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ABSTRACT  
Attempts have been made to define new families of distributions that provide more flexibility for modelling 
data that is skewed in nature. In this work, we propose a new family of distributions called Marshall-Olkin-
odd power generalized Weibull (MO-OPGW-G) distribution based on the generator pioneered by Marshall 
and Olkin [20]. This new family of distributions allows for a flexible fit to real data from several fields, 
such as engineering, hydrology and survival analysis. The mathematical and statistical properties of these 
distributions are studied and its model parameters are obtained through the maximum likelihood method. 
We finally demonstrate the effectiveness of these models via simulation experiments and applications to 
COVID-19 daily deaths data sets.  

 
 Keywords: Marshall-Olkin-G, Maximum Likelihood Estimation, Power Generalized Weibull Distribution, 
Simulation. 

 
1  Introduction 

Statistical distributions are very useful when it comes to modeling real life data. However, some 
of the well known distributions have limitations and problems when it comes to modeling of 
heavy-tailed or highly skewed data. Thus, to deal with these problems, statisticians proposed 
techniques to develop new families of probability distributions in order to improve flexibility of 
classical distributions. Some examples of families of distributions in the literature are Gamma-G 
by Zografos and Balakrishnan [34], the extended generalized log-logistic family by Gleaton and 
Lynch [10], Kumaraswamy odd log-logistic family by Alizadeh et al. [2], Marshall-Olkin alpha 
power-G by Nassar et al. [25], the Lindley family of distributions by Cakmakyapan and Ozel [5], 
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the Odd Lindley-G family by Gomes-Silva et al. [9], power Lindley-G by Hassan and Nassr [12], 
the Topp Leone odd Lindley-G family of distributions by Reyad et al. [28], the Marshall-Olkin 
generalized-G by Yousof et al. [32], the Marshall-Olkin Generalized-G Poisson family of 
distributions by Korkmaz et al. [17], the Marshall-Olkin-Kumarswamy-G by Handique and 
Chakraborty [11] , the Marshall-Olkin Topp Leone-G by Khaleel et al. [15] and the new power 
generalized Weibull-G by Moakofi et al. [22] to mention a few. 
    The Marshall-Olkin transformation was applied to several well-known distributions including 
Weibull (Ghittany et al. [8], Zhang and Xie [33]). More recently, general results on the Marshall-
Olkin family of distributions were given by Barreto-Souza et al. [3]. Moakofi et al. [21] developed 
the Marshall-Olkin Lindley-Log-logistic distribution. Krishna et al. [16] established Marshall-
Olkin Fréchet distribution and its applications. Santos-Neto et al. [29] introduces a new class of 
models called the Marshall-Olkin extended Weibull family of distributions which defines at least 
twenty-one special models. Lepetu et al. [19] proposed the Marshall-Olkin Log-Logistic Extended 
Weibull distribution. Usman and Haq [30] studied the Marshall-Olkin extended inverted 
Kumaraswamy distribution and Javed et al. [13] developed the Marshall-Olkin Kappa distribution. 
    Marshall and Olkin [20], introduced a new distribution with cumulative distribution function 
(cdf) and probability density function (pdf) given by  

 𝐹 (𝑥; 𝛿, 𝜉) = 1 −
̅ ( ; )

̅( ; )
, (1) 

 and  

 𝑓 (𝑥; 𝛿, 𝜉) =
( ; )

̅( ; )
, (2) 

 respectively, where 𝛿 is the tilt parameter and 𝐺(𝑥; 𝜉) is the baseline cdf. The distribution with 
the exponential, Weibull and gamma distributions as baseline distributions is more flexible than 
the corresponding baseline distributions. 
  In a recent note, Moakofi et al. [23] developed the odd power generalized Weibull-G (OPGW-
G) distribution with cdf and pdf given by  

 𝐹 (𝑥; 𝛼, 𝛽, 𝜉) = 1 − exp 1 − 1 +
( ; )

( ; )
 (3) 

 and  

 𝑓 (𝑥; 𝛼, 𝛽, 𝜉) = 𝛼𝛽 1 +
( ; )

( ; )

( ; )

( ; )
 

 × exp 1 − 1 +
( ; )

( ; )

( ; )

( ( ; ))
, 

  respectively, for 𝛼, 𝛽 > 0 and parameter vector 𝜓. 

 
   The basic motivations for developing the MO-OPGW-G family of distributions are;   
• to construct and generate distributions with symmetric, left-skewed, right-skewed, reversed-J 
shapes;  
• to define special models that posseses various types of hazard rate functions including monotonic 
as well as non-monotonic shapes;  
• to provide better fits than other generated distributions under the same transformation;  
• to construct heavy-tailed distributions for modeling different real data sets;  
 • to make the kurtosis more flexible compared to that of the baseline distribution.  
   In this paper, we develop the new family of distributions, namely, the MO-OPGW-G family of 
distributions. In Section 2, we present the new generalized family of distributions, its density 
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expansion, sub-families, moments and moment generating function. Some special case are 
presented in Section 3. Structural properties including the distribution of order statistics, Rényi 
entropy and quantile function are presented in Section 4. In Section 5, we present the maximum 
likelihood estimates. Monte Carlo simulation study is conducted to examine the bias and mean 
square error of the maximum likelihood estimators for each parameter in Section 6. Applications 
of the proposed model to real data are given in Section 7, followed by concluding remarks.  

2  The Model and Some Properties 
We develop the MO-OPGW-G family of distributions using the generalization proposed by 
Marshall and Olkin [20], and taking the baseline distribution to be the OPGW-G distribution. 
The cdf, pdf and hazard rate function (hrf) of the MO-OPGW-G family of distributions are given 
by  

 𝐹 (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) =

( ; )

( ; )

( ; )

( ; )

, (4) 

 
 

 𝑓 (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) = 𝛿𝛼𝛽 1 +
( ; )

( ; )

( ; )

( ; )
 

 × exp 1 − 1 +
( ; )

( ; )

( ; )

( ( ; ))
  

 × 1 − 𝛿̅exp 1 − 1 +
( ; )

( ; )
, (5) 

 and  

 ℎ(𝑥) = 𝛿𝛼𝛽 1 +
( ; )

( ; )

( ; )

( ; )
 

 × exp 1 − 1 +
( ; )

( ; )

( ; )

( ( ; ))
 

 × 1 − 𝛿̅exp 1 − 1 +
( ; )

( ; )
 

 × 1 −

( ; )

( ; )

( ; )

( ; )

, (6) 

  respectively, for 𝛼, 𝛽, 𝛿 > 0, 𝛿̅ = 1 − 𝛿 and 𝜉 is a vector of parameters from the baseline 
distribution function G(.). 

 
2.1  Sub-Families  

In this subsection, some sub-families of the MO-OPGW-G family of distributions are presented.   
• When 𝛿 = 1,  we obtain the odd power generalized Weibull-G (OPGW-G) family of 
distributions (Moakofi et al. [23]) with the cdf  
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 𝐹(𝑥; 𝛼, 𝛽, 𝜉) = 1 − exp 1 − 1 +
( ; )

( ; )
, 

 for 𝛼, 𝛽 > 0, and parameter vector 𝜉. 
 
    • When 𝛽 = 1, we obtain the new family called Marshall-Olkin Odd Weibull-G (MO-

OW-G) family of distributions with the cdf  

 𝐹(𝑥; 𝛿, 𝛼, 𝜉) =

( ; )

( ; )

( ; )

( ; )

, 

 for 𝛼, 𝛿 > 0, and parameter vector 𝜉. 
 
    • When 𝛼 = 2, we obtain the new family of distributions with the cdf  

 𝐹(𝑥; 𝛿, 𝛽, 𝜉) =

( ; )

( ; )

( ; )

( ; )

, 

 for 𝛽, 𝛿 > 0, and parameter vector 𝜉. 
 

• If 𝛼 = 1, we obtain the new family called Marshall-Olkin odd Nadarajah Haghighi-G (MO-
ONH-G) family of distributions with the cdf  

 𝐹(𝑥; 𝛿, 𝛽, 𝜉) =

( ; )

( ; )

( ; )

( ; )

, 

 for 𝛽, 𝛿 > 0, and parameter vector 𝜉.  
• If 𝛼 = 𝛽 = 1, we obtain the new family called Marshall-Olkin odd exponential-G (MO-OE-G) 
family of distributions with the cdf  

 𝐹(𝑥; 𝛿, 𝜉) =

( ; )

( ; )

( ; )

( ; )

, 

 for 𝛿 > 0 and parameter vector 𝜉.  
 • If 𝛽 = 1, 𝛼 = 2 we obtain the new family called Marshall-Olkin odd Rayleigh-G (MO-OR-G) 
family of distributions with the cdf  

 𝐹(𝑥; 𝛿, 𝜉) =

( ; )

( ; )

( ; )

( ; )

, 

 for 𝛿 > 0 and parameter vector 𝜉. 
 

• When 𝛿 = 𝛽 = 1, we obtain the Weibull-G (W-G) family of distributions (Bourguignon et al. 
[4]) with the cdf  

 𝐹(𝑥; 𝛼, 𝜉) = 1 − exp −
( ; )

( ; )
, 

 for 𝛼 > 0 and parameter vector 𝜉. 
 

• When 𝛿 = 1, 𝛼 = 2, we obtain the new family of distributions with the cdf  
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 𝐹(𝑥; 𝛽, 𝜉) = 1 − exp 1 − 1 +
( ; )

( ; )
, 

 for 𝛽 > 0, and parameter vector 𝜉. 
 

• If 𝛿 = 𝛼 = 1,  we obtain the odd Nadarajah Haghighi-G (ONH-G) family of distributions 
(Nascimento et al. [24]) with the cdf  

 𝐹(𝑥; 𝛽, 𝜉) = 1 − exp 1 − 1 +
( ; )

( ; )
, 

 for 𝛽 > 0, and parameter vector 𝜉.  
• If 𝛿 = 𝛼 = 𝛽 = 1,  we obtain the odd exponential-G (OE-G) family of distributions 
(Bourguignon et al. [4]) with the cdf  

 𝐹(𝑥; 𝜉) = 1 − exp −
( ; )

( ; )
, 

 for parameter vector 𝜉.  
 • If 𝛿 = 𝛽 = 1, 𝛼 = 2 we obtain the odd Rayleigh-G (OR-G) family of distributions 
(Bourguignon et al. [4]) with the cdf  

 𝐹(𝑥; 𝜉) = 1 − exp −
( ; )

( ; )
, 

 for parameter vector 𝜉. 
 
2.2  Expansion of Density Function 
 In this section, we derive the statistical properties of the MO-OPGW-G family of distributions 
using general results for the Marshall and Olkin’s family of distributions by Barreto-Souza et 
al.[3]. Considering  

 𝑓 (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) =
 ( ; , , )

(  ( ; , , ))
, (7) 

 we can write equation (6) as  

 𝑓 (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) =
 ( ; , , )

[  ( ; , , )]
, (8) 

 where 𝑓 (𝑥; 𝛼, 𝛽, 𝜉)  and 𝐹 (𝑥; 𝛼, 𝛽, 𝜉)  are as given in equations (4) and (3), 
respectively. We apply the series expansion  

 (1 − 𝑧) = ∑
( )

( ) !
𝑧 , (9) 

 which is valid for |𝑧| < 1 and 𝑘 > 0. If 𝛿 ∈ (0,1), to obtain  

 𝑓 (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) = 𝑓(𝑥; 𝛼, 𝛽, 𝜉) ∑ ∑ 𝑤 , 𝐹(𝑥; 𝛼, 𝛽, 𝜉) , (10) 

 where 𝑤 , = 𝑤 , (𝛿) = 𝛿(𝑗 + 1)(1 − 𝛿) (−1)
𝑗
𝑘

. For 𝛿 > 1, we have  

 𝑓 (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) = 𝑓(𝑥; 𝛼, 𝛽, 𝜉) ∑ 𝑣 𝐹 (𝑥; 𝛼, 𝛽, 𝜉), (11) 

 where 𝑣 = 𝑣 (𝛿) =
( )( / ). For 𝛿 ∈ (0,1), equation (6) becomes  

 𝑓 (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) = ∑ 𝑒∗ 𝑔 (𝑥; 𝜉), (12) 
 

where  
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 𝑒∗ = ∑ ∑ ∑ , , , ,  ( ) ( )  

 × ( ) , ( ) ( )

!
, (13) 

 and 𝑔 (𝑥; 𝜉) = (𝑣 + 1)𝐺 (𝑥; 𝜉)𝑔 (𝑥; 𝜉)  is the exponentiated-G (Exp-G) distribution 
with the power parameter (𝑣 + 1) > 0. It follows that for 𝛿 ∈ (0,1), the pdf of the MO-OPGW-
G family of distributions can be expressed as a linear combination of the Exp-G densities. 
  Furthermore, for 𝛿 > 1, equation (6) can be written as 

 
 𝑓 (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) = ∑ 𝑏∗ 𝑔 (𝑥; 𝜉). (14) 

 
Therefore, for 𝛿 > 1, the MO-OPGW-G family of distributions can be expressed as a linear 
combination of the Exp-G distribution with power parameter (𝑤 + 1) > 0 and linear 
component  

 𝑏∗ = ∑ ∑ , , , ,
𝑗
𝑚

 ( ) ( )  

 × ( ) ( ) ( )

!
.                             (15) 

 Details of the derivations are provided in the appendix.  
2.3  Moments and Generating Functions 

Let 𝑋 ∼ 𝑀𝑂 − 𝑂𝑃𝐺𝑊 − 𝐺(𝛿, 𝛼, 𝛽, 𝜉), 𝑌 ∼ 𝐸 − 𝐺(𝑣 + 1, 𝜉) and 𝑌 ∼ 𝐸 − 𝐺(𝑤 + 1, 𝜉), 
then the 𝑟  moment can be obtained from equations (12) and (14). For 𝛿 ∈ (0,1),  

 𝐸(𝑋 ) = ∑ 𝑒∗ 𝐸(𝑌 ), 
 where 𝑒∗  is as defined in equation (13) and 𝐸(𝑌 ) denotes the 𝑟  moment of an Exp-G 
distribution with power parameter (𝑣 + 1) > 0. For 𝛿 > 1  

 𝐸(𝑋 ) = ∑ 𝑏∗ 𝐸(𝑌 ),  
 where 𝑏∗  is as defined in equation (15) and 𝐸(𝑌 ) denotes the 𝑟  moment of an Exp-G 
distribution with power parameter (𝑤 + 1) > 0. The incomplete moments can be obtained as 
follows: 

For 𝛿 ∈ (0,1)  

 𝐼 (𝑡) = ∫ 𝑥 𝑓 (𝑥; 𝛿, 𝛼, 𝛽, 𝜉)𝑑𝑥 = ∑ 𝑒∗ 𝐼 (𝑡), 

 where 𝐼 (𝑡) = ∫ 𝑥 𝑔 (𝑥; 𝜉)𝑑𝑥 and 𝑒∗  is as defined in equation (13). Also, For 𝛿 > 1  

 𝐼 (𝑡) = ∫ 𝑥 𝑓 (𝑥; 𝛿, 𝛼, 𝛽, 𝜉)𝑑𝑥 = ∑ 𝑏∗ 𝐼 (𝑡), 

 where 𝐼 (𝑡) = ∫ 𝑥 𝑔 (𝑥; 𝜉)𝑑𝑥  and 𝑏∗  is as defined in equation (15). The moment 
generating function (mgf) of 𝑋 is given by: 

For 𝛿 ∈ (0,1)  
 𝑀 (𝑡) = ∑ 𝑒∗ 𝐸(𝑒  ), 

 where 𝐸(𝑒  ) is the mgf of the Exp-G distribution with power parameter (𝑣 + 1) > 0 and 
𝑒∗  is as defined in equation (13). For 𝛿 > 1  

 𝑀 (𝑡) = ∑ 𝑏∗ 𝐸(𝑒  ), 
 where 𝐸(𝑒  ) is the mgf of the Exp-G distribution with power parameter (𝑤 + 1) > 0 and 
𝑏∗  is as defined in equation (15). 
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3  Some Special Cases 
In this section, we present some special cases of the MO-OPGW-G family of distributions. We 
considered cases when the baseline distributions are Burr XII and Kumaraswamy distributions. 

 
3.1   Marshall-Olkin-Odd Power Generalized Weibull-Burr XII (MO-

OPGW-BXII) Distribution 
 By taking the Burr XII distribution as the baseline distribution with pdf and cdf given by 
𝑔(𝑥; 𝑐, 𝑘) = 𝑐𝑘𝑥 (1 + 𝑥 )  and 𝐺(𝑥; 𝑐, 𝑘) = 1 − (1 + 𝑥 ) , respectively, for 𝑐, 𝑘 > 0, 
we obtain the MO-OPGW-BXII distribution with cdf and pdf given by  

 𝐹 (𝑥) =

( )

( )

[
( )

( )
]

 (16) 

 and  

 𝑓 (𝑥) = 𝛿𝛼𝛽 1 +
( )

( )

( )

( )
 

 × exp 1 − 1 +
( )

( )

( )

( )
 

 × 1 − 𝛿̅exp 1 − 1 +
( )

( )
, (17) 

 respectively, for 𝛿, 𝛼, 𝛽, 𝑐, 𝑘 > 0. The MO-OPGW-BXII distribution reduces to MO-OPGW-
log-logistic (MO-OPGW-LLoG) and MO-OPGW-Lomax (MO-OPGW-Lx) distribution by setting 
k=1 and c=1, respectively.  

             

   
               

  
              

Figure  3: Pdf and hrf graphs for the MO-OPGW-BXII distribution 
The pdf of the MO-OPGW-BXII distribution takes various shapes and addresses variations in 
skewness and kurtosis as shown in Figure 3. The hrf exhibits monotonic, bathtub and upside 
bathtub shapes.  
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We plot 3D diagrams of skewness and kurtosis for the submodel of the MO-OPGW-BXII  

distribution, which is the MO-OPGW-LLoG distribution and the results are given in Figures 1 and 
2. We observe that:   
 • When we fix the parameters 𝛼  and 𝛿 , the skewness and kurtosis of MO-OPGW-LLoG 
increases as 𝑐 and 𝛽 increases.  
• When we fix the parameters 𝛼and 𝛿, the skewness and kurtosis of MO-OPGW-LLoG increases 
as 𝛽  and c increases.  

  
             

  
               

  
              

Figure  1: Plots of skewness and kurtosis for the MO-OPGW-LLoG distribution 
    
             

   
               

  
              

Figure  2: Plots of skewness and kurtosis for the MO-OPGW-LLoG distribution 
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3.2  Marshall-Olkin-Odd Power Generalized Weibull-Kumaraswamy 
(MO-OPGW-Kw) Distribution 

 Suppose the baseline distribution is the Kumaraswamy distribution with pdf and cdf 
given by 𝑔(𝑥; 𝑎, 𝑏) = 𝑎𝑏𝑥 (1 − 𝑥 )  and 𝐺(𝑥; 𝑎, 𝑏) = 1 − (1 − 𝑥 ) , for 𝑎, 𝑏 > 0, 
respectively, we obtain the MO-OPGW-Kw distribution with cdf and pdf given by  

 𝐹 (𝑥) =

( )

( )

[
( )

( )
]

 (18) 

 and  

 𝑓 (𝑥) = 𝛿𝛼𝛽 1 +
( )

( )

( )

( )
 

 × exp 1 − 1 +
( )

( )

( )

( )
 

 × 1 − 𝛿̅exp 1 − 1 +
( )

( )
, (19) 

 respectively, for 𝛿, 𝛼, 𝛽, 𝑎, 𝑏 > 0.  
             

   
               

  
              

Figure  4: Pdf and hrf graphs for the MO-OPGW-Kw distribution 
Plots of the pdf and hrf of the MO-OPGW-Kw distribution are shown in Figure 4. The pdf 
addresses various forms of skewness and kurtosis. Furthermore, the hrf exhibits both monotonic 
and non-monotonic shapes.  

4  Order Statistics and Entropy 
 We derive the distribution of the 𝑖  order statistic and Rényi entropy of the MO-OPGW-

G distribution in this section.  
4.1  Distribution of Order Statistics 
 Suppose that 𝑋 , 𝑋 , . . . , 𝑋  are independent and identically distributed (i.i.d) random 

variables distributed according to (6). The pdf of the 𝑖  order statistic 𝑋 : , is given by  
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 𝑓 : (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) = 𝛿𝑛! 𝑓 (𝑥; 𝛼, 𝛽, 𝜉) ∑
( )

( )!( )!

 ( ; , , )

[  ( ; , , )]
. (20) 

  If 𝛿 ∈ (0,1), we have  

 𝑓 : (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) = 𝑓 (𝑥; 𝛼, 𝛽, 𝜉) ∑ ∑ ∑ 𝑈 , , 𝐹 (𝑥; 𝛼, 𝛽, 𝜉), (21) 
 where  

 𝑈 , , = 𝑈 , , (𝛿) =
!( ) ( ) ( )

( )!( )!

𝑗
𝑘

. (22) 

 For 𝛿 > 1, we write 1 − 𝛿̅𝐹 (𝑥; 𝛼, 𝛽, 𝜉) = 𝛿 1 − (𝛿 − 1)𝐹 (𝑥; 𝛼, 𝛽, 𝜉)/𝛿 , such 
that  

 𝑓 : (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) = 𝑓 (𝑥; 𝛼, 𝛽, 𝜉) ∑ ∑ 𝑐 , 𝐹 (𝑥; 𝛼, 𝛽, 𝜉), (23) 
 where  

 𝑐 , = 𝑐 , (𝛿) =
( ) ( ) !

( )!( )!
. (24) 

 For 𝛿 ∈ (0,1) , using equation (21) and substituting 𝑓 (𝑥)  by equation (22) and 
𝐹 (𝑥) by equation (3), we get  

 𝑓 : (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) = ∑ 𝑒∗∗ 𝑔 (𝑥; 𝜉), 
 where 𝑔 (𝑥; 𝜉) = (𝑣 + 1)(𝐺(𝑥; 𝜉)) 𝑔(𝑥; 𝜉) is the exponentiated-G (Exp-G) density function 
with power parameter (𝑣 + 1) > 0 and linear component  

 𝑒∗∗ = ∑ ∑ ∑ ∑ , , , ,
( ) ( )  

 × ( ) 𝑈 , , 𝛼𝛽
( ) ( )

!
. 

 Furthermore, for 𝛿 > 1, we get 
 
 𝑓 : (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) = ∑ 𝑤∗∗ 𝑔 (𝑥; 𝜉), 

 where 𝑔 (𝑥; 𝜉) = (𝑣 + 1)(𝐺(𝑥; 𝜉)) 𝑔(𝑥; 𝜉)  is the exponentiated-G (Exp-G) density 
function with power parameter (𝑣 + 1) > 0 and linear component  

 𝑤∗∗ = ∑ ∑ ∑ , , , ,
( ) ( )  

 × ( ) 𝐶 , 𝛼𝛽
( ) ( )

!
. 

 Details of the derivations are provided in the appendix.  
4.2  Entropy 

An Entropy is a measure of variation of uncertainty for a random variable X with pdf g(x). Here 
we present the measures of entropy, namely Rényi entropy [27]. Rényi entropy is defined by  

 𝐼 (𝜈) = (1 − 𝜈) log ∫ 𝑔 (𝑥)𝑑𝑥 , 
 where 𝜈 > 0 and 𝜈 ≠ 1. Using expansion (9), for 𝛿 ∈ (0,1)  

𝑓 (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) =
 ( ; )

( )
∑ (1 − 𝛼) Γ(2𝜈 + 𝑗)

[  ( ; )]

!
 

 and for 𝛿 > 1  

 𝑓 (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) =
 ( )

( )
∑ (𝛿 − 1) Γ(2𝜈 + 𝑗)

 ( ; )

!
. 

 Thus, Rényi entropy for 𝛿 ∈ (0,1) and 𝛿 > 1 are given by  
 𝐼 (𝜈) = (1 − 𝜈) log ∑ 𝑒 ∫ 𝑓 (𝑥; 𝜉)(1 − 𝐹 (𝑥; 𝜉)) 𝑑𝑥  (25) 

 and  
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 𝐼 (𝜈) = (1 − 𝜈) log ∑ ℎ ∫ 𝑓 (𝑥; 𝜉)𝐹 (𝑥; 𝜉)𝑑𝑥 , (26) 
 where  

 𝑒 = 𝑒 (𝛿) =
( ) ( )

( ) !
 

 and  

 ℎ = ℎ (𝛿) =
( ) ( )

( ) !
. 

 
Now, for 𝛿 ∈ (0,1) and using equation (25), we have  

 𝐼 (𝜈) = (1 − 𝜈) log[∑ , , , , , 𝑒
(( )) ( )

!
(𝛼𝛽)  

 × ( ) ( ) ( ( ) )  

 ×
( )

∫ (( + 1)𝑔(𝑥; 𝜉)[𝐺(𝑥; 𝜉)] ) 𝑑𝑥] 

 = (1 − 𝜈) log[∑ 𝑒∗exp(1 − 𝜈)𝐼 ], (27) 
 where  

 𝑒∗ = ∑ , , , , 𝑒
(( )) ( )

!
(𝛼𝛽)

( )
 

 × ( ) ( ) ( ( ) )  (28) 

 and 𝐼 = ∫ (( + 1)𝑔(𝑥; 𝜉)[𝐺(𝑥; 𝜉)] ) 𝑑𝑥 is the Rényi entropy of the Exp-G distribution 

with power parameter + 1. Furthermore, for 𝛿 > 1, we can write  

 𝐼 (𝜈) = (1 − 𝜈) log[∑ , , , , , , 𝑒 𝑗
𝑤

(( )) ( )

!
(𝛼𝛽)  

 × ( ) ( ) ( ( ) )

( )
 

 × ∫ (( + 1)𝑔(𝑥; 𝜉)[𝐺(𝑥; 𝜉)] ) 𝑑𝑥] 

 = (1 − 𝜈) log[∑ ℎ∗ exp(1 − 𝜈)𝐼 ], (29) 
 where  

 ℎ∗ = ∑ , , , , , 𝑒 𝑗
𝑤

(( )) ( )

!
(𝛼𝛽)

( )
 

 × ( ) ( ) ( ( ) )  (30) 

 and 𝐼 = ∫ (( + 1)𝑔(𝑥; 𝜉)[𝐺(𝑥; 𝜉)] ) 𝑑𝑥 is the Rényi entropy of the Exp-G distribution 

with power parameter + 1. 
Details of the derivations are provided in the appendix.  
4.3  Quantile Function 
 

The quantile function for the MO-OPGW-G family of distributions is obtained by solving the non-
linear equation: 
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 𝐹 (𝑥; 𝛿, 𝛼, 𝛽, 𝜉) =

( ; )

( ; )

[
( ; )

( ; )
]

= 𝑢 

 for 0 ≤ 𝑢 ≤ 1, that is,  

 exp 1 − 1 +
( ; )

( ; )
= , 

 so that  

 ( ; )

( ; )
= 1 − ln − 1 . 

 Therefore, the quantiles of the MO-OPGW-G family of distributions is given by  

 𝑄 (𝑢) = 𝐺

⎣
⎢
⎢
⎢
⎡

⎝

⎛ 1 − ln − 1 + 1

⎠

⎞

⎦
⎥
⎥
⎥
⎤

. (31) 

 
 

5  Maximum Likelihood Estimation 
If 𝑋 ∼ 𝑀𝑂 − 𝑂𝑃𝐺𝑊 − 𝐺(𝛼, 𝛽, 𝛿, 𝜉) with the parameter vector Δ = (𝛼, 𝛽, 𝛿, 𝜉) . The total log-
likelihood ℓ = ℓ(Δ) from a random sample of size 𝑛 is given by  

 ℓ = 𝑛log(𝛿𝛼𝛽) + (𝛽 − 1) ∑ log 1 +
( ; )

( ; )
 

 + ∑ 1 − 1 +
( ; )

( ; )
] + (𝛼 − 1) ∑ log

( ; )

( ; )
 

 −2 ∑ log 1 − 𝛿̅exp 1 − 1 +
( ; )

( ; )
 

 + ∑ ln(𝑔(𝑥 ; 𝜉)) − 2 ∑ ln(1 − 𝐺(𝑥 ; 𝜉)). 

 The score vector 𝑈 =
ℓ

,
ℓ

,
ℓ

,
ℓ  elements are given in the appendix. 

 
 The maximum likelihood estimates of the parameters, denoted by 𝚫 is obtained by solving the 

nonlinear equation 
ℓ

,
ℓ

,
ℓ

,
ℓ

= 𝟎, using a numerical method such as Newton-Raphson 

procedure. The multivariate normal distribution 𝑁 (0, 𝐽(Δ) ), where the mean vector 0 =

(0,0,0, 0)  and 𝐽(Δ)  is the observed Fisher information matrix evaluated at Δ, can be used to 
construct confidence intervals and confidence regions for the individual model parameters and 
for the survival and hazard rate functions.  

6  Simulation Study 
A simulation study to examine the consistency of the maximum likelihood estimates (MLE) is 
conducted in this section. We used the following sets of initial values 𝛼 = 1.0, 𝛿 = 0.5, 𝑐 =
0.05, 𝛽 = 1.1 and 𝛼 = 1.0, 𝛿 = 1.0, 𝑐 = 0.05, 𝛽 = 1.1 for sample sizes 𝑛= 25, 50, 100, 200, 
400, 800 and 1000. We estimate the mean, average bias and root mean square error (RMSE). The 
bias and RMSE for the estimated parameter, say, Δ, say, are given by:  
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 𝐵𝑖𝑎𝑠(Δ) = ∑ (Δ − Δ),    𝑎𝑛𝑑    𝑅𝑀𝑆𝐸(Δ) =
∑ ( )

, 

 respectively. From the results in Table 1, the mean values approximate the true parameter values, 
RMSE and bias decay towards zero for all the parameter values. We therefore, conclude that our 
model give consistent maximum likelihood estimates (MLEs).   
Table  1:  Monte Carlo Simulation Results for MO-OPGW-LLoG Distribution: Mean, RMSE 
and Average Bias 
      

 𝛼 = 1.0, 𝛿 = 0.5, 𝑐 = 0.05, 𝛽 =
1.1  
  

  
 𝛼 = 1.0, 𝛿 = 1.0, 𝑐 = 0.05, 𝛽 =
1.1  
  

   n   Mean   RMSE   Bias   Mean   RMSE   Bias  
   25   0.9725   0.1064   -0.0275   0.9730   0.1060   -0.0270  
  50   0.9911   0.0725   -0.0089   0.9900   0.0710   -0.0100  
  100   0.9977   0.0533   -0.0023   0.9982   0.0537   -0.0018  

𝛼  200   0.9958   0.0392   -0.0042   0.9977   0.0404   -0.0023  
  400   0.9979   0.0266   -0.0021   0.9999   0.0277   -0.0001  
  800   0.9974   0.0189   -0.0026   0.9987   0.0196   -0.0013  
  1000   0.9983   0.0170   -0.0017   1.0002   0.0180   0.0002  
   25   0.9710   0.7674   0.4710   1.7278   1.2141   0.7278  
  50   0.7011   0.4071   0.2011   1.3342   0.6890   0.3342  
  100   0.6077   0.2476   0.1077   1.1976   0.4619   0.1976  

𝛿  200   0.5631   0.1740   0.0631   1.1147   0.3272   0.1147  
  400   0.5272   0.1026   0.0272   1.0490   0.1897   0.0490  
  800   0.5190   0.0731   0.0190   1.0342   0.1382   0.0342  
  1000   0.5112   0.0634   0.0112   1.0222   0.1218   0.0222  
   25   0.3657   4.3221   0.3157   0.5385   4.9922   0.4885  
  50   0.0933   0.1053   0.0433   0.0976   0.1158   0.0476  
  100   0.0696   0.0472   0.0196   0.0714   0.0525   0.0214  
    C  200   0.0620   0.0314   0.0120   0.0625   0.0342   0.0125  
  400   0.0550   0.0169   0.0050   0.0547   0.0177   0.0047  
  800   0.0534   0.0120   0.0034   0.0533   0.0130   0.0033  
  1000   0.0522   0.0100   0.0022   0.0519   0.0107   0.0019  
   25   1.0665   0.1086   -0.0335   1.0560   0.1210   -0.0440  
  50   1.0886   0.0702   -0.0114   1.0838   0.0739   -0.0162  
  100   1.0965   0.0502   -0.0035   1.0948   0.0533   -0.0052  

𝛽  200   1.0955   0.0366   -0.0045   1.0960   0.0393   -0.0040  
  400   1.0978   0.0247   -0.0022   1.0992   0.0264   -0.0008  
  800   1.0974   0.0175   -0.0026   1.0983   0.0185   -0.0017  
  1000   1.0983   0.0157   -0.0017   1.0998   0.0169   -0.0002  
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7  Inference 

Usefulness of the proposed model is shown in this section. We consider the MO-OPGW-LLoG 
distribution as an example to demonstrate the flexibility of the new family of distributions. We 
apply the model to two real data examples and compare it to various distributions. We use R 
software via the  nlm package to estimate the model parameters, via the maximum likelihood 
estimation technique. Various goodness-of-fit statistics are used to assess model performance, that 
is Cramer-von-Mises ( 𝑊∗ ) and Andersen-Darling (𝐴∗) , -2loglikelihood (-2 log L), Akaike 
Information Criterion (AIC), Consistent Akaike Information Criterion (AICC), Bayesian 
Information Criterion (BIC), Kolmogorov-Smirnov (K-S) statistic (and its p-value), and sum of 
squares (SS). The model with the smallest values of the goodness-of-fit statistics and a bigger p-
value for the K-S statistic is regarded as the best model. 
 We compare the MO-OPGW-LLoG distribution to several models, namely, Marshall-Olkin-
inverse Weibull (MO-IW) by Pakungwati et al. [26], Marshall-Olkin-log-logistic-LLoG (MO-
LLoG) by Wenhao [31], Topp-Leone-Marshall-Olkin-Log-logistic (TL-MO-LLoG) and Topp-
Leone-Marshall-Olkin-Weibull (TL-MO-W) by Chipepa et al. [7], odd exponentiated half-logistic 
Burr XII (OEHL-BXII) by Aldahlan and Afify [1] and odd generalized half logistic Weibull-
Weibull (OGHLW-W) distribution by Chipepa et al. [6]. 

The pdfs of the non-nested models are:  

 𝑓 (𝑥; 𝛼, 𝜃, 𝜆) =
( )

[ ( ) ( ) ]
, 

 for 𝛼, 𝜃, 𝜆 > 0,  

 𝑓 (𝑥; 𝛼, 𝛽, 𝛾) =
( )

, 

 for 𝛼, 𝛽, 𝛾 > 0 ,  

 𝑓 (𝑥; 𝑏, 𝛿, 𝜆) =
( )

[ ( ) ]
[1 −

[ ]

[ ( ) ]
] , 

 respectively, for 𝑏, 𝛿, 𝜆 > 0,  

 𝑓 (𝑥; 𝑏, 𝛿, 𝜆, 𝛾) =
( )

[1 −
( )

] , 

 for 𝑏, 𝛿, 𝜆, 𝜔 > 0,  

 𝑓 (𝑥; 𝛼, 𝜆, 𝑎, 𝑏) =
( [ ( ) ])( ( [ ( ) ]))

( ) ( ( [ ( ) ]))
. 

 for 𝛼, 𝜆, 𝑎, 𝑏 > 0 and  

 𝑓 (𝑥; 𝛼, 𝛽, 𝜆, 𝛾) =
( ) { [ ] }

( ) ( { [ ] })
, 

 for 𝛼, 𝛽, 𝜆, 𝛾 > 0.  
 

 Data analyses results are shown in Tables 2, 3, 4 and 5. Histogram of data, fitted densities and 
probability plots are shown in Figures 5 and 6.  

7.1  Data set 1 
The first data set represents the number of daily deaths due to COVID-19 in Europe from the 1st 
of March 2020 to 30th of March 2020 (see https://covid19.who.int/ for details). The observations 
are: 6, 18, 29, 28, 47, 55, 40, 150, 129, 184, 236, 237, 336, 219, 612, 434, 648, 706, 838, 1129, 
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1421, 118, 116, 1393, 1540, 1941, 2175, 2278, 2824, 2803, 2667. 
  

Table  2: MLEs and and Standard Errors in parentheses for Data Set 1 
Model 𝛼 𝛿 𝑐 𝛽 
MO-OPGW-LLoG 4.4895 

(0.0102) 
20.6798 
(11.2017) 

1.3610 
(0.0432) 

0.0386 
(0.0038) 

OPGW-LLoG 3.1377 
(1.0650 × 10 ) 

1 
- 

2.4574 
(1.3598 × 10 ) 

0.0172 
(0.0019) 

MO-IW 𝛼 𝜆 𝜃 - 
34.0364 
(69.9333) 

0.9718 
(0.1634) 

0.1159 
(0.1983) 

- 
- 

  𝛼 𝛽 𝛾 - 
MO-LLoG 20.4725 

(4.3538) 
1.0060 
(0.1469) 

16.7061 
(5.3034) 

- 
- 

  
TL-MO-LLoG 

B 𝛿 𝜆 𝛾 
0.2345 
(0.0448) 

3.2354 × 10  
(2.3242 × 10 ) 

2.2040 
(0.0635) 

- 
- 

TL-MO-W 0.4220 
(0.0709) 

2.4312 
(0.0019) 

0.001 
(3.4223 × 10 ) 

1.1997 
(0.0304) 

  
OEHL-BXII 

𝛼 𝜆 a b 
0.3397 
(0.0821) 

1.2340 × 10  
(1.8432 × 10 ) 

16.1790 
(2.9341 × 10 ) 

0.0766 
(0.0115) 

  
OGHLW-W 

𝛼 𝛽 𝜆 𝛾 
 2.9675 × 10  
(2.2273 × 10 ) 

0.0977 
(0.0024) 

74.8450 
(3.1052 × 10 ) 

0.0592 
(0.0056) 

 
Table 3: Goodness-of-fit Statistics for Data Set 1 

Model −𝟐𝐥𝐨𝐠 𝑳 𝑨𝑰𝑪 𝑨𝑰𝑪𝑪 𝑩𝑰𝑪 𝑾∗ 𝑨∗ K-S p-value 
MO-OPGW-
LLoG 

474.3 482.3 483.8 488.0 0.0707 0.4898 0.1032 0.8629 

OPGW-LLoG 507.0 513.0 513.9 517.3 0.0744 0.5408 0.3611 0.0004 
MO-IW 476.5 482.5 483.4 486.9 0.0777 0.5563 0.1093 0.8146 
MO-LLoG 476.9 482.9 483.8 487.2 0.0791 0.5648 0.1052 0.8474 
TL-MO-
LLoG 

473.2 479.2 480.1 483.5 0.0867 0.5635 0.1402 0.5301 

TL-MO-W 471.9 479.9 481.4 485.6 0.0856 0.5508 0.1467 0.4729 
OEHL-BXII 480.6 488.6 490.1 494.3 0.0811 0.5240 0.1120 0.7908 
OGHLW-W 473.7 481.7 483.3 487.5 0.0851 0.5605 0.1351 0.5768 

   
  
    The estimated variance-covariance matrix is  

 

1.0377 × 10 −0.1141 0.0004 −3.5296 × 10
−0.1141 125.4775 −0.4837 0.0388
4.3991 × 10 −0.4837 0.0018 −0.0001
−3.5296 × 10 0.0388 −0.0001 1.4495 × 10

 

and the 95% confidence intervals for the model parameters are given by  
𝛼 ∈ [4.4895 ± 0.0199], 𝛿 ∈ [20.6798 ± 21.9553], 𝑐 ∈ [1.3610 ± 0.0846] and 𝛽 ∈

[0.0386 ± 0.0075].  
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 Based on the results shown in Table 2, we conclude that the MO-OPGW-LLoG distribution 
performs better than the non-nested models considered on COVID-19 daily deaths in Europe 
since it has the lowest values for the goodness-of-fit statistics −2log𝐿, 𝐴𝐼𝐶, 𝐴𝐼𝐶𝐶, 𝐵𝐼𝐶, 𝐴∗, 
𝑊∗ and K-S (and the largest p-value for the K-S statistic). Figure 5 shows the flexibility enjoyed 
when using the MO-OPGW-LLoG distribution in fitting the COVID-19 deaths data set 
compared to the selected non nested models.  

             

   
               

  
              
Figure  5: Fitted pdfs and probability plots for COVID-19 daily deaths in Europe 

    
7.2  Data set 2 

The second data set represents COVID-19 deaths in China for the period 23 January 2020 to 28 
March 2020 (see https://www.worldometers.info/coronavirus/country/china for details). The 
observations are: 8, 16, 15, 24, 26, 26, 38, 43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97, 108, 97, 146, 
121, 143, 142, 105, 98, 136, 114, 118, 109, 97, 150, 71, 52, 29, 44, 47, 35, 42, 31, 38, 31, 30, 28, 
27, 22, 17, 22, 11, 7, 13, 10, 14, 13, 11, 8, 3, 7, 6, 9, 7, 4, 6, 5, 3, 5. 

 
 The estimated variance-covariance matrix is  

 

3.7134 × 10 −0.0322 6.6624 × 10 −1.0133 × 10
−0.0322 28.0095 −0.0578 0.0088
6.6624 × 10 −0.0578 0.0001 −1.8183 × 10
−1.0133 × 10 0.0088 −1.8183 × 10 4.0021 × 10

 

and the 95% confidence intervals for the model parameters are given by  
𝛼 ∈ [4.1732 ± 0.0119] , 𝛿 ∈ [14.7160 ± 10.3731] , 𝑐 ∈ [2.4710 ± 0.0214]  and 𝛽 ∈

[0.0361 ± 0.0039].  
 

Table  4: MLEs and and Standard Errors in parentheses for Data Set 2 
Model 𝛼 𝛿 𝑐 𝛽 
MO-OPGW-LLoG 4.1732 

(0.0061) 
14.7160 
(5.2924) 

2.4710 
(0.0109) 

0.0361 
(0.0020) 

OPGW-LLoG 4.5538 
(4.9521× 10 ) 

1 
- 

2.8264 
(7.9788× 10 ) 

0.0171 
(0.0013) 

MO-IW 𝛼 𝜆 𝜃 - 
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15.8531 
(17.7468) 

1.4275 
(0.1759) 

0.2270 
(0.1314) 

- 
- 

MO-LLoG 𝛼 𝛽 𝛾 - 
7.5970 
(1.1972) 

1.5154 
(0.1517) 

8.8164 
(0.6808) 

- 
- 

TL-MO-LLoG B 𝛿 𝜆 𝛾 
0.2644 
(0.0349) 

1.8210 × 10  
(7.2990 × 10 ) 

2.9896 
(0.0699) 

- 
- 

TL-MO-W 0.8102 
(1.0422) 

1.1618 
(1.0716) 

0.0038 
(0.0204) 

1.2167 
(1.0248) 

OEHL-BXII 𝛼 𝜆 a b 
0.2786 
(0.0216) 

2.4954 × 10  
(9.6561 × 10 ) 

3.5466 
(4.0306× 10 ) 

0.6525 
(0.0236) 

OGHLW-W 
. 
 

𝛼 𝛽 𝜆 𝛾 
 2.7256 × 10  
(1.1679× 10 ) 

0.1954 
(0.0022) 

39.4860 
(1.0859× 10 ) 

0.0864 
(0.0058) 

 
Table 5: Goodness-of-fit Statistics for Data Set 2 

Model −𝟐𝐥𝐨𝐠 𝑳 𝑨𝑰𝑪 𝑨𝑰𝑪𝑪 𝑩𝑰𝑪 𝑾∗ 𝑨∗ K-S p-value 
MO-OPGW-
LLoG 

657.0 657.7 665.8 0.1051 0.8076 0.0843 0.7361 657.0 

OPGW-LLoG 706.6 712.6 713.0 719.1 0.1475 1.0037 0.3070 7.9170 × 10  
MO-IW 653.6 659.6 659.9 666.1 0.1567 1.0832 0.0937 0.6083 
MO-LLoG 655.1 661.1 661.5 667.7 0.1486 1.0763 0.0876 0.6922 
TL-MO-
LLoG 

449.7 655.7 656.1 662.3 0.1473 1.0054 0.1014 0.5054 

TL-MO-W 646.9 654.9 655.6 663.7 0.1082 0.7941 0.0894 0.6668 
OEHL-BXII 661.6 669.6 670.2 678.3 0.1536 0.9967 0.1218 0.2815 
OGHLW-W 650.1 658.1 658.8 666.9 0.1419 0.9918 0.0871 0.6983 
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Figure  6: Fitted pdfs and probability plots for COVID-19 daily deaths in China  
 

   
 Based on the results shown in Table 2, we further conclude that the MO-OPGW-LLoG 
distribution performs better than the non-nested models since it has the lowest values for the 
goodness-of-fit statistics −2log𝐿, 𝐴𝐼𝐶, 𝐴𝐼𝐶𝐶, 𝐵𝐼𝐶, 𝐴∗, 𝑊∗ and K-S (and the largest p-value for 
the K-S statistic).   
 

8  Concluding Remarks 
A new family of distributions was developed. The proposed distribution is an infinite linear 
combination of Exp-G distribution. Several statistical properties of the new family were also 
derived. A stimulation study to examine the consistency of the maximum likelihood estimates was 
conducted. A special case of the proposed family (MO-OPGW-LLoG distribution) was applied to 
two real data examples and compared to a variety of non nested models. The proposed family is 
versatile and flexible in data modeling as indicated in data analysis results presented in Section 7.  

Appendix 
The link provided contains derivations for the statistical properties: 
https://drive.google.com/file/d/1WZtpVhpJ3J0-oWTCgiDQD_wUyMw6t8y2/view?usp=sharing  
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