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ABSTRACT  
This paper presents a practical and effective alternative to the traditional t-tests for (1) comparing a sample 
or sample mean against a known mean (i.e. one-sample test) and (2) comparing two samples or two sample 
means (i.e. two-sample test).  The proposed method is referred to as exceedance probability (EP) analysis.  
In a one-sample test, EP is defined as the probability that a sample or sample mean is greater than a known 
mean.   In a two-sample test, EP is defined as the probability that the difference between two samples or 
between two sample means is greater than a specified value (referred to as probabilistic effect size (PES)).  
This paper also defines a new statistic called relative mean effect size (RMES).  RMES provides a true 
measure of the scientific significance (not the statistical significance) of the difference between two means.  
A case study of preference between two manufacturers is presented to demonstrate the effectiveness of the 
proposed EP analysis, compared with four existing methods: t-tests, common language (CL) effect size 
analysis, signal content index (SCI) analysis, and Bayesian analysis.  Unlike these existing methods that 
require the assumption of normality, the proposed EP analysis can be performed with any type of 
distributions.  The case study example is examined with a normal distribution model and a raised cosine 
distribution model.  The former is solved with an analytical solution and the latter is solved with a numerical 
method known as probability domain simulation (PDS). 

 
Keywords: alternative to t-tests, comparison of samples, effect size, exceedance probability 

    
       
1. Introduction 
 
There has been a long-standing debate about the validity of t-tests (or significance testing in 
general) and the associated p-values in the statistics community.  Unlike many statistics textbooks 
in which t-tests and t-distribution are part of standard materials, Matloff (2014a) deliberately 
excludes t-tests and t-distribution in his textbook.  An international journal: Basic and Applied 
Social Psychology (BASP) has officially banned significance testing from BASP since 2015 
(Trafimow and Marks 2015).  The American Statistician Association (ASA) made an official 
statement about statistical significance and p-values (Wasserstein and Lazar 2016).  Some authors 
suggested retiring or abandoning statistical significance and p-values (e.g. Amrhein et al. 2019, 
McShane et al. 2018, Halsey 2019, Wasserstein et al. 2019). 
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It seems that “the reign of the p-value is over.”  Then, an important question is, “what 

alternative analyses could we employ to fill the power vacuum?” (Halsey 2019).  Trafimow and 
Marks (2015), the editors of BASP, stated, “… BASP will require strong descriptive statistics, 
including effect sizes.” Huang (2020a) recently presented a new statistic that is referred to as signal 
content index (SCI), based on the law of conservation of energy.  SCI is defined as the ratio 
between the signal energy and the total energy of signal and noise contained in the observed values 
(data).  The analysis of the SCI for the difference between two means provides an alternative to 
the traditional t-tests.  However, the SCI is a function of the t statistic.  A SCI value can be 
converted to a p-value produced by a t-test and vice versa.  In addition, like a p-value, the SCI is 
not an absolute measure of the difference between two means. It is similar to the heterogeneity 
index I2 that is not an absolute measure of the heterogeneity between studies in meta-analysis. 

The mathematical basis of t-tests is the t-distribution. The t statistic is a transformed 
quantity, i.e. the ratio between the sample error and sample standard deviation.  The t-
transformation itself is mathematically valid, and so is the t-distribution (Huang 2020b).  However, 
the use of t-distribution for statistical inference may be invalid because of the t-transformation 
distortion (Huang 2018a).   The t-transformation distortion is the root cause of extremely high t-
scores when the sample size is very small (Huang 2018b).  The t-based uncertainty is actually 
misused in measurement uncertainty analysis (Huang 2018c).  D'Agostini (1998) also casted doubt 
on the use of the t-distribution as the “standard way” for handling small samples.  Matloff (2014b) 
stated, in his blog post titled “Why are we still teaching t-tests?”, “The t-test is an exemplar for the 
curricular ills in three separate senses ...  I advocate skipping the t-distribution, and going directly 
to inference based on the Central Limit Theorem.”  Huang (2019) initiated a discussion with an 
analogous title “Why are we still teaching t-distribution?” on ResearchGate, suggesting to revisit 
all t-based inferences that may be problematic due to the t-transformation distortion. 

This paper proposes a practical and effective alternative to the traditional t-tests, referred 
to as exceedance probability (EP) analysis.  The concept of EP is not new; it has been used in some 
engineering applications such as environment protection.  However, EP seems less known in 
statistical or scientific inference, although EP may be implicit in statistical significance tests such 
as t-tests.  We focus on two tests that are often encountered in practice, (1) one-sample test: 
comparing a sample or sample mean against a known mean, and (2) two-sample test: comparing 
two samples (groups) or two sample means.   

In the following sections, section 2 briefly reviews the concept of EP.  Section 3 deals with 
one-sample tests.  Section 4 deals with two-sample tests.  Section 5 presents discussion.  Section 
6 presents a case study: preference between two manufacturers, comparing the proposed EP 
analysis with four existing methods: t-tests, common language effect size (CL) analysis, signal 
content index (SCI) analysis, and Bayesian analysis.  Section 7 discusses the case study example 
with the assumption of non-normal distributions, which is solved with a numerical method.  
Section 8 presents conclusion and recommendation. 

 
2. The concept of exceedance probability (EP) 
 
Consider a random variable X that has a continuous probability density function (PDF) 𝑝(𝑥|𝛉) 
with the support (-∞, +∞) (or other support), where 𝛉 is a vector of parameters.  For a normal 
distribution, 𝛉 = (𝜇, 𝜎) , where μ is the mean and σ is the standard deviation.  
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Exceedance probability (EP) is defined as the probability that a specified value (or limit), denoted 
by xEP, is exceeded.  That is 
 
 EP(𝑥୉୔) = Pr(𝑋 > 𝑥୉୔) = ∫ 𝑝(𝑥|𝛉)𝑑𝑥

ஶ

௫ుౌ
= 1 − Pr(𝑋 ≤ 𝑥୉୔)               (1) 

For example, x90 is equal to the value, if randomly drawing a huge number of samples thorough 
Monte Carlo simulation from the probability distribution of X, where 10% of the samples will be 
below x90 and 90% will be above x90.  For symmetrical distributions such as a normal distribution, 
x50 is equivalent to the mean value.  In addition, if we specify 𝑥୉୔ = 0, EP(0) is the probability 
that the values of x are greater than 0.  
 When the model parameters 𝛉  are known, EP(𝑥୉୔)  will be exact according to Eq. (1).  
When the model parameters 𝛉 are unknown, 𝛉 are replaced with their estimator 𝛉෡.  Then, Eq. (1) 
becomes 
  
 EP෢ (𝑥୉୔) = ∫ 𝑝(𝑥|𝛉෠)𝑑𝑥

ஶ

௫ుౌ
               (2) 

where 𝑝(𝑥|𝛉ො) is the estimated PDF of X and EP෢ (𝑥୉୔) is the estimated EP.  For a normal distribution, 
𝛉෡ = (𝜇̂, 𝜎ො), where 𝜇̂ is an estimator of μ and 𝜎ො is an estimator of σ.   
 The concept of EP has been used in some engineering fields.  For example, EP analysis is 
a standard practice for assessing the quality of receiving water.  This is because water quality 
criteria are usually set in terms of a concentration level with the associated EP (or return period 
that can be converted to EP) (Huang and Fergen 1995).  U.S. EPA (Environment protection agency) 
(1991) sets EP=0.0037 for chronic toxics to protect aquatic life.  Di Toro (1984) performed EP 
analysis for stream quality due to runoff.  Huang and Fergen (1995) performed EP analysis for 
BOD and DO concentration along a river due to a point load. EP analysis is also used to assesse 
the exposure level in a work environment (Krishnamoorthy et al. 2007). 
 As mentioned in the introduction section, EP seems less known in statistical or scientific 
inference.  However, EP may be implicit in statistical significance tests such as t-tests.  In the 
author’s opinion, EP analysis is more straightforward, more informative, and easier to understand 
than t-tests and the associated p-values. 
 
3. One-sample tests 
 
Suppose that a sample (dataset) X={x1, x2, …, xn} is randomly drawn from a normal distribution 

 .  Neither µ nor σ is known.  The dataset gives the sample mean 𝑥̅஽  and sample 
standard deviation 𝑠஽ (“D” means that the sample statistic 𝑥̅ or s is conditioned on the dataset).  
We are interested in two problems: (a) assessing a sample X against a known mean µ0, and (b) 
assessing the sample mean 𝑋ത against µ0.  

In our analysis, the location parameter 𝜇 is estimated with 𝑥̅஽ and the scale parameter σ is 
estimated with 𝑠஽/𝑐ସ,௡, where 𝑐ସ,௡ is the bias correction factor that depends on the number of 
observations (i.e. the sample size n).  Accordingly, 𝑋: 𝑁(𝑥̅஽ ,

௦ವ

௖ర,೙
)  is the estimated probability 

distribution function (PDF) of 𝑋: 𝑁(𝜇, 𝜎), given the dataset. 
For problem (a), the difference between the sample X and the known mean 𝜇଴ is defined 

as the effect size: ∆𝑋 = 𝑋 − 𝜇଴.  ∆𝑋 is a random variable because X is a random variable.  We are 

( , )X N  
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interested in the probability that ∆𝑋 > 0 , or 𝑋 > 𝜇଴ , i.e. the exceedance probability (EP) of X 
against 𝜇଴, denoted by EP௔(𝜇଴).  It is written as 
 
 EP௔(𝜇଴) = Pr(∆𝑋 > 0) = Pr(𝑋 > 𝜇଴) = 1 − Pr(𝑋 ≤ 𝜇଴)               (3) 

As a numerical example, assume that 𝑥̅஽  = 20, 
௦ವ

௖ర,೙
=5, and n=25.  Then, EP௔(𝜇଴) is 25% at 𝜇଴ =

23.372, 50% at 𝜇଴ = 𝑥̅஽ = 20, and 75% at 𝜇଴ = 16.628.   Thus, EP௔(𝜇଴) provides a probabilistic 
measure for assessing X against 𝜇଴, or a probabilistic assessment of the effect size ∆𝑋 = 𝑋 − 𝜇଴. 

Note that the scale parameter in the PDF 𝑋: 𝑁(𝑥̅஽ ,
௦ವ

௖ర,೙
)  is only a weak function of the 

sample size n because 𝑐ସ,௡  approaches unity quickly with increasing n, say n>10.  Therefore, 
EP௔(𝜇଴) is nearly independent of n.   

For problem (b), the difference between the sample mean 𝑋ത and 𝜇଴ is defined as the effect 
size: ∆𝑋ത = 𝑋ത − 𝜇଴.  Similar to problem (a), the EP of 𝑋ത against 𝜇଴, denoted by EP௕(𝜇଴), is written 
as 
 
 EP௕(𝜇଴) = Pr(∆𝑋ത > 0) = Pr(𝑋ത > 𝜇଴) = 1 − Pr(𝑋ത ≤ 𝜇଴)               (4) 

The estimated PDF of the sample mean is 𝑋ത: 𝑁(𝑥̅஽ ,
௦ವ

௖ర,೙√௡
), given the dataset. 

For the same assumed values: 𝑥̅஽  = 20, 
௦ವ

௖ర,೙
=5, and n=25, EP௕(𝜇଴) is 25% at 𝜇଴ = 20.674, 

50% at 𝜇଴ = 𝑥̅஽ = 20, and 75% at 𝜇଴ = 19.326.  Thus, EP௕(𝜇଴) provides a probabilistic measure 
for assessing 𝑋ത against 𝜇଴ or a probabilistic assessment of the effect size ∆𝑋ത = 𝑋ത − 𝜇଴. 

Note that the scale parameter in the PDF 𝑋ത: 𝑁(𝑥̅஽ ,
௦ವ

௖ర,೙√௡
) is a function of the sample size 

n, so EP௕(𝜇଴) depends on n.  Also note that, in general, EP௔(𝜇଴) ≠ EP௕(𝜇଴).  However, they take 
the same value, 50%, at 𝜇଴ = 𝑥̅஽.  That is EP௔(𝑥̅஽) = EP௕(𝑥̅஽) = 50%. 
 In addition, we define the ratio between 𝑥̅஽ − 𝜇଴ and 𝜇଴ as the relative mean effect size 
(RMES) of a one-sample test 
 
 RMES୭୬ୣିୱୟ୫୮୪ୣ =

௫̅ವିఓబ

ఓబ
               (5) 

RMES୭୬ୣିୱୟ୫୮୪ୣ  provides a true measure of the scientific significance (not the statistical 
significance) of the difference between the two means.  Importantly, RMES does not depend on 
the sample size n.  
 
4. Two-sample tests 

 
Suppose that two samples (datadests) X1={x1,1, x1,2, …, x1,n1} and X2={x2,1, x2,2, …, x2,n2} are 
randomly drawn from two independent normal distributions  and , 

respectively.  Neither µ1 nor µ2 is known, neither σ1 nor σ2 is known, and in general .  The 

two datasets give the sample means 𝑥̅ଵ,஽ and 𝑥̅ଶ,஽, and sample standard deviations 𝑠ଵ,஽ and 𝑠ଶ,஽, 
respectively.  The sample sizes are n1 and n2 respectively.  Again, we are interested in two problems: 

1 1 1( , )X N   2 2 2( , )X N  

1 2 
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(a) assessing the difference between the two samples 𝑋ଵ and 𝑋ଶ, and (b) assessing the difference 
between the two sample means 𝑋തଵ and 𝑋തଶ. 

Similar to the analysis in the one-sample test, the estimated PDFs of X1 and X2 are 
 𝑋ଵ: 𝑁(𝑥̅ଵ,஽,

௦భ,ವ

௖ర,೙భ
) ≈ 𝑋ଵ: 𝑁(𝜇ଵ, 𝜎ଵ) and 𝑋ଶ: 𝑁(𝑥̅ଶ,஽ ,

௦మ,ವ

௖ర,೙మ
) ≈ 𝑋ଶ: 𝑁(𝜇ଶ, 𝜎ଶ), respectively. 

For problem (a), the difference between X1 and X2 is defined as the effect size: ∆𝑋 = 𝑋ଵ −
𝑋ଶ.  ∆𝑋 is a random variable because X1 and X2 are random variables.  The estimated PDF of ∆𝑋 
is also normal and is written as 
 
 

𝑝(∆𝑋) = 𝑁 ൮൫𝑥̅ଵ,஽ − 𝑥̅ଶ,஽൯, ඨ൬
௦భ,ವ

௖ర,೙భ
൰

ଶ

+ ൬
௦మ,ವ

௖ర,೙మ
൰

ଶ

൲               

(6) 

 
We are interested in the probability that ∆𝑋 > 0, or 𝑋ଵ > 𝑋ଶ, i.e. the EP of ∆𝑋 against 0, denoted 
by EP௔(0).  It is written as 
 
 EP௔(0) = Pr(∆𝑋 > 0) = Pr(𝑋ଵ > 𝑋ଶ)               (7) 

EP௔(0) is the estimated probability that the sample X1 from one distribution (or group) is greater 
than the sample X2 from another distribution (or group).  The meaning of EP௔(0) is clear without 
any confusion; even a person without statistical training can understand it. 

Furthermore, we define the EP of ∆𝑋 against a specified value ∆𝑥୉୔ as 
 
 EP௔(∆𝑥୉୔) = Pr(∆𝑋 > ∆𝑥୉୔) = 1 − Pr(∆𝑋 ≤ ∆𝑥୉୔)               (8) 

Note that EP௔(0) is a special case where ∆𝑥୉୔ = 0. 
Because the distribution of ΔX is symmetric, EP௔(∆𝑥ହ଴ = 𝑥̅ଵ,஽ − 𝑥̅ଶ,஽) means that 50% of 

the Δx samples will be greater than ∆𝑥ହ଴.  In other words, X1 is greater (or smaller) than X2 by ∆𝑥ହ଴ 
at the odds of 1:1.  On the other hand, EP௔(∆𝑥଻ହ) means that 75% of the Δx samples will be greater 
than ∆𝑥଻ହ, or X1 is greater than X2 by ∆𝑥଻ହ at the odds of 3:1.  Thus, ∆𝑥୉୔ provides a probabilistic 
measure of the effect size ∆𝑋 = 𝑋ଵ − 𝑋ଶ.  It is therefore referred to as the probabilistic effect size 
(PES). 

Note that the scale parameter in 𝑝(∆𝑋) is only a weak function of the sample sizes n1 and 
n2 because 𝑐ସ,௡  approaches unity quickly with increasing n, say n>10.  Therefore, EP௔(0) or 
EP௔(∆𝑥୉୔) is nearly independent of the sample sizes n1 and n2.  

For problem (b), the difference between the two sample means 𝑋തଵ and 𝑋തଶ is defined as the 
effect size: ∆𝑋ത = 𝑋തଵ − 𝑋തଶ.  The estimated PDF of ∆𝑋ത is also normal and is written as 
 
 

𝑝(∆𝑋ത) = 𝑁 ൮൫𝑥̅ଵ,஽ − 𝑥̅ଶ,஽൯, ඨቆ
௦భ,ವ

௖
ర,೙భඥ೙భ

ቇ

ଶ

+ ቆ
௦మ,ವ

௖
ర,೙మඥ೙మ

ቇ

ଶ

൲               

(9) 

 
Similar to problem (a), the EP of ∆𝑋ത agaianst 0 (i.e. 𝑋തଵ > 𝑋തଶ ), denoted by EP௕(0), is written as 
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 EP௕(0) = Pr(∆𝑋ത > 0) = Pr(𝑋തଵ > 𝑋തଶ)               (10) 

Also similarly, the EP of ∆𝑋ത against a specified value Δ𝑥̅EP is written as 
 
 EP௕(∆𝑥̅୉୔) = Pr(∆𝑋ത > ∆𝑥̅୉୔) = 1 − Pr(∆𝑋ത ≤ ∆𝑥̅୉୔)               (11) 

Analogously, ∆𝑥̅୉୔ provides a probabilistic measure of the effect size ∆𝑋ത = 𝑋തଵ − 𝑋തଶ.  Accordingly, 
∆𝑥̅୉୔ is also a probabilistic effect size (PES).  We have ∆𝑥̅ହ଴ = ∆𝑥ହ଴ = 𝑥̅ଵ,஽ − 𝑥̅ଶ,஽. 

Note that the scale parameter in 𝑝(∆𝑋ത)  is a function of the sample sizes n1 and n2.  
Therefore, EP௕(0) and EP௕(∆𝑥̅୉୔) depend on the sample sizes n1 and n2.  Also note that, in general, 
EP௔(∆𝑥୉୔) ≠ EP௕(∆𝑥̅୉୔), except that both are 50% at ∆𝑥ହ଴ = ∆𝑥̅ହ଴ = 𝑥̅ଵ,஽ − 𝑥̅ଶ,஽. 
 In addition, we define the ratio between ∆𝑥ହ଴ (or ∆𝑥̅ହ଴) and a weighted-average of the two 
sample means as the relative mean effect size (RMES) of a two-sample test 
 
 RMES୲୵୭ିୱୟ୫୮୪ୣ =

௫̅భ,ವି௫̅మ,ವ

௫̅ೢ
               (12) 

where 𝑥̅௪ may be calculated as the inverse-variance weighted-average 
 
 
 

𝑥̅௪ =

𝑛ଵ𝑥̅ଵ,஽

𝑠ଵ,ୈ
ଶ +

𝑛ଶ𝑥̅ଶ,஽

𝑠ଶ,ୈ
ଶ

𝑛ଵ

𝑠ଵ,ୈ
ଶ +

𝑛ଶ

𝑠ଶ,ୈ
ଶ

 

    (13) 

 
RMES୲୵୭ିୱୟ୫୮୪ୣ  provides a true measure of the scientific significance (not the statistical 
significance) of the difference between two sample means.  Note that if 𝑠ଶ,ୈ

ଶ /𝑛ଶ  goes to zero, 
RMES୲୵୭ିୱୟ୫୮୪ୣ  reduces to RMES୭୬ୣିୱୟ୫୮୪ୣ , where 𝑥̅஽,ଵ  is replaced by 𝑥̅஽  and 𝑥̅ଶ,஽  is replaced 
by 𝜇଴. 
 It should be pointed out that EP analysis does not require the assumption of normality.  The 
PDF of X in a one-sample test, or the PDFs of X1 and X2 in a two-sample test can be any type of 
distributions.  For example, X1 can be normally distributed and X2 can be uniformly distributed; 
Eqs. (7) and (8) still apply.  However, in this situation, a numerical procedure may be required to 
generate a solution.  A numerical method known as probability domain simulation (PDS) is 
described in Appendix.  The use of PDS for a case study example is presented later in this paper.  
 
 
 
5. Discussion 
 
5.1. Comparison with the analysis of common language (CL) effect size  
 
In the problem (a) of two-sample tests, the EP of ∆𝑋 against zero, i.e. EP௔(0) = Pr(𝑋ଵ > 𝑋ଶ), is 
the probability that the sample X1 from one distribution (or group) is greater than the sample X2 
from another distribution (or group).  Thus, the meaning of EP௔(0) is the same as the meaning of 
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an effect size statistic called common language (CL) effect size proposed by McGraw and Wong 
(1992).  CL may be under other names such as the probability of superiority (PS), area under the 
receiver operating characteristic (AUC), or A for its nonparametric version (Ruscio and Mullen 
2012).  However, the formula of EP௔(0) is different from the formula of CL.  EP௔(0) is calculated 
based on the estimated PDF of ∆𝑋, Eq. (6); it does not require the assumption of normality.  In 
principle, EP௔(0) can be calculated from the difference between two distributions of any type.  In 
contrast, the calculation of CL requires the assumption of normality.  CL is calculated based on the 
standardized mean effect size that is equivalent to a 'z-score' of a standard normal distribution (Coe 
2002).  For two independent samples, the z-score for CL is written as (Coe 2002) 

 
 𝑧େ୐ =

௫̅భ,ವି௫̅మ,ವ

ට௦భ,ವ
మ ା௦మ,ವ

మ
               (14) 

 
Therefore, CL is the upper tail probability associated with 𝑧େ୐on a table of the normal cumulative 
distribution.  Note that 𝑧େ୐ is different from the usual z-score for a z-test, in which the standard 
error, e.g. 𝑠ଵ/√𝑛ଵ, is used, instead of the sample standard deviation 𝑠ଵ. 

If both X1 and X2 are normally distributed, and the variances 𝜎ଵ
ଶ and 𝜎ଶ

ଶ are known or the 
sample sizes n1 and n2 are very large, the numerical value of EP௔(0)  will be the same or 
approximately the same as CL.  If 𝑠ଵ,஽

ଶ  and 𝑠ଶ,஽
ଶ  are estimated with small samples, EP௔(0) will be 

slightly different from CL.  This can be seen in the case study example presented later in this paper. 
 
5.2. Comparison with the z-test and t-test 
 
It is important to note that the z-test or t-test and the associated p-value only apply to problem (b).  
They do not apply to problem (a).  Therefore the following discussion addresses problem (b) only. 

There is a relationship between EP௕(𝜇଴) and the one-tailed p-value produced by a one-
sample z-test or t-test; there is also a relationship between EP௕(0)  and the one-tailed p-value 
produced by a two-sample z-test or t-test. 

For a one-sample z-test, the one-tailed p-value for the null: the effect is greater than zero, 
can be calculated as 
 
 

𝑝୭୬ୣି୲ୟ୧୪ୣୢ = Pr ቆቈ𝑧 =
௑തି௫̅ವ

഑

√೙

቉ < ቈ−𝑧௣ = −
௫̅ವିఓబ

഑

√೙

቉ቇ = Pr(𝑋ത < 𝜇଴) = 1 − EP௕(𝜇଴)              
(15) 

 
For a two-sample equal-variance z-test, the one-tailed p-value for the null: the effect is greater 
than zero, can be calculated as 
 
 

𝑝୭୬ୣି୲ୟ୧୪ୣୢ = Pr ቌ቎𝑧 =
(௑തభି௑തమ)ି(௫̅భ,ವି௫̅మ,ವ)

ఙට
భ

೙భ
ା

భ

೙మ

቏ < ቎−𝑧௣ = −
௫̅భ,ವି௫̅మ,ವ

ఙට
భ

೙భ
ା

భ

೙మ

቏ቍ

 
               = Pr൫(𝑋തଵ − 𝑋തଶ) < 0൯ = Pr(𝑋തଵ < 𝑋തଶ) = 1 − EP௕(0)

               

(16) 
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Since the t-test approaches the z-test when the sample size is large (say, n>30), the p-value 
produced by a one-tailed t-test will be approximately equal to 1 − EP௕(𝜇଴) for the one-sample test 
and will be approximately equal to 1 − EP௕(0) for the two-sample test. 
 The EP analysis for problem (b) is superior to the one-tailed t-test.  First, EP௕(𝜇଴) or 
EP௕(0) has a clear meaning without any confusion.  For example, EP௕(0) = Pr(𝑋തଵ > 𝑋തଶ) is the 
estimated probability that the sample mean 𝑋തଵ from one distribution (or group) is greater than the 
sample mean 𝑋തଶ from another distribution (or group).  A person even not trained in statistics can 
understand this statement.  EP௕(𝜇଴) or EP௕(0) provides a probabilistic assessment about the effect 
size 𝑋തଵ − 𝑋തଶ.  In other words, EP analysis answers the question: “how likely is the difference 
between 𝑋തଵ and 𝑋തଶ?”  However, like the p-value, EP௕(𝜇଴) or EP௕(0) does not provide an absolute 
measure of the effect size.  We therefore do not recommend using any cut-off value of EP௕(𝜇଴) or 
EP௕(0) to assesse statistical significance.  We even do not recommend using the term “statistical 
significance” in EP analysis.  Instead, we suggest using EP௕(𝜇଴) or EP௕(0) in conjunction with 
RMES for scientific inference.  RMES answers the question: “how much is the difference between 
𝑋തଵ and 𝑋തଶ?”  In contrast, the meaning of p-values is often misinterpreted or misunderstood.  In 
particular, statisticians tend to interpret evidence dichotomously based on whether or not a p-value 
crosses the conventional 0.05 threshold for statistical significance (McShane and Gal 2017).  For 
example, p>0.05 is often misinterpreted as “the probability that the null hypothesis is true” or 
“p>0.05 means that no effect was observed.”  However, statistical significance is not the same as 
scientific significance.  Moreover, since the p-value decreases as the sample size increases, and 
approaches zero as sample size goes to infinity, statistical significance can be always achieved 
with a sufficiently large sample in t-tests, even if the absolute difference between two means (i.e. 
the effect size) or RMES is very small and meaningless. 

Second, the calculation of EP௕(𝜇଴) or EP௕(0) does not require the assumption of normality.  
It does not need to assume equal variance or use a pooled variance.  In principle, EP analysis can 
be performed on any type of distribution.  In contrast, the calculation of p-values in a t-test requires 
the assumption of normality.  It also needs to assume equal variance or use a pooled variance.  
Therefore, the EP analysis for problem (b) has fewer restrictions and fewer limitations than t-tests; 
EP௕(𝜇଴) or EP௕(0) is more accurate (or has less uncertainty) than p-values. 
 
5.3. The Bayesian view 
 
It should be pointed out that the proposed EP analysis is based on the frequentist view.  That is, 
the unknown parameters μ and σ are regarded and treated as constants that are estimated with the 
point estimation method with the mean-unbiased criterion.  In the Bayesian view, however, the 
unknown parameters μ and σ are treated as random variables. Huang (2022) recently presented a 
modified Bayesian method based on the rule of transformation between the frequentist view and 
Bayesian view; he demonstrated that, in the case that no prior information is involved, the 
frequentist sampling distribution, estimated with a given dataset, is virtually the same as the 
Bayesian probability distribution of the unknown parameter (e.g. μ).  Huang (2022) also 
demonstrated that, in the light of the law of aggregation of information (LAI) (Huang 2020c) and 
the frequentist-Bayesian transformation rule, the frequentist and Bayesian inference are virtually 
equivalent, so they can be unified, at least in measurement uncertainty analysis.  Therefore, EP 
analysis may also be performed based on the Bayesian view.  Take the problem (b) of two-sample 
tests as an example.  According to the frequentist-Bayesian transformation rule,  𝑋തଵ → 𝜇ଵ , and 
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𝑋തଶ → 𝜇ଶ.  Consequently, ∆𝑋ത → ∆𝜇, the PDF of ∆𝜇 is the same as Eq. (9).  Furthermore, Eq. (10) 
and Eq. (11) also apply to ∆𝜇.  However, the Bayesian view may not be applicable to the problem 
(a) of two-sample tests, which may only be dealt with by the frequentist sampling theory. 
 The interested reader is referred to Huang (2020c) for the law of aggregation of information 
(LAI) and Huang (2022) for the modified Bayesian method and the potential unification of the 
frequentist and Bayesian inference. 
 
6. Case study: preference between two manufacturers 
 
We consider a well-posted example that is originally given in a textbook of Roberts (1964).  Two 
manufacturers, denoted by A and B, are suppliers for a component.  We are concerned with the 
lifetime of the component and want to choose the manufacturer that affords the longer lifetime.  
Manufacturer A supplies 9 units for lifetime test.  Manufacturer B supplies 4 units.  The test data 
give the sample means 42 and 50 hours, and the sample standard deviations 7.48 and 6.87 hours, 
for the units of manufacturer A and B respectively.   

Roberts (1964) discussed this example with a two-tailed t-test and concluded that, at the 
90% level, the samples afford no significant evidence in favor of either manufacturer over the 
other.  Jaynes (1976) discussed this example with a Bayesian analysis.  He argued that our common 
sense tell us immediately, without any calculation, the test data constitutes fairly substantial (but 
not overwhelming) evidence in favor of manufacturer B.  Huang (2020a) recently discussed this 
example with a SCI analysis. 
 
6.1. The t-tests 
 
In this study, we conducted the t-tests with the pooled variance and Welch’s t-test.  We performed 
the one-tailed and two-tailed tests.  Table 1 shows the results.  
 
Table 1.  Results of the t-tests 
 t-test with pooled variance Welch’s t-test 
Degrees of freedom 11 6.72 
t statistic 1.8436 1.9568 
p-value (one-tailed) 0.0462 0.0465 
p-value (two-tailed) 0.0923 0.0930 

 
According to the dichotomous interpretation of evidence based on whether or not a p-value crosses 
the conventional 0.05 threshold for statistical significance, the estimated p-values from both of the 
two-tailed t-tests suggested that, at the 95% level, the samples afford no significant evidence in 
favor of either manufacturer over the other.  On the other hand, the one-tailed t-tests at the 95% 
level barely suggest significance.  It seems that the t-tests fail to extract evidence that is already 
clear to our unaided common sense that we should prefer manufacturer B. 
 The estimated p-value from a t-test depends on the sample sizes, or degrees of freedom.  
For this example, the p-values would be smaller if the sample sizes were greater than 9 and 4 for 
manufacturer A and B respectively.  However, the mean effect size 𝑥̅஺,஽ − 𝑥̅஻,஽, which is a true 
measure of scientific significance, does not depends on the sample sizes.  While we certainly prefer 
large samples when making scientific inference, our decision should not be made based on the p-
value that varies with the sample size. 
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6.2. The Bayesian analyses 
 
In the Bayesian analysis of Jaynes (1976), the location parameters, i.e. the unknown mean lifetime 
of manufacturer A’s and manufacturer B’s components, are treated as random variables and are 
denoted by a and b respectively.  Jaynes (1976) calculated the probability that b>a, conditioned 
on all available data.  That is 
 
 Pr(𝑏 > 𝑎) = ∫ 𝑑𝑎

ஶ

ିஶ
∫ 𝑝(𝑎)𝑝(𝑏)

ஶ

௔
𝑑𝑏               (17) 

where 𝑝(𝑎)  is the posterior distribution of a, based on the sample of n=9 items supplied by 
manufacturer A, and 𝑝(𝑏)  is the posterior distribution of b, based on the sample of n=4 items 
supplied by manufacturer B.  By using the Jeffreys’ prior, Jaynes (1976) found that 𝑝(𝑎) and 𝑝(𝑏) 
are the scaled and shifted t-distributions.  The integration of Eq. (17) gives a probability of 92.0% 
or odds of 11.5:1 that manufacturer B’s components have a greater mean lifetime, which conforms 
to the indication of common sense (Jaynes 1976). 
 However, the estimated probability Pr(𝑏 > 𝑎) with Eq. (17) may be questionable because 
of two issues in the Bayesian formulation for this example.  The first problem is the use of the 
Jeffreys’ prior.  In fact, there has been a debate on the validity of Jeffreys priors among Bayesians.  
For example, D’Agostini (1998), a leading proponent of Bayesian methods in particle physics, 
argued that “…it is rarely the case that in physical situations the status of prior knowledge is 
equivalent to that expressed by the Jeffreys priors, …”  D’Agostini further stated, “The default use 
of Jeffreys priors is clearly unjustified, especially in inferring the parameters of the normal 
distribution, ….”  Moreover, Huang (2018b) revealed that the scaled and shifted t-distribution is a 
distorted sampling distribution due to the Bayesian ‘transformation’.   

The second problem is that the traditional Bayes Theorem: posterior ∝ prior ×
 likelihood, is actually flawed.  In fact, the traditional Bayes Theorem is a reformulated form of 
the original Bayes Theorem.  Huang (2022) demonstrated that it is faulty to use likelihood function 
in the reformulated Bayes Theorem.  This flaw is the root cause of the inherent bias of the 
traditional Bayesian method. 

These two problems can be solved with a new modified Bayesian method that is derived 
based on the law of aggregation of information (LAI) and the rule of transformation between the 
frequentist view and Bayesian view (Huang 2022).  According to the modified Bayesian method, 
the posterior distribution of a is written as 

 
 𝑝(𝑎) = 𝑁(𝑎|𝑥̅஺,஽ ,

௦ಲ,ವ

௖ర,೙ಲ√௡ಲ
)               (18) 

where 𝑐ସ,௡ಲ
=0.9693 at nA=9, 𝑥̅஺,஽ = 42 hours, and 𝑠஺,஽ = 7.48 hours. 

The posterior distribution of b is written as 
 

 𝑝(𝑏) = 𝑁(𝑏|𝑥̅஻,஽ ,
௦ಳ,ವ

௖ర,೙ಳ√௡ಳ
)               (19) 

where 𝑐ସ,௡ಳ
=0.9213 at nB=4, 𝑥̅஻,஽ = 50 hours, and 𝑠஻,஽ = 6.87 hours. 

 Substituing Eqs. (18) and (19) into Eq. (17) yields a probability of 96.7% or odds of 29.1:1 
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that manufacturer B’s components have a greater mean lifetime. 
 It is important to note that, the estimated probability Pr(𝑏 > 𝑎) or odds from both of the 
above Bayesian analyses is only for the mean lifetime of the samples with n=9 and 4 for 
manufacturer A and B respectively; it is not for the lifetime of individual units.  The Bayesian 
analysis depends on the sample sizes.  The estimated probability Pr(𝑏 > 𝑎) or odds would be large 
if the sample sizes were large.  

It should be remarked that the two-sample one-tailed t-test is essentially equivalent to 
Jaynes’ Bayesian analysis.  According to the discussion in subsection 4.2,  (1 − 𝑝୭୬ୣି୲ୟ୧୪ୣୢ) ≈
Pr (𝑏 > 𝑎).  The one-tailed t-test using the pooled variance gives a p-value of 0.0462, leading to 
(1 − 𝑝୭୬ୣି୲ୟ୧୪ୣୢ) × 100 = 95.38%.  This result is comparable to Jaynes’ Bayesian analysis result 
Pr(𝑏 > 𝑎) = 92%.  
 
6.3. The SCI analysis 
 
The signal content index (SCI) for the difference between two sample means is defined as (Huang 
2020a) 
 
 SCI = 1 −

ଵ

(௫̅భି௫̅మ)మ
ቀ

(௦భ)మ

௡భ
+

(௦మ)మ

௡మ
ቁ               (20) 

 
For this example, 1 → 𝐴 and 2 → 𝐵.  Substituting the values that nA=9, 𝑥̅஺,஽ = 42 hours, 𝑠஺,஽ =

7.48 hours, nB=4, 𝑥̅஻,஽ = 50 hours, and 𝑠஻,஽ = 6.87 hours into Eq. (18) gives SCI=0.74.  This SCI 
value suggests that there is substantial difference between the mean lifetimes of two manufactures’ 
components.   

In addition, Huang (2020a) defines the sample signal energy (SSE) as 
 
 SSE = 𝑥̅ଶ −

௦మ

௡
              (21) 

For this example, the mean lifetime is the signal.  The SSE values are 1758 and 2490 (hour)2 for 
manufacturer A’s and B’s sample means respectively.  That is, manufacturer B’s sample mean 
contains significantly greater signal energy than manufacturer A’s sample mean.  Based on the 
SCI value and the SSE values, we should have a preference of manufacturer B.  
 However, like the t-tests and the Bayesian analyses, the SCI analysis also depends on the 
sample sizes.  The SCI approaches unity when the sample sizes are very large even if the mean 
effect size 𝑥̅ଵ − 𝑥̅ଶ is small and insignificant.  That is, the SCI is not an absolute measure of the 
effect size.  Therefore, a scientific inference must consider both the SCI and SSE values. 
 
6.4. The analysis of common language (CL) effect size  
 
According to Eq. (14), the z-score 𝑧େ୐ is calculated as 
 
 
 𝑧େ୐ =

௫̅ಳ,ವି௫̅ಲ,ವ

ට௦ಳ,ವ
మ ା௦ಲ,ವ

మ
=

ହ଴ିସଶ

√଺.଼଻మା଻.଼ସమ
= 0.808              (22) 
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The resulting CL is 0.791 (or 79.1%).  That is, the lifetime of manufacturer B’s components 
(individual units) is greater than the lifetime of manufacturer A’s components (individual units) 
with a probability of 79.1% or at an odds of 3.8:1.  According to this CL analysis, we should have 
a preference of manufacturer B. 
 
6.5. The exceedance probability (EP) analysis 
 
It is important to note again that all of the above analyses, except for the CL analysis, are for the 
difference between the two sample means: two mean lifetimes of the tested units.  That is, these 
analyses deal with the problem (b) of two-sample tests.  Indeed, t-tests, Bayesian analyses, and 
SCI analysis, apply to the problem (b) of two-sample tests only; they are not applicable to the 
problem (a) of two-sample tests.  However, this example should be considered as a problem (a) of 
two-sample tests because we are more concerned about the lifetime of all individual units in a 
group than the mean lifetime of the group.  Therefore, we conducted EP analysis for the effect size 
∆𝑋 in this study. 

Under the assumption of normality, the estimated PDF of manufacturer A’s lifetime 𝑋஺ 
(individual units) is written as 

 
 𝑝(𝑋஺) = 𝑁(𝑥̅஺,஽ ,

௦ಲ,ವ

௖ర,೙ಲ

)               (23) 

The estimated PDF of manufacturer B’s lifetime 𝑋஻ (individual units) is written as 
 

 𝑝(𝑋஻) = 𝑁(𝑥̅஻,஽ ,
௦ಳ,ವ

௖ర,೙ಳ

)               (24) 

Let ΔX =𝑋஻ − 𝑋஺.  The PDF of ΔX is estimated as 
 
 

𝑝(∆𝑋) = 𝑁 ൮൫𝑥̅஻,஽ − 𝑥̅஺,஽൯, ඨ൬
௦ಲ,ವ

௖ర,೙ಲ

൰
ଶ

+ ൬
௦ಳ,ವ

௖ర,೙ಳ

൰
ଶ

൲ = 𝑁(8,10.44)               

(25) 

 
The probability that manufacturer B’s components (individual units) has a greater lifetime, i.e. 
𝑋஻ > 𝑋஺, is calculated as 
 
 EP௔(0) = Pr(𝑋஻ > 𝑋஺) = 77.8%               (26) 

In other words, the lifetime of manufacturer B’s components (individual units) is greater than the 
lifetime of manufacturer A’s components (individual units) at an odds of 3.5:1. 

Note that EP௔(0) = Pr(𝑋஻ > 𝑋஺) = 77.8%  and CL=79.1%.  The CL value is slightly 
greater than the EP௔(0) = Pr(𝑋஻ > 𝑋஺)  value.  This is because the CL calculation does not 
account for the negative bias of the sample standard deviation when the sample size is small. 

Moreover, ∆𝑥ହ଴ = 8 hours and ∆𝑥଻ହ = 0.958 hours.  That is, the lifetime of manufacturer 
B’s components (individual units) is greater than the lifetime of manufacturer A’s components 
(individual units) by 8 hours at the odds of 1:1, and by 0.958 hours at the odds of 3:1.  Thus, we 
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should have a preference of manufacturer B. 
We also calculated the relative mean effect size (RMES) according to Eq. (12).  The RMES 

is 17.79%, which indicates that the mean lifetime of manufacturer B’s components is greater than 
the mean lifetime of manufacturer A’s component by 17.79%.  This RMES value is considered to 
be scientifically or practically significant. 

 
7. Calculating 𝐄𝐏𝒂(𝟎) for the case study example with non-normal 

distributions 
 
We have pointed out in section 4 that EP analysis does not require the assumption of normality.  
The PDFs of X1 and X2 in a two-sample test can be any type of distribution.  If X1 and/or X2 are not 
normally distributed, however, an analytical solution of 𝑝(∆𝑋)  may not be available so that a 
numerical procedure may be required.  Two numerical methods may be used.  One is the well-
known Monte Carlo simulation (MCS) and the other is probability domain simulation (PDS).  
Detailed discussion on PDS and a comparison with its counterpart: sampling-domain simulation, 
i.e. MCS, can be found in Huang and Fergen (1995).  Appendix briefly describes the PDS for a 
two-dimensional problem.  
 In this section, we consider the case study example again, but assume that the lifetime of a 
manufacturer’s component follows a raised cosine distribution.  We present the PDS results for 
EP௔(0) to demonstrate the effectiveness of PDS for the EP analysis with non-normal distributions. 
 According to Castrup (2004), the PDF of a raised cosine distribution centered at zero is 
written as 
 
 
 𝑝(𝑥) = ቊ

ଵ

ଶఈ
ቂ1 + cos

గ௫

ఈ
ቃ                      − 𝛼 ≤ 𝑥 < +𝛼                 

0                                      elsewhere
              

(27) 

 
where 𝛼 is the bounding limit. 
 The standard deviation, denoted by σ, of the raised cosine distribution is written as (Castrup 
2004) 
 
 
 𝜎 =

ఈ

√ଷ
ට1 −

଺

గమ
= 0.3615𝛼              

(28) 

 
Castrup (2004) discussed four candidate distributions with finite bounding limits for a measurand 
(or for a calibration error): uniform, triangular, quadratic, and raised cosine.  Castrup (2004) 
commented that the uniform distribution is not appropriate because it is not a physically credible 
distribution.  The triangular distribution is not appropriate either because it displays abrupt 
transitions at the bounding limits and at the center, which are physically unrealistic.  The quadratic 
distribution does not have a discontinuity at the center, but it rises abruptly at the bounding limits, 
which diminishes its physical validity.  The raised cosine distribution overcomes all shortcomings 
of the other three distributions; it exhibits a central tendency and can be determined from minimum 
containment limits (Castrup 2004).  Moreover, the shape of a raised cosine distribution looks 
similar to the shape of a normal distribution except that it has finite bounding limits.  In fact, a 
raised cosine distribution is more reasonable than a normal distribution for describing a measurand 
(or calibration error) with finite bounding limits.  A normal distribution has infinitely long tails 
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that are physically unrealistic for the component lifetime of a manufacturer because the component 
lifetime must have a lower and an upper limit due to the quality control program at the 
manufacturer.  However, a raised cosine distribution is not as mathematically convenient as a 
normal distribution; it may not lead to an analytical solution in the EP analysis. 

The lifetime of manufacturer A’s component is centered at x=𝑥̅஺,஽ and is within the interval 
between the lower limit 𝑥̅஺,஽ − 𝛼஺ and the upper limit 𝑥̅஺,஽ + 𝛼஺.  According to Eq. (27), its PDF 
can be written as 
 
 
 𝑝(𝑥஺) = ቊ

ଵ

ଶఈಲ
ቂ1 + cos

గ(௫ಲି௫̅ಲ,ವ)

ఈಲ
ቃ      ൫𝑥̅஺,஽ − 𝛼஺൯ ≤ 𝑥஺ < (𝑥̅஺,஽ + 𝛼஺)                 

0                                                         elsewhere
             

(29) 

 
In order to be compatible with the normal distribution, we assume that 𝜎஺ = 𝑠஺,஽/𝑐ସ .  Thus, 
𝛼஺ = 𝑠஺,஽/(0.3615c4)=21.35 hours.  
 Similarly, the PDF for the lifetime of manufacturer B’s component is centered at 
x=𝑥̅஻,஽with the lower and upper limits 𝑥̅஻,஽ − 𝛼஻ and 𝑥̅஻,஽ + 𝛼஻ respectively.  It is written as 
 
 
 𝑝(𝑥஻) = ቊ

ଵ

ଶఈಳ
ቂ1 + cos

గ(௫ಳି௫̅ಳ,ವ)

ఈಳ
ቃ      ൫𝑥̅஻,஽ − 𝛼஻൯ ≤ 𝑥஻ < (𝑥̅஻,஽ + 𝛼஻)                 

0                                                          elsewhere
             

(30) 

 
where 𝛼஻ = 𝑠஻,஽/(0.3615c4)=19.46 hours.  

Table 2 summaries the parameter values for the raised cosine distributions of the lifetime 
of two manufacturers’ components. 
 
Table 2. Parameter values for the raised cosine distributions (units: hours) 
Manufacturer Center Bounding limit Lower limit Upper limit 
A 42 21.35 20.65 63.35 
B 50 19.46 30.54 69.46 

 
We implemented the two-dimensional PDS using an Excel spreadsheet.  The range of x is divided 
into m=100 intervals.  Thus, Δ𝑥஺ = 0.4270 and Δ𝑥஻ = 0.3892.   
 We are interested in EP௔(0) = Pr(∆𝑋 > 0) = Pr(𝑋஻ > 𝑋஺)  only.  The resulting EP௔(0) 
from the PDS with the raised cosine distributions is 77.1%.  This value is compatible with 
EP௔(0) = 77.8% obtained from the analytical solution with the normal distributions. 
 
8. Conclusion and recommendation 
 
The proposed exceedance probability (EP) analysis provides a probabilistic assessment of the 
effect size (e.g. the difference between two samples or two means).  The meaning of EP is clear 
without any confusion; a person even not trained in statistics can understand it.  EP analysis, in 
conjunction with the proposed relative mean effect size (RMES), provides the basis for scientific 
inference. 

The EP analysis for the problem (a) of two-sample tests under the assumption of normality 
is essentially the same as the CL (common language effect size) analysis.  The EP analysis for the 
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problem (b) of two-sample tests is essentially the same as a one-tailed z-test when the population 
standard deviations are known; it is approximately equal to the one-tailed t-test.  However, EP 
analysis is more straightforward, more informative, and easier to understand than the t-test and the 
associated p-value.  Moreover, unlike the CL analysis, z-tests, or t-tests, EP analysis does not 
require the assumption of normality.  In principle, EP analysis can be performed on any type of 
distribution.  In addition, the calculation of EP does not need to assume equal variance or use a 
pooled variance.  Therefore, EP analysis has fewer restrictions or fewer limitations, and more 
accurate (or has less uncertainty) than either the CL analysis or t-tests. 

In the author’s opinion, problem (a) is more meaningful than problem (b) in many real-
world applications.  However, the t-test and the associated p-value are applicable to problem (b) 
only.  The p-value, which depends on the sample sizes, is misleading in statistical and scientific 
inference, because “significance”, in terms of the conventional 0.05 threshold, can be always 
achieved with a sufficiently large sample, even if the absolute difference between two means (i.e. 
the effect size) or RMES is very small and meaningless.  Therefore, we suggest considering 
problem (a) whenever it applies and always reporting RMES.  We do not recommend any threshold 
in EP analysis.  We even do not recommend using the term “statistical significance” in EP analysis. 

When dealing with non-normal distributions, two numerical methods may be used for EP 
analysis: Monte Carlo simulation (MCS) and probability domain simulation (PDS).  The case 
study of preference between two manufacturers has demonstrated the effectiveness of PDS with 
non-normal distributions. 
 
Appendix: Probability domain simulation (PDS) 
 
Consider a random quantity Z that relates to a random vector X in a general form 
 
 
 

𝑍 = 𝑓(𝐗)              (31) 

where 𝐗 = (𝑋ଵ, 𝑋ଶ, … … 𝑋௡, ) and n is the number of input quantities. n is also referred to as the 
dimension of the problem.  

PDS is based on the following proposition: for any value z of Z, the probability of P(Z=z) 
is equal to the sum of all probabilities that all [x] of [X] satisfy 𝑧 = 𝑓(𝐱) (Huang and Fergen 1995).  
This proposition is an extension of the proposition for two special cases: 𝑍 = 𝑋 + 𝑌 and 𝑍 = 𝑋/𝑌 
discussed in Berman (1969).  The proposition can be demonstrated with the law of total probability 
and a rule for combining the number of ways in which events can occur (e.g. Huntsberger 1970).   
 We illustrate the algorithm of PDS, based on the proposition, for a two-dimensional 
problem 𝐗 = (𝑋ଵ, 𝑋ଶ)  and 𝑍 = 𝑓(𝑋ଵ, 𝑋ଶ) .  We assume that 𝑋ଵ and 𝑋ଶ  are independent random 
variables having PDFs 𝑝ଵ(𝑥ଵ) and 𝑝ଶ(𝑥ଶ) respectively.  The ranges of 𝑥ଵ and 𝑥ଶ are divided into 
m intervals of Δ𝑥ଵ and Δ𝑥ଶ, respectively.  Let 𝑥ଵ,௜

ᇱ  denote the realization of 𝑋ଵ within the interval 

(𝑥ଵ,௜ −
୼௫భ

ଶ
, 𝑥ଵ,௜ +

୼௫భ

ଶ
) , and analogously for 𝑥ଶ,௝

ᇱ  .  The output of 𝑍 = 𝑓(𝑋ଵ, 𝑋ଶ)  at 𝑋ଵ = 𝑥ଵ,௜
ᇱ   and 

𝑋ଶ = 𝑥ଶ,௝
ᇱ , denoted by  𝑧௜,௝, is written as 

 
 
 

𝑧௜,௝  = 𝑓(𝑥ଵ,௜
ᇱ , 𝑥ଶ,௝

ᇱ ) (32) 

The occurrence probability of 𝑧௜,௝ is the probability that 𝑥ଵ,௜
ᇱ  and 𝑥ଶ,௝

ᇱ  occur simultaneously.  It is 
written as 
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𝑃൫𝑧௜,௝൯ = 𝑃ଵ൫𝑥ଵ,௜
ᇱ ൯𝑃ଶ൫𝑥ଶ,௝

ᇱ ൯ = 𝑝ଵ(𝑥ଵ,௜
ᇱ )𝑝ଶ(𝑥ଶ,௝

ᇱ )Δ𝑥ଵΔ𝑥ଶ (33) 

Both Eqs. (32) and (33) need to be implemented for all combinations of 𝑥ଵ,௜
ᇱ  and 𝑥ଶ,௝

ᇱ  (i, j =1, 2, 
3, …m).  This will yields an m×m matrix of z and an m×m matrix of the associated probability P.  
The results need to be manipulated to obtain the PDF of Z or the exceedance probability (EP) of Z 
against a specified value.  To obtain the PDF of Z, the range of z is divided into a number of 
intervals of Δ𝑧.  Then, according to the proposition, the PDF of Z is estimated as 
 
 
 𝑝(𝑧௜) =

1

Δ𝑧
෍ 𝑃 ൤(𝑧௞ −

Δ𝑧

2
) ≤ 𝑧௜ < (𝑧௞ +

Δ𝑧

2
)൨

௞

 
(34) 

 
where 𝑧௞ = 𝑧௜,௝. 

The EP of Z against a specified value 𝑧௦ is estimated as  
 
 
 EP(𝑧௦) = ෍ 𝑃(𝑧௞ > 𝑧௦

௞

) = ෍ ෍ 𝑃(𝑧௜,௝ > 𝑧௦)

௠

௝ୀଵ

௠

௜ୀଵ

 
(35) 

 
A two-dimensional PDS can be easily implemented using an Excel spreadsheet.  A high-
dimensional (n>2) PDS may require a computer program. 

For the case study example considered in section 6 with the PDS, 𝐗 = (𝑋஺, 𝑋஻), and 𝑍 =
𝑓(𝑋஺, 𝑋஻) = ∆𝑋 = 𝑋஻ − 𝑋஺.  It is a two-dimensional problem. 

In addition, it should be mentioned that the PDS algorithm naturally complies with the 
discretized formula of the Bayesian method (Huang 2022).  The Markov Chain Monte Carlo 
(MCMC) sampling is often employed to generate Bayesian posterior distributions.  However, the 
MCMC method in general associates with computational difficulty and lack of transparency.  PDS 
might be an effective alternative to the MCMC method. 
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