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 ABSTRACT This research aims to analyze data coming from step stress life testing experiments where 
the stress level is incremented at a preset time to obtain failure data faster. To analyze step stress data, a 
model that extrapolates the information attained from the accelerated tests to normal conditions needs to 
be fit to the life test data. We used the Cumulative Exposure Model (CEM) to model simple step stress 
lognormal life test data where hybrid censoring is present and applied the maximum likelihood estimation 
method to find the point and interval estimates of the parameters. Bootstrap intervals (bootstrap-t 
intervals and percentile intervals) were also constructed. We then performed a simulation study to 
assess the proposed methods of estimation under different hybrid censoring schemes. The Bias and MSE 
of the maximum likelihood estimators (MLEs) along with the coverage probability and average lengths 
of the corresponding confidence intervals were investigated. Finally, an illustrative example has been 
used to demonstrate the application of the methods discussed in this paper. 
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1. Introduction 

Owing to the competing nature of the market today, the manufacturers are pressured to produce and 

develop higher technology products that are both productive and reliable (Meeker W Q, 1998). It is 

difficult to test the reliability and performance of products that have a long mean lifetime to failure 

under normal circumstances. Instead, accelerated tests which run at stress higher than in normal 

conditions are used to obtain information on reliability in a limited time. One type of accelerated 

testing is step stress accelerated life testing (SSALT) known as overstressing testing where the product 

is exposed to higher successive stress levels at specified times (Nelson, 2004). In simple step stress  

accelerated life testing (Simple SSALT), the product is subjected to two stress levels. Balakrishnan 

and Kundu (2007) considered a simple step stress model with exponentially distributed lifetimes in 

the presence of type I censoring. Balakrishnan et al. (2007) considered a simple step stress model for 

exponentially distributed lifetimes with type II censoring. Balakrishnan and Xie (2007) considered a 

cumulative exposure model for simple step stress exponentially distributed life test data with hybrid 

censoring. Balakrishnan et al.(2009) considered a cumulative exposure model where the life test data 

are step stress lognormally distributed with the presence of type-I censoring. Lin and Chou (2012) 

considered a cumulative exposure model for  k step stress lognormally distributed lifetimes when the 

data is type-I censored. Samanta et al. (2019) considered a step stress exponentially distributed life 

test model with two stress levels. In this paper we consider simple step stress life testing experiment 

where the lifetimes are lognormally distributed with the presence of hybrid censoring. 

2. The Cumulative Exposure Lognormal Model 

According to Nelson (1980), the CEM mainly assumes that the residual lifetime of the testing units is 
dependent on the accumulative exposure despite how it  came to be. The CEM is the most widely used 
model for analyzing SSALT data. 
 The CDF of CEM for simple step stress data is given by: 
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Where τ is the stress changing time, *τ =   1
2 1F F t  is the equivalent testing time of   under a higher 

stress level,  1F t  is the distribution of the units’ lifetime  before changing the stress and  2F t  is the 

distribution of the lifetime after changing the stress. 
For a cumulative exposure lognormal model with two stress levels, the lifetimes of the units follow a 

lognormal distribution with parameters  1,   for the initial stress level and   2,   after the stress 

has been increased. The pdf of the lognormal distribution is given by: 
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The pdf of the lognormal simple step stress model is given by: 
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The CDF is given by: 
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The  CDF of the lognormal simple step stress model with stress changing time of 30 has been shown 
in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this paper, we consider the simple step stress lognormal model where hybrid censoring is present 
in the data. In hybrid censoring, the experiment terminates if the predetermined experiment time has 
been reached before r failures has occurred or if r failures has occurred before reaching the 
predetermined experiment time (Balakrishnan, N. & Kundu, D., 2013). We present the maximum 
likelihood method for estimating the model parameters in section 3. 
 

3. Likelihood Estimation of Model Parameters 

Let 1N  be the number of the units that failed in the life testing experiment at the initial stress level, 2N  

be the number of  failures at the higher stress level and m be the total number of failures in the 
experiment. The likelihood function for the simple step stress lognormal data with hybrid censoring 
can be constructed by considering two cases: 

Case 1:   *
1 1, rT min t t t  , where 1 2N N r   

The observed time to failure of the n units in this case will be in the form: 

 
1 11: 2: : 1: : 1n n N n N n m nt t t t t t        (3.1) 

The likelihood function is constructed as: 
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Substituting the pdf and CDF of the step stress model: 

Figure 1. Cumulative Exposure lognormal model for   
                simple step stress data 
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Case 2:     
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Substituting the pdf and CDF of the step stress model: 
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4. Bootstrap Intervals 

Bootstrapping is a computer intensive non-parametric method used to make statistical inference about 
the parameter of interest. Bootstrap sampling can also be performed parametrically when some 
knowledge about the distribution of the population is available. To estimate the parameter of interest 
by bootstrap sampling, B samples of size n are drawn from the parametric estimate of the population 
and the statistic of interest is evaluated for all the bootstrap samples (Efron, B. & Tibshirani, R,1998).   

The parametric bootstrap procedures can be used as a replacement for the mathematical 
approximations that are difficult to compute and obtain by the means of Monte Carlo simulation. These 
procedures are used when the given data has a specified distribution, and if the chosen distribution of 
the given data is the right distribution, the parametric bootstrap procedures tend to give good 
confidence intervals even if the samples are of small sizes. There are several bootstrap confidence 
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intervals that have been proposed so far. In our study we will construct two bootstrap intervals, the 
bootstrap-t interval, and the percentile interval. 

The bootstrap-t interval: In the bootstrap-t method, we compute the statistic 
*

*

ˆ

*ˆ ˆ
t

s


 
  for each 

generated bootstrap sample where *̂  is the value of the statistic ˆ  evaluated for the bootstrap 

sample and *̂s
  is the standard error of the bootstrap sample. The bootstrap-t interval is given by: 

  ˆ1 ˆ
ˆ ˆ,q s q s  
     

Where  1q    and q   are the   1   &   percentiles of *t  respectively. 

The percentile interval: The percentile interval is given by: 

  1,q q   

 

5. Simulation Study 

A Monte Carlo simulation has been performed where different sample sizes n, different predetermined 
number of failures r, and different stress changing time have been considered. The simulation results 
are based on 2000 simulated samples and 1000 bootstrap samples. The different choices of hybrid 
censoring schemes with different sample sizes and stress changing times are presented in table 1. The 
Bias, MSE, average length and coverage probabilities which are used to assess the performance of the 
point and interval estimates of the model parameters are displayed in tables 2 and 3 respectively.  

 

Table 1. Different hybrid censoring schemes 
Scheme N r ( 1τ,t ) 

1 30 
1r 15, 2 r 23, 3 r 27 (30,60). (50,80) 

    
2 50 

1r 25, 2r 38, 3 r 45 (30,60), (50,80) 

    
3 80 

1r 40, 2r 60, 3 r 72 (30,60), (50,80) 
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Table 2. Bias and MSE of the MLE of the parameters  for different censoring schemes 

N r ( 1τ,t ) Bias MSE 

   
1μ̂  2μ̂  σ̂  1μ̂  2μ̂  σ̂ 

30 15 (30,60) -0.145 -0.013 -0.247 0.815 0.521 0.621 
 23  -0.042 0.094 -0.140 0.748 0.414 0.474 
 27   -0.021 0.100 -0.116 0.725 0.408 0.446 

50 25   -0.082 0.013 -0.149 0.511 0.307 0.380 
 38   -0.016 0.075 -0.082 0.441 0.253 0.269 
 45   -0.002 0.079 -0.068 0.431 0.249 0.257 

80 40   -0.045 0.013 -0.098 0.341 0.182 0.231 
 60   -0.009 0.047 -0.060 0.278 0.151 0.159 
 72   -0.0001 0.050 -0.050 0.270 0.149 0.153 

30 15 (50,80) -0.035 -0.011 -0.177 0.638 0.594 0.548 
 23  -0.020 0.100 -0.128 0.667 0.447 0.459 
 27   -0.003 0.107 -0.109 0.653 0.440 0.438 

50 25   -0.026 0.009 -0.108 0.410 0.357 0.328 
 38   -0.0003 0.078 -0.074 0.397 0.279 0.263 
 45   0.010 0.083 -0.062 0.389 0.275 0.254 

80 40   -0.005 0.001 -0.064 0.273 0.216 0.203 
 60   0.010 0.042 -0.046 0.243 0.169 0.156 
 72   0.017 0.046 -0.037 0.238 0.167 0.152 
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    Table 3. Average length and coverage probability for the  intervals 

N R 1τ,t )  Approx. CI Bootstrap-t CI Percentile CI 

    1μ  2μ  σ 1μ  2μ  Σ  1μ  2μ  σ 

30 15  (30,6) E.L 3.580 2.693 2.876 4.109 3.193 3.964 3.295 2.946 2.750 
   C.P 0.892 0.934 0.862 0.955 0.957 0.957 0.936 0.932 0.853 
 23  E.L 3.307 2.474 2.530 3.824 2.590 3.202 3.390 2.559 2.541 
   C.P 0.917 0.936 0.900 0.943 0.947 0.951 .919 .929 .882 
 27   E.L 3.312 2.486 2.522 3.573 2.571 2.877 3.394 2.549 2.510 
   C.P 0.924 0.938 0.909 0.937 0.950 0.945 0.93 0.93 0.908 

50 25   E.L 2.858 2.104 2.322 2.969 2.266 2.658 2.661 2.210 2.208 
   C.P 0.918 0.939 0.896 0.926 0.947 0.935 0.921 0.938 0.872 
 38   E.L 2.574 1.925 1.978 2.826 1.946 2.118 2.586 1.947 1.970 
   C.P 0.933 0.945 0.917 0.946 0.941 0.933 0.927 0.935 0.898 
 45   E.L 2.574 1.930 1.970 2.703 1.925 2.047 2.570 1.940 1.938 
   C.P 0.939 0.946 0.931 0.947 0.942 0.933 0.937 0.936 0.915 

80 40   E.L 2.293 1.668 1.874 2.442 1.731 2.029 2.206 1.713 1.820 
   C.P 0.930 0.951 0.922 0.948 0.945 0.945 0.944 0.944 0.9 
 60   E.L 2.031 1.521 1.563 2.098 1.639 1.662 2.051 1.538 1.576 
   C.P 0.936 0.946 0.933 0.948 0.957 0.939 0.946 0.940 0.921 
 72   E.L 2.028 1.523 1.555 2.105 1.618 1.608 2.034 1.534 1.549 
   C.P 0.942 0.946 0.940 0.953 0.957 0.942 0.956 0.941 0.928 

30 15   50,80  E.L 3.302 2.937 2.783 3.401 3.583 3.910 2.918 3.238 2.668 

   C.P 0.938 0.929 0.870 0.969 0.959 0.970 0.982 0.934 0.889 
 23  E.L 3.066 2.561 2.485 3.368 2.803 3.240 3.109 2.663 2.480 
   C.P 0.922 0.926 0.898 0.944 0.955 0.963 0.927 0.924 0.893 
 27   E.L 3.072 2.570 2.480 3.227 2.727 3.064 3.120 2.637 2.465 
   C.P 0.925 0.929 0.908 0.941 0.952 0.96 0.938 0.928 0.915 

50 25   E.L 2.599 2.279 2.216 2.511 2.606 2.472 2.361 2.491 2.114 
   C.P 0.932 0.940 0.901 0.936 0.961 0.941 0.953 0.938 0.895 
 38   E.L 2.390 1.992 1.946 2.406 2.046 2.037 2.390 2.026 1.932 
   C.P 0.930 0.936 0.915 0.926 0.94 0.925 0.926 0.934 0.903 
 45   E.L 2.392 1.996 1.940 2.376 2.021 1.989 2.382 2.014 1.912 
   C.P 0.931 0.941 0.921 0.935 0.939 0.925 0.938 0.939 0.914 

80 40   E.L 2.082 1.783 1.785 2.170 1.887 1.953 1.962 1.905 1.723 
   C.P 0.947 0.948 0.928 0.958 0.952 0.953 0.951 0.945 0.915 
 60   E.L 1.894 1.577 1.545 1.975 1.697 1.616 1.896 1.594 1.545 
   C.P 0.944 0.938 0.934 0.956 0.961 0.949 0.946 0.938 0.922 
 72   E.L 1.892 1.579 1.538 1.936 1.677 1.611 1.885 1.586 1.526 
   C.P 0.944 0.938 0.939 0.954 0.959 0.956 0.955 0.936 0.931 
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6. Simulation Results    

From table 2, it is noticed that the bias decreases as the sample size n and the predetermined number 

of failures r increase, however the bias for 2μ̂  increases slightly with increasing the predetermined 

number of failures r. The MSE decreases with increasing the sample size n and r. 

Considering the average interval length shown in table 3,  it is apparent that the expected lengths of 
the three confidence intervals decrease as the sample size n and predetermined number of failures r 
increase however, the bootstrap-t interval has the highest average length compared to the approximate 
and percentile CIs. According to the coverage probability presented in table 3, it can be seen that the 
bootstrap-t interval gives the best results for all the considered sample sizes compared to the 
approximate and percentile confidence intervals . For good coverage probabilities, the approximate 
and percentile confidence intervals can be used when the sample size is at least 80.  

 

7. An illustrative example  

A step stress lognormal sample of size 30 with hybrid censoring was generated where the 
predetermined number of failures was chosen to be 15 with stress changing time of 30 and experiment 

time of   *
1 15T min t ,60 . The MLEs of the model parameters  and their corresponding standard 

errors were obtained along with the hessian and variance-covariance matrix. Different confidence 
intervals  and their corresponding lengths were found.   

The following data are generated from a lognormal simple step stress sample of size 30 with τ=30 and  

fixed time 1 60 t  with true parameter values 1   200log , 2   5log  and  3  .    

 

Table 4. Simulated data from the cumulative exposure lognormal model 

Lifetimes 
 

Under normal stress level 
0.5259    11.2563    12.0893    21.9279  
 
Under higher stress level  
30.0079     30.0537    30.9522    31.13089     31.3562      32.0215      32.15492     32.7659       32.8116    
33.8831    35.6947     36.1690    36.4736       43.93030    48.6155      49.9542       52.2285       61.9079    
68.0899   157.7506    158.6676  223.0157     432.5115    1338.9093  3101.1047   3276.2830 

 

.  
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       The MLEs for the model parameters and their corresponding standard errors are given in Tble 5: 
 

Table 5. Maximum likelihood estimators of the cumulative exposure lognormal model parameters 

 1̂   2̂   ̂  

6.553779 
 

1.869605 
 

2.870388 
 

  1SE μ̂    2SE μ̂    SE ̂  

1.995996 
 

0.4186727 
 

0.8634164 
 

 

The hessian matrix was found as below: 

 

1.8111902 0.9171184 2.1090687

0.9171184 2.9909645 0.6566688

2.1090687 0.6566688 3.6810780

  
  
  

 

The variance-covariance matrix was derived by finding the inverse of the hessian matrix and is 
given below: 

 

1.9959957 .3756656 1.0765879

.3756656 .4186727 .1405500

1.0765879 .1405500 .8634164

 
 
 
 
 

 

     The confidence intervals for the model parameters and their corresponding lengths are computed  

      and given in the following table: 

 

Table 6. Confidence intervals for the parameters of the cumulative lognormal model 

The length of the bootstrap-t confidence interval is the longest while percentile interval has the shortest 
length. 

 

 Approx. CI                Length      Bootstrap-t CI Length Percentile CI Length 
 

1  

(3.7847, 9.3228) 
 

5.5381 
 

(2.7867, 10.2372) 7.4505 
 

(4.3141, 8.8444)  4.5304 
 

 

2  

(0.6014, 3.1378) 
 

2.5364 
 

(0.4814, 3.4261) 2.9447 
 

(0.568, 3.0299)  2.4614 
 

 
  

(1.0492, 4.6916) 
 

3.6424 
 

(1.1578, 5.2226) 4.0649 
 

(1.092, 4.1651)  3.0731 
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8. Conclusion 

In this research, we considered step stress lognormal life test data with hybrid censoring where the 
cumulative exposure model has been fit to the data. The study’s main interest is finding good 
estimators for the model parameters. We obtained the maximum likelihood estimators numerically by 
using the nlm function in R since the likelihood equations for the lognormal distribution cannot be 
found explicitly. To study and examine the performance of the point and interval estimates of the 
model parameters, we performed a simulation study.  In terms of coverage probabilities, the bootstrap-
t interval gives the best results for all the considered sample sizes and thus can be used to estimate the 
model parameters for small and large sample sizes. The approximate and percentile confidence 
intervals can be used with large sample sizes.  
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