitute 𝛉෡ with 𝛉 in 𝑝ୡ୳୰୰ୣ୬୲(𝛉෡|𝛉෡஽).  Thus, Eq. (48) becomes 
 
 𝑝௣୭ୱ୲൫𝛉หprior, 𝛉෡஽൯ = 𝑐 ∙ 𝑝ୡ୳୰୰ୣ୬୲(𝛉|𝛉෡஽)𝑝୮୰୧୭୰(𝛉)               (49) 

 
Therefore, the new modified Bayes Theorem, Eq. (49), is an approximation of the original Bayes 
Theorem, Eq. (46). 

For the problem considered with two unknown parameters, 𝛉 =(μ, σ) and 𝛉෡஽=(𝑥̅஽ ,
௦ವ

௖ర
), Eq. 

(49) reduces to  
 
 

𝑝post ቆ𝜇, 𝜎ቤprior, ቀ𝑥̅஽ ,
௦ವ

௖ర
ቁቇ = 𝑐 ∙ 𝑝ୡ୳୰୰ୣ୬୲(𝜇, 𝜎|𝑥̅஽ ,

௦ವ

௖ర
) ∙ 𝑝prior(𝜇, 𝜎)               

(50) 

 
which is essentially identical to Eq. (26). 
 
6.4. In the absence of genuine prior information 
 
If there is no genuine prior information about the unknown parameter θ, the prior information 
content of θ is zero, i.e. Iprior(θ)=0.  The posterior information of θ, Eq. (15), reduces to  
 
 𝐼୮୭ୱ୲(𝜃) = 𝐼ୡ୳୰୰ୣ୬୲(𝜃)               (51) 
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Accordingly, the posterior PDF of θ is the same as the current PDF of θ.  That is, Eq. (16) reduces 
to 
 
 𝑝୮୭ୱ୲(𝜃) = 𝑝ୡ୳୰୰ୣ୬୲(𝜃)               (52) 

 
Equation (52) can also be obtained by using a flat prior in Eq. (16).   A flat prior is essentially 
equivalent to and is known as the locally uniform prior (Box and Tiao 1992).  According to Jaynes’ 
maximum entropy principle, maximum entropy is a way to assign a prior probability distribution 
(Jaynes 1988).  It is well known that a uniform distribution is the least informative distribution, 
for which entropy is maximized.  Therefore, a flat prior should be adopted in the absence of 
genuine prior information. 

Moreover, Eq. (51) or (52) is consistent with the common sense that, in the case that there 
is no genuine prior information, the statistical inference (e.g. measurement uncertainty analysis) 
should rely on current information (data) itself.  In other words, we would like the data to speak 
for themselves and we should believe in the light of the data.  Thus, in philosophy and methodology, 
the new modified Bayesian method does not require any noninformative priors, and even flat priors 
are considered redundant.  This completely eliminates the debate about how to choose 
noninformative priors when using the traditional Bayesian method. 

In contrast, in the traditional Bayesian method, a prior is required, even if there is no 
genuine prior information.  If a flat prior is used, Eq. (35) becomes: 

 
 𝑝post(𝜃|prior, data) = standardized 𝐿(𝜃|data)               (53) 

 
However, Eq. (53) is wrong because the likelihood function 𝐿(𝜃|data)  is not a probability 
distribution as addrssed by Fisher (1921) and Edwards (1992).  Thus, not only Eq. (53) conflicts 
with the common sense, but also it is methodologically flawed.  In fact, the choice of a flat prior 
has long been, and still is, a matter of dispute in Bayesian statistics (Box and Tiao 1992).  
Bayesians often use improper noninformative priors such as the Jeffreys priors.  However, the 
validity of the Jeffreys priors has been an argument even among Bayesians.  D’Agostini (1998), a 
leading proponent of Bayesian methods in particle physics, argued “…it is rarely the case that in 
physical situations the status of prior knowledge is equivalent to that expressed by the Jeffreys 
priors, …”.  The use of the Jeffreys prior 1/σ in the traditional Bayesian method results in the 
scaled and shifted t-distribution that gives the invalid Bayesian Type A SU as discussed in the 
introduction section.  Moreover, Huang (2018c, 2018d) revealed that the t-based inference for 
measurement uncertainty is invalid because of the “t-transformation distortion”; the t-based 
interval, whether it is derived from the Bayesian method or from the frequentist method, is actually 
misused in uncertainty estimation. 
 
6.5. On the probability domain simulation (PDS) 
 
The PDS naturally operates with the discretized formula of the new modified Bayesian method (or 
the traditional Bayesian method).  When both μ and σ are unknown, the discretized formula is 
written as 
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𝑝୮୭ୱ୲൫𝜇௜, 𝜎௝൯ =

௣౦౨౟౥౨൫ఓ೔,ఙೕ൯∙௣ౙ౫౨౨౛౤౪൫ఓ೔,ఙೕ൯

∑ ∑ ௣౦౨౟౥౨൫ఓ೔,ఙೕ൯∙௣ౙ౫౨౨౛౤౪൫ఓ೔,ఙೕ൯೙
ೕసభ

೘
೔సభ

               (54) 

 
where m is the number of the intervals for μ and n is the number of the intervals for σ.  The size 
and number of the intervals for a parameter should be selected to cover a large range of the 
parameter with high precision.  For example, if 𝑥̅஽ = 10  and 𝑠஽/√𝑛 = 2 , we may use 100 
intervals with the size 0.2, leading to the μ range from 0 to 20. 
 Equation (54) is a two-dimensional PDS; it can be easily implemented with Excel 
spreadsheets.  It outputs the joint posterior PDF of μ and σ in the form of an m×n matrix, from 
which the marginal posterior PDF of μ or σ can be readily obtained.  
 The PDS may be an effective alternative to the Markov Chain Monte Carlo (MCMC) 
sampling.  The MCMC sampling is used with great generality to produce samples from Bayesian 
posterior distributions (Robert and Casella 2011).  However, the MCMC method requires 
considerable familiarity with specialized tools for statistical computing (Possolo 2015, Possolo 
and Bodnar 2018).  Additionally, the MCMC method in general associates with computational 
difficulty and lack of transparency.  Further study of comparing the PDS with the MCMC sampling 
is needed to evaluate the potential of the PDS as a general numerical procedure for Bayesian 
methods. 
 
6.6. The unification of frequentist and Bayesian inference 
 
 Huang (2020b) presented a formula for combining prior information with current measurement 
based on the frequentist sampling theory and the LCD 

 
 𝑝୮୭ୱ୲(𝑥) =

௣౦౨౟౥౨(௫)∙௣ౙ౫౨౨౛౤౪(௫)

∫ ௣౦౨౟౥౨(௫)∙௣ౙ౫౨౨౛౤౪(௫)ௗ௫
               (55) 

 
where x represents a random sample drawn from the sampling distributions: prior, current, and 
posterior PDF, and 𝑝ୡ୳୰୰ୣ୬୲(𝑥)  is the estimated sampling distribution of x, i.e.  𝑝ୡ୳୰୰ୣ୬୲(𝑥) =

𝑝ୡ୳୰୰ୣ୬୲(𝑥|𝜃෠஽).  Note that Eq. (55) is identical to Eq. (18) if we change the symbol x to 𝜃෠.   
In fact, Eq. (55) is mathematically equivalent to the new modified Bayesian method, Eq. 

(16), because x can be replaced with θ.  Thus, both the frequentist and Bayesian views and 
methodologies end up with the same formula for combining prior information with current 
measurement. 

Equation (55) leads to a frequentist solution to Case 2 (Huang 2020b) 
 
 𝑝୮୭ୱ୲(𝑥|prior, data) ∝ 𝑁(𝑥|𝑥୮୰୧୭୰, 𝜎୮୰୧୭୰) ∙ 𝑁(𝑥|𝑥̅஽ ,

௦ವ

௖ర√௡
)               (56) 

 
which is identical to the solution of the new modified Bayesian method, Eq. (31), if x is replaced 
with μ. 

Therefore, in the light of the frequentist-Bayesian transformation rule and the LAI (or 
LCD), the frequentist and Bayesian inference are virtually equivalent so they can be unified, at 
least in measurement uncertainty analysis.  The unification may resolve the long-standing debate 
between frequentists and Bayesians.  The unification may also shed light on the revision of the 
GUM, which may leads to an indisputable, uniform revision of the GUM. 

Perhaps the unification is a reunion because the original Bayes Theorem, Eq. (46), which 
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is merely a statement of conditional probability (Box and Tiao 1992), is based on both the 
frequentist view and Bayesian view.  Refer to Eq. (46), where 𝛉 in the conditional probability 
distribution 𝑝(𝛉|𝐲) (also in 𝑝(𝛉)) are the unknown parameters that are treated as random variables 
based on the Bayesian view, whereas 𝛉 in the conditional probability distribution 𝑝(𝐲|𝛉) are the 
true values (constants) of the parameters based on the frequentist view.  Recall that 𝑝(𝐲|𝛉) is 
actually the probability distribution of y according to the frequentist sampling theory (Loredo 
1990).  Thus, the original Bayes Theorem in fact tells us that the posterior distribution of unknown 
parameters 𝛉 is proportional to the product of the (frequentist) probability distribution of y and the 
(Bayesian) prior distribution of 𝛉.  Therefore, the original Bayes Theorem may have suggested the 
equivalence of or the transferability between the frequentist view and Bayesian view.  Indeed, we 
have demonstrated in section 2 that, the frequentist view can be transformed to the Bayesian view 
and vice versa through the proposed frequentist-Bayesian transformation rule.  The frequentist-
Bayesian transformation rule can make the original Bayes Theorem, Eq. (46), operational, either 
based on the “pure” Bayesian view, which leads to Eq. (49), or based on the “pure” frequentist 
view, which leads to (in our notations) 

 
 𝑝୮୭ୱ୲൫𝛉෡หprior, 𝛉෡஽൯ = 𝑐 ∙ 𝑝ୡ୳୰୰ୣ୬୲(𝛉෡|𝛉෡஽)𝑝୮୰୧୭୰(𝛉෡)               (57) 

 
In the author’s opinion, the separation of the Bayesian inference and frequentist inference is due 
to the error of using the likelihood function 𝐿(𝛉|𝐲) as a substitute for the conditional probability 
distribution 𝑝(𝐲|𝛉).  The left side of the reformulated Bayes Theorem, Eq. (47), is a mixture of 
likelihood and probability.  Likelihood is useful in its own way as in Edwards’ Method of Support 
or in the MLE; it should not be mixed with probability.  The new modified Bayesian method 
corrects this error so that the frequentist and Bayesian inference may reunite after being separated 
for more than 250 years.  Further investigation on the unification and its impact is warranted. 
 
7. Conclusion 
 
We have demonstrated that, for the simple (and basic) measurement model considered, the 
frequentist view can be transformed to the Bayesian view and vice versa through the proposed 
frequentist-Bayesian transformation rule.  This is because the true value and the measurement error 
are physical quantities that are independent of the viewpoint (or reference frame).  In the case 
that there is no genuine prior information, the usual Bayesian PDF of an unknown parameter with 
a given dataset is nothing but the estimated probability distribution (i.e. frequentist PDF) in which 
the unknown parameters are estimated with the point estimation method. 

The proposed new modified Bayesian method is a self-consistent operation because it 
operates entirely on PDFs.  As a result, it gives the correct inferences for the problem considered 
(Case 1 and Case 2): same solutions as its frequentist counterparts.  In contrast, the traditional 
Bayesian method, i.e. the reformulated Bayes Theorem, is not a self-consistent operation because 
it operates on likelihood function and PDF.  This is a flaw of the traditional Bayesian method.  As 
a result, the traditional Bayesian method gives the incorrect inferences: invalid estimates of 
standard uncertainty (SU) in Case 1 and Case 2.  A likelihood function is a distorted mirror of its 
probability distribution counterpart.  The use of likelihood functions in Bayes Theorem is the root 
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cause of the inherent bias of the traditional Bayesian method.  However, the original Bayes 
Theorem, either in continuous or discrete form, is a self-consistent operation because it operates 
entirely on probability distributions or probabilities.   

In the light of the frequentist-Bayesian transformation rule and the LAI (or LCD), the 
frequentist and Bayesian inference are virtually equivalent so that they can be unified, at least in 
measurement uncertainty analysis.  The unification may resolve the long-standing debate between 
frequentists and Bayesians.  The unification may also shed light on the revision of the GUM, which 
may lead to an indisputable, uniform revision of the GUM.  Further investigation on the unification 
and its impact is warranted. 

The proposed new modified Bayesian method is a special case of the LAI where only two 
information sources (prior and current) are involved.  It is not limited to the measurement science 
because the LAI is a universal law.  Further studies are warranted to extend the new modified 
Bayesian method to different fields of science. 

It is the author’s hope that this paper will draw practitioners’ and statisticians’ attention to 
the limitation (or flaw) of the traditional Bayesian method.  The traditional (or reformulated) Bayes 
Theorem, Eq. (47), deviates markedly from the original Bayes Theorem, Eq. (46). Bayesian 
statistics should not be built upon the reformulated Bayes Theorem; it should be built upon the 
original Bayes Theorem, Eq. (46), or upon the new modified Bayes Theorem, Eq. (48), which is a 
valid approximation of the original Bayes Theorem. 
 
Appendix: A likelihood function is a distorted mirror of its probability 
distribution counterpart: an example 
 
Consider a normal distribution for which the mean 𝜇் is known.  The likelihood of σ, given n 
observations, can be written as (Box and Tiao 1992) (in our notations) 
 
 𝐿(𝜎|𝑠஽) ∝ 𝜎ି௡exp ቀ−

ଵ

ଶ
(𝑛 − 1)

௦ವ
మ

ఙమ
ቁ               (56) 

 
The standardized likelihood of σ can be written as 
 
 

𝐿′(𝜎|𝑠஽) =
ఙష೙ୣ୶୮ቆି

భ

మ
(௡ିଵ)

ೞವ
మ

഑మቇ

∫ ఙష೙ୣ୶୮ቆି
భ

మ
(௡ିଵ)

ೞವ
మ

഑మቇௗఙ
ಮ

బ

               

(57) 

 
provided that the integral is finite. 

On the other hand, the probability distribution counterpart of 𝐿′(𝜎|data) is the sampling 
distribution of s (WolfamMathworld 2020) that can be rewritten as 
 
 

𝑝(𝑠|𝜎்) =
௦೙షమୣ୶୮ቆି

భ

మ
(௡ିଵ)

ೞమ

഑೅
మ ቇ

∫ ௦೙షమୣ୶୮ቆି
భ

మ
(௡ିଵ)

ೞమ

഑೅
మ ቇௗ௦

ಮ
బ

               

(58) 
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Note that 𝐿′(𝜎|𝑠஽) ≠ 𝑝(𝑠|𝜎்).  In order to visualize the difference between 𝐿′(𝜎|𝑠஽) and 𝑝(𝑠|𝜎்), 
we calculated their numerical values by assuming that 𝑠஽/𝑐ସ = 𝜎் = 1 for n=2, 4, and 10.  Figure 
5, 6, and 7 show the comparison between 𝐿′(𝜎|𝑠஽) and 𝑝(𝑠|𝜎்) at n=2, 4, and 10 respectively. 
 

 
 
Figure 5. Comparison between the standardized likelihood function of σ and its probability 
distribution counterpart (n=2) 

 

 
 

Figure 6. Comparison between the standardized likelihood function of σ and its probability 
distribution counterpart (n=4) 
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Figure 7. Comparison between the standardized likelihood function of σ and its probability 
distribution counterpart (n=10) 
 
 
At n=2, the 𝐿′(𝜎|𝑠஽) curve and the 𝑝(𝑠|𝜎்) curve are significantly different.  The 𝐿′(𝜎|𝑠஽) curve 
has a fatter and longer tail, which means that there are many occurrences of σ far from the central 
part of the standardized likelihood function.  At n=4, the pattern of the 𝐿′(𝜎|𝑠஽)  and 𝑝(𝑠|𝜎்) 
curves are similar, but the 𝐿′(𝜎|𝑠஽) curve has a fatter and longer tail.  At n=10, the 𝐿′(𝜎|𝑠஽) and 
𝑝(𝑠|𝜎்) curves are closer.   

Therefore, the standardized likelihood function of σ is a distorted mirror of its probability 
distribution counterpart, the sampling distribution of s.  The distortion is severe when the sample 
size is small; it decreases with increasing sample size.  When the sample size is large enough, say 
n>30, 𝐿′(𝜎|𝑠஽) will approach 𝑝(𝑠|𝜎்).   

In addition, it should be mentioned that for the example (n=4) of Case 1 in section 5.1, the 
marginal posterior distribution of μ obtained with the traditional Bayesian method (TBM) with the 
flat prior is a standardized likelihood function of μ, whose probability distribution counterpart is 
the normal distribution.  Then, it can be seen from figure 1 that this standardized likelihood 
function is distorted markedly with respect to the normal distribution.  The distortion will decrease 
with increasing sample size, and this standardized likelihood function will approach the normal 
distribution when the sample size is large enough. 
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