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ABSTRACT  
We develop a new family of distributions called the Marshall-Olkin-Type II-Topp-Leone-G (MO-TII-TL-
G) distribution, which is an infinite linear combination of the exponential-G family of distributions. The 
statistical properties of the new distributions are studied and its model parameters are estimated using the 
maximum likelihood method. A simulation study is carried out to determine the performance of the 
maximum likelihood estimates and lastly, real data examples are provided to demonstrate the usefulness of 
the proposed model in comparison to several other models. 
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1 Introduction 
Several techniques have been proposed to generate new families of distributions. For instance, the 
Marshall-Olkin-G (MO-G) distribution developed by Marshall and Olkin [18]. It is one of the 
techniques available in the statistical literature that models lifetime data and generalizes known 
distributions. The (MO-G) distribution is flexible in comparison to other distributions like the 
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exponential, Weibull and gamma and it applies to data that has both monotonic and non-monotonic 
hazard rates. It plays an important role in reliability analysis in many areas such as engineering, 
economics, biology and hydrology. This MO-G distribution has cumulative distribution function 
(cdf) and probability density function (pdf) given by  
 

 𝐹ெைିீ(𝑥; 𝛿, 𝜉) = 1 −
ఋீ̅(௫;క)

ଵିఋഥீ̅(௫;క)
 (1) 

 and  

 𝑓ெைିீ(𝑥; 𝛿, 𝜉) =
ఋ௚(௫;క)

[ଵିఋഥீ̅(௫;క)]మ
, (2) 

 
respectively, where 𝛿 > 0  is the tilt parameter and �̅�(𝑥; 𝜉) = 1 − 𝐺(𝑥; 𝜉)  is the survival 
function of the baseline distribution.  
 
Generalizations of the Marshall-Olkin distribution include Kumaraswamy Marshall-Olkin-G by 
Alizadeh et al. [5], Beta Marshall-Olkin-G by Alizadeh et al. [4], Marshall-Olkin Log-logistic 
Extended Weibull by Lepetu et al. [16], Marshall-Olkin-Extended Burr Type III distribution by 
Kumar et al. [15], Marshall-Olkin Log-logistic Erlang-Truncated Exponential by Oluyede et al. 
[22] and Marshall-Olkin-Gompertz-G by Chipepa and Oluyede [12] to name a few. 
 
Elgarhy et al. [13] proposed the Type II Topp-Leone (TII-TL-G) generated family of distributions 
with cdf and pdf, respectively, specified by  

 𝐹்ூூି்௅ିீ(𝑥; 𝑏, 𝜉) = 1 − [1 − 𝐺ଶ(𝑥; 𝜉)]௕ (3) 
 
and  

 𝑓 ூூି்௅ିீ(𝑥; 𝑏, 𝜉) = 2𝑏𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)[1 − 𝐺ଶ(𝑥; 𝜉)]௕ିଵ, 
 
where 𝑏 > 0 and 𝐺(𝑥; 𝜉) is the cdf of the baseline distribution. Some notable generalizations of 
the TII-TL-G distribution include the Type II Topp-Leone inverse Rayleigh distribution by 
Mohammed and Yahia [19], Type II Topp-Leone generalized Rayleigh by Yahia and Mohammed 
[28], Type II Topp-Leone inverted Kumaraswamy by ZeinEldin et al. [29], Type II Topp-Leone 
inverse Exponential by Al-Marzouki [1], Type II Topp-Leone power Lomax by Al-Marzouki et 
al. [2] and Type II Topp-Leone Dagum by Sakthivel and Dhivakar [24]. 
 
In this note, we are motivated by the interesting properties of the MO-G and TII-TL-G distributions 
to develop a new family of distributions which is a combination of these two distributions. We 
develop this new family of distributions which is flexible because it can applied to data sets of 
varying skewness and kurtosis. Also, it can model different types of hazard rate functions including 
monotonic as well as non-monotonic shapes. We hope the new distribution will receive much 
attention from statisticians.  
 
In this paper, we develop and study the new family of distributions, the MO-TII-TL-G family of 
distributions. In Section 2, we develop the new family of distributions and provide its density 
expansion. Some special cases of the MO-TII-TL-G family of distributions are presented in 
Section 3. In section 4, we present some of the statistical properties of the proposed distrbution. 
Section 5 contains the maximum likelihood estimates of the model parameters. Simulation study 
results are given in Section 6. Applications of the proposed model to real data examples are 
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presented in Section 7, followed by concluding remarks. 
         2  Marshall-Olkin-Type II-Topp-Leone-G Family of Distributions 

 
We derive the new MO-TII-TL-G family of distributions by using the generalizations in equations 
(1) and (3). The cdf, pdf and hazard rate function (hrf) of the MO-TII-TL-G family of distributions 
are given by 

 

 𝐹ெைି்ூூି்௅ିீ(𝑥; 𝛿, 𝑏, 𝜉) = 1 −
ఋ[ଵିீమ(௫;క)]್

ଵିఋഥ[ଵିீమ(௫;క)]್
, 

 
 

 𝑓ெைି்ூூି்௅ିீ(𝑥; 𝛿, 𝑏, 𝜉) =
ଶఋ௕௚(௫;క)ீ(௫;క)[ଵିீమ(௫;క)]್షభ

(ଵିఋഥ[ଵିீమ(௫;క)]್)మ
 (4) 

 
 and 

 

 ℎெைି்ூூି்௅ିீ(𝑥; 𝛿, 𝑏, 𝜉) =
ଶఋ௕௚(௫;క)ீ(௫;క)[ଵିீమ(௫;క)]್షభ

(ଵିఋഥ[ଵିீమ(௫;క)]್)(ఋ[ଵିீమ(௫;క)]್)
, 

 
respectively, for b, 𝛿 > 0 , 𝛿̅ = 1 − 𝛿  and 𝜉  is a vector of parameters from the baseline 
distribution function G(.). 

 
2.1  Expansion of Density Function 

The series expansion of the MO-TII-TL-G family of distributions is derived by making use of the 
general results of the Marshall and Olkin’s family of distributions by Barreto-Souza et al. [8]. The 
pdf of the MO-TII-TL-G given by 

 

 𝑓ெைି்ூூି்௅ିீ(𝑥; 𝛿, 𝑏, 𝜉) =
ఋ௙೅಺಺ష೅ಽషಸ(௫;௕,క)

(ଵିఋഥிത೅಺಺ష೅ಽషಸ(௫;௕,క))మ
, 

 
can be written as 

 

 𝑓ெைି்ூூି்௅ି (𝑥; 𝛿, 𝑏, 𝜉) =
௙೅಺಺ష೅ಽషಸ(௫;௕,క)

ఋ(ଵି
ഃషభ

ഃ
ி೅಺಺ష೅ಽషಸ(௫;௕,క))మ

, 

 
where 𝑓 ூூି்௅ିீ and 𝐹்ூூି்௅ିீ are the pdf and cdf of the TII-TL-G family of distributions, 
respectively. We also make use of the series expansion 

 

 (1 − 𝑧)ି௞ = ∑ஶ
௝ୀ଴

୻(௞ା௝)

୻(௞)௝!
𝑧௝ , (5) 

 
which is valid for |z| < 1, k > 0. If 𝛿 ∈ (0,1) we obtain  

 𝑓ெைି்ூூି்௅ିீ(𝑥; 𝛿, 𝑏, 𝜉) = 𝑓 ூூି்௅ିீ(𝑥; 𝑏, 𝜉) ∑ஶ
௝ୀ଴ ∑௝

௞ୀ଴ 𝑤௝,௞𝐹்ூூି்௅ିீ(𝑥; 𝑏, 𝜉)௝ି௞, 
 

where 𝑤௝,௞ = 𝑤௝,௞(𝛿) = 𝛿(𝑗 + 1)(1 − 𝛿)௝(−1)௝ି௞ ቀ
𝑗
𝑘

ቁ. For 𝛿 > 1, we have  
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 𝑓ெைି்ூூି்௅ିீ(𝑥; 𝛿, 𝑏, 𝜉) = 𝑓 ூூି்௅ିீ(𝑥; 𝑏, 𝜉) ∑ஶ
௝ୀ଴ 𝑣௝𝐹 ூூି்௅ିீ

௝
(𝑥; 𝑏, 𝜉), 

where 𝑣௝ = 𝑣௝(𝛿) =
(௝ାଵ)(ଵି

భ

ഃ
)

ఋ
.  

 
For 𝛿 ∈ (0,1), equation (4) becomes  

 
𝑓ெைି்ூூି்௅ିீ(𝑥; 𝛿, 𝑏, 𝜉) = 2𝑏𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)[1 − 𝐺ଶ(𝑥; 𝜉)]௕ିଵ

× ∑ஶ
௝ୀ଴ ∑௝

௞ୀ଴ 𝑤௝,௞(1 − [1 − 𝐺ଶ(𝑥; 𝜉)]௕)௝ି௞.
 

 
By applying the generalized binomial series expansions  

 (1 − [1 − 𝐺ଶ(𝑥; 𝜉)]௕)௝ି௞ = ∑ஶ
௟ୀ଴ (−1)௟ ቀ

𝑗 − 𝑘
𝑙

ቁ [1 − 𝐺ଶ(𝑥; 𝜉)]௕௟ 

 
and 

 

 [1 − 𝐺ଶ(𝑥; 𝜉)]௕(௟ାଵ)ିଵ = ∑ஶ
௠ୀ଴ (−1)௠ ቀ

𝑏(𝑙 + 1) − 1
𝑚

ቁ 𝐺ଶ௠(𝑥; 𝜉), 

 
we can write  

 𝑓ெைି்ூூି்௅ିீ(𝑥; 𝛿, 𝑏, 𝜉) = ∑ஶ
௝,௟,௠ୀ଴ ∑௝

௞ୀ଴

ଶ௕(ିଵ)೗శ೘௪ೕ,ೖ

ଶ௠ାଶ
ቀ

𝑗 − 𝑘
𝑙

ቁ ቀ
𝑏(𝑙 + 1) − 1
𝑚

ቁ 

                                              × (2𝑚 + 2)𝑔(𝑥; 𝜉)𝐺ଶ௠ାଵ(𝑥; 𝜉) 
                                              = ∑ஶ

௠ୀ଴ 𝑤௠
∗ 𝑔௠(𝑥; 𝜉). (6) 

 
It then follows that for 𝛿 ∈ (0,1), the MO-TII-TL-G family of distributions can be expressed as 
an infinite linear combination of the Exponentiated-G (Exp-G) distribution with power parameter 
(2𝑚 + 2) and linear component  

 𝑤௠
∗ = ∑ஶ

௝,௟ ∑௝
௞ୀ଴

ଶ௕(ିଵ)೗శ೘௪ೕ,ೖ

ଶ௠ାଶ
ቀ

𝑗 − 𝑘
𝑙

ቁ ቀ
𝑏(𝑙 + 1) − 1
𝑚

ቁ. (7) 

 
Furthermore, for 𝛿 > 1, equation (4) can be written as  
 

 
𝑓ெைି்ூூି்௅ିீ(𝑥; 𝛿, 𝑏, 𝜉) = 2𝑏𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)[1 − 𝐺ଶ(𝑥; 𝜉)]௕ିଵ

× ∑௝
௞ୀ଴ 𝑣௝(1 − [1 − 𝐺ଶ(𝑥; 𝜉)]௕ିଵ)௝.

 

 
Applying the series expansions  

 (1 − [1 − 𝐺ଶ(𝑥; 𝜉)]௕ିଵ)௝ = ∑ஶ
௟ୀ଴ (−1)௟ ቀ

𝑗
𝑙
ቁ [1 − 𝐺ଶ(𝑥; 𝜉)]௕௟ 

 
and  

 [1 − 𝐺ଶ(𝑥; 𝜉)]௕(௟ାଵ)ିଵ = ∑ஶ
௠ୀ଴ (−1)௠ ቀ

𝑏(𝑙 + 1) − 1
𝑚

ቁ 𝐺ଶ௠(𝑥; 𝜉), 

 
we get  

 𝑓ெைି்ூூି்௅ି (𝑥; 𝛿, 𝑏, 𝜉) = ∑ஶ
௝,௟,௠ୀ଴

ଶ௕(ିଵ)೗శ೘௩ೕ

ଶ௠ାଶ
ቀ

𝑗
𝑙
ቁ ቀ

𝑏(𝑙 + 1) − 1
𝑚

ቁ 

                          × (2𝑚 + 2)𝑔(𝑥; 𝜉)𝐺ଶ௠ାଵ(𝑥; 𝜉) 
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                                              = ∑ஶ
௠ୀ଴ 𝑣௠

∗ 𝑔௠(𝑥; 𝜉). (8) 
 

Therefore, for 𝛿 > 1 the MO-TII-TL-G family of distributions can be expressed as an infinite 
linear combination of the Exponentiated-G (Exp-G) distribution with power parameter (2𝑚 + 2) 
and linear component  

 𝑣௠
∗ = ∑ஶ

௝,௟

ଶ௕(ିଵ)೗శ೘௩ೕ

ଶ௠ାଶ
ቀ

𝑗
𝑙
ቁ ቀ

𝑏(𝑙 + 1) − 1
𝑚

ቁ. (9) 

 
        3  Some Special Cases 
 
 In this Section, we present some special cases of the MO-TII-TL-G family of distributions. We 
considered cases when the baseline distributions are Weibull, uniform and log-logistic 
distributions. 

 
3.1  Marshall-Olkin-Type II-Topp-Leone-Weibull (MO-TII-TL-W) 

Distribution 
 

Consider the Weibull distribution as the baseline distribution with pdf and cdf given by 𝑔(𝑥; 𝜆) =

𝜆𝑥ఒିଵ𝑒ି௫ഊ
 and 𝐺(𝑥; 𝜆) = 1 − 𝑒ି௫ഊ

, respectively, for 𝜆 > 0. The cdf, pdf and hrf of the MO-TII-
TL-W distribution are given by  

 𝐹ெைି்ூூି்௅ିௐ(𝑥; 𝛿, 𝑏, 𝜆) = 1 −
ఋ[ଵି(ଵି௘షೣഊ

)మ]್

ଵିఋഥ[ଵି(ଵି௘షೣഊ
)మ]್

, 

 
 

 𝑓ெைି்ூூି்௅ି (𝑥; 𝛿, 𝑏, 𝜆) =
ଶఋ௕ఒ௫ഊషభ௘షೣഊ

(ଵି௘షೣഊ
)[ଵି(ଵି௘షೣഊ

)మ]್షభ

(ଵିఋഥ[ଵି(ଵି௘షೣഊ
)మ]್)మ

 

 
and  

 ℎெைି்ூூି்௅ି (𝑥; 𝛿, 𝑏, 𝜆) =
ଶఋ௕ఒ௫ഊషభ௘షೣഊ

(ଵି௘షೣഊ
)[ଵି(ଵି௘షೣഊ

)మ]್షభ

(ଵିఋഥ[ଵି(ଵି௘షೣഊ
)మ]್)(ఋ[ଵି(ଵି௘షೣഊ

)మ]್)
 , 

 
respectively, for 𝛿, b, 𝜆 > 0. 
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Figure 1 Pdf and hrf plots for the MO-TII-TL-W distribution 
Figure 1 shows the plots of the pdfs and hrfs for the MO-TII-TL-W distribution. The pdf exhibit 
different shapes including right or left-skewed, reverse-J and unimodal. The hrf exhibit reverse-J, 
increasing, decreasing, upside-down bathtub and upside-down bathtub followed by bathtub 
shapes. 

 
3.2  Marshall-Olkin-Type II-Topp-Leone-Log-Logistic (MO-TII-TL-

LLoG) Distribution 
 

Suppose that the Log-logistic distribution is the baseline distribution with pdf and cdf given 
𝑔(𝑥; 𝑐, 𝑘) = 𝑐𝑥௖ିଵ(1 + 𝑥௖)ିଶ  and 𝐺(𝑥; 𝑐) = 1 − (1 + 𝑥௖)ିଵ , respectively, for c >  0. 
Therefore, the MO-TII-TL-LLoG distribution have cdf, pdf and hrf given by  
 

 𝐹ெைି்ூூି்௅ି௅௅௢ (𝑥; 𝛿, 𝑏, 𝑐) = 1 −
ఋ[ଵି(ଵି(ଵା௫೎)షభ)మ]್

ଵିఋഥ[ଵି(ଵି(ଵା௫೎)షభ)మ]್
, 

 
 

 𝑓ெைି்ூூି்௅ି௅ (𝑥; 𝛿, 𝑏, 𝑐) =
ଶఋ௕௖௫೎షభ(ଵା௫೎)షమ(ଵି(ଵା௫೎)షభ)

(ଵିఋഥ[ଵି(ଵି(ଵା௫೎)షభ)మ]್)మ
 

                                                   × [1 − (1 − (1 + 𝑥௖)ିଵ)ଶ]௕ିଵ 
 
and  

 ℎெைି்ூூି்௅ି௅௅௢ (𝑥; 𝛿, 𝑏, 𝑐) =
ଶఋ௕௖௫೎షభ(ଵା௫೎)షమ(ଵି(ଵା௫೎)షభ)

(ଵିఋഥ[ଵି(ଵି(ଵା௫೎)షభ)మ]್)
 , 

                                                    ×
[ଵି(ଵି(ଵା௫೎)షభ)మ]್షభ

(ఋ[ଵି(ଵି(ଵା௫೎)షభ)మ]್)
 

 
respectively, for 𝛿, b, c > 0. Plots for the MO-TII-TL-LLoG pdf shows that the distribution can 
take various shapes that include: reverse-J, J, almost symmetric and left or right-skewed. The 
hazard rate function exhibits both monotonic and non-monotonic hazards rate shapes. 
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  Figure 2 Pdf and hrf plots for the MO-TII-TL-LLoG distribution 
 

      3.3  Marshall-Olkin-Type II-Topp-Leone-Uniform (MO-TII-TL-U) 
Distribution 

 
Consider the Uniform distribution as the baseline distribution with pdf and cdf given by 𝑔(𝑥; 𝜃) =
1/𝜃 and 𝐺(𝑥; 𝜃) = 𝑥/𝜃, respectively, for 0 < 𝑥 < 𝜃. Therefore, the MO-TII-TL-U distribution 
have cdf, pdf and hrf given by  

 𝐹ெைି்ூூି்௅ି (𝑥; 𝛿, 𝑏, 𝜃) = 1 −
ఋ[ଵି(௫/ఏ)మ]್

ଵିఋഥ[ଵି(௫/ఏ)మ]್
, 

 
 

 𝑓ெைି்ூூି்௅ି (𝑥; 𝛿, 𝑏, 𝜃) =
ଶఋ (ଵ/ఏ)(௫/ఏ)[ଵି(௫/ఏ)మ]್షభ

(ଵିఋഥ[ଵି(௫/ఏ)మ]್)మ
 

 
and  

 ℎெைି்ூூି்௅ି (𝑥; 𝛿, 𝑏, 𝜃) =
ଶఋ (ଵ/ఏ)(௫/ఏ)[ଵି(௫/ఏ)మ]್షభ

(ଵିఋഥ[ଵି(௫/ఏ)మ]್)(ఋ[ଵି(௫/ఏ)మ]್)
 , 

 
respectively, for 𝛿, b, 𝜆 > 0.  Figures 3 shows that the pdf of the MO-TII-TL-U can take various 
shapes that includes right or left-skewed, J and unimodal. The hrf shows J, increasing, upside-
down bathtub and upside-down bathtub followed by bathtub shapes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Figure 3 Pdf and hrf plots for the MO-TII-TL-U distribution 
 
4  Statistical Properties  
 

The distribution of the ith order statistics, Rényi entropy, moments and the quantile function of the 
MO-TII-TL-G family of distributions are presented in this section. 
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      4.1  Distribution of Order Statistics 
Suppose that 𝑋ଵ, 𝑋ଶ, . . . , 𝑋௡  are independent and identically distributed (iid) random variables 
from the MO-TII-TL-G family of distributions. The pdf of the 𝑖௧௛ order statistic X ௜:௡, is given by  

 
𝑓௜:௡(𝑥; 𝛿, 𝑏, 𝜉) = 𝛿𝑛! 𝑓 ூூି்௅ିீ(𝑥; 𝑏, 𝜉) ∑௡ି௜

௞ୀ଴
(ିଵ)ೖ

(௜ିଵ)!(௡ିଵ)!

×
ி೅಺಺ష೅ಽషಸ

ೖశ೔షభ (௫;௕,క)

[ଵିఋഥி೅಺಺ష೅ಽషಸ(௫;௕,క)]ೖశ೔షభ
.

 

 
If 𝛿 ∈ (0,1), we have  

 𝑓௜:௡(𝑥; 𝛿, 𝑏, 𝜉) = 𝑓 ூூି்௅ିீ(𝑥; 𝑏, 𝜉) ∑ஶ
௝ୀ଴ ∑௡ି௜

௞ୀ଴ ∑௝
௟ୀ଴ 𝐵௝,௞,௟𝐹 ூூି்௅ିீ

௝ା௞ି௟ା௜ିଵ
(𝑥; 𝑏, 𝜉), (10) 

 

where 𝐵௝,௞,௟ = 𝐵௝,௞,௟(𝛿) = 𝛿𝑛! (−1)௝ା௞ିଵ(1 − 𝛿)௝ ቀ
𝑗
𝑘

ቁ ൬
𝑘 + 𝑖 + 𝑗
𝑗

൰. 

Substituting the pdf and cdf of the TII-TL-G distribution into equation (10) we get  
 

 𝑓௜:௡(𝑥; 𝛿, 𝑏, 𝜉) = 2𝑏𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)[1 − 𝐺ଶ(𝑥; 𝜉)]௕ିଵ 
                            × ∑ஶ

௝ୀ଴ ∑௡ି௜
௞ୀ଴ ∑௝

௟ୀ଴ 𝐵௝,௞,௟(1 − [1 − 𝐺ଶ(𝑥; 𝜉)]௕)௝ା௞ି௟ା௜ିଵ. 
 
Using the series of expansions,  

(1 − [1 − 𝐺ଶ(𝑥; 𝜉)]௕)௝ା௞ି௟ା௜ିଵ = ∑ஶ
௠ୀ଴ (−1)௠ ቀ

𝑗 + 𝑘 − 𝑙 + 𝑖 − 1
𝑚

ቁ [1 − 𝐺ଶ(𝑥; 𝜉)]௕௠ 

 
and  

 [1 − 𝐺ଶ(𝑥; 𝜉)]௕(௠ାଵ)ିଵ = ∑ஶ
௣ୀ଴ (−1)௣ ൬

𝑏(𝑚 + 1) − 1
𝑝

൰ 𝐺ଶ௣(𝑥; 𝜉), 

 
we get  

 𝑓௜:௡(𝑥; 𝛿, 𝑏, 𝜉) = ∑ஶ
௝,௠,௣ୀ଴ ∑௡ି௜

௞ୀ଴ ∑௝
௟ୀ଴

ଶ௕(ିଵ)೘శ೛஻ೕ,ೖ,೗

ଶ௣ାଶ
ቀ

𝑗 + 𝑘 − 𝑙 + 𝑖 − 1
𝑚

ቁ 

                            × ൬
𝑏(𝑚 + 1) − 1
𝑝

൰ (2𝑝 + 2)𝑔(𝑥; 𝜉)𝐺ଶ௣ାଵ(𝑥; 𝜉) 

                            = ∑ஶ
௣ୀ଴ 𝐵௣

∗𝑔௣(𝑥; 𝜉), 
 
where  

 𝐵௣
∗ = ∑ஶ

௝,௠ୀ଴ ∑௡ି௜
௞ୀ଴ ∑௝

௟ୀ଴

ଶ௕(ିଵ)೘శ೛஻ೕ,ೖ,೗

ଶ௣ାଶ
ቀ

𝑗 + 𝑘 − 𝑙 + 𝑖 − 1
𝑚

ቁ ൬
𝑏(𝑚 + 1) − 1
𝑝

൰ 

 
and 𝑔௣(𝑥; 𝜉) = (2𝑝 + 2)𝑔(𝑥; 𝜉)𝐺ଶ௣ାଵ(𝑥; 𝜉)  is an Exp-G distribution with power parameter 
( 2𝑝 + 2 ). Therefore, the distribution of the order statistics of the MO-TII-TL-G family of 
distributions can be obtained from those of the Exp-G distribution with parameter (2𝑝 + 2). 

 

 For 𝛿 > 1, we write 1 − 𝛿̅𝐹்ூூି்௅ିீ(𝑥; 𝑏, 𝜉) = 𝛿[1 −
(ఋିଵ)ி೅಺಺ష೅ಽషಸ(௫;௕,క)

ఋ
], so that  

 𝑓௜:௡(𝑥; 𝛿, 𝑏, 𝜉) = 𝑓 ூூି்௅ିீ(𝑥; 𝑏, 𝜉) ∑ஶ
௝ୀ଴ ∑௡ି௜

௞ୀ଴ 𝑈௝,௞𝐹 ூூି்௅ିீ
௝ା௞ା௜ିଵ

(𝑥; 𝑏, 𝜉), 
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 where 𝑈௝,௞ = 𝑈௝,௞(𝛿) =
(ିଵ)ೖ(ఋିଵ)ೕ௡!

ఋೖశೕశ೔(௜ିଵ)!(௡ି௜)!
൬

𝑘 + 𝑖 + 𝑗
𝑗

൰. 

 
                𝑓௜:௡(𝑥; 𝛿, 𝑏, 𝜉) = 2𝑏𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)[1 − 𝐺ଶ(𝑥; 𝜉)]௕ିଵ 

                            × ∑ஶ
௝ୀ଴ ∑௡ି௜

௞ୀ଴ 𝑈௝,௞(1 − [1 − 𝐺ଶ(𝑥; 𝜉)]௕)௝ା௞ା௜ିଵ. 
 
Applying the series of expansions,  

 (1 − [1 − 𝐺ଶ(𝑥; 𝜉)]௕)௝ା௞ା௜ିଵ = ∑ஶ
௠ୀ଴ (−1)௠ ቀ

𝑗 + 𝑘 + 𝑖 − 1
𝑚

ቁ [1 − 𝐺ଶ(𝑥; 𝜉)]௕௠ 

 
and  

 [1 − 𝐺ଶ(𝑥; 𝜉)]௕(௠ାଵ)ିଵ = ∑ஶ
௣ୀ଴ (−1)௣ ൬

𝑏(𝑚 + 1) − 1
𝑝

൰ 𝐺ଶ௣(𝑥; 𝜉), 

 
we obtain  

 𝑓௜:௡(𝑥; 𝛿, 𝑏, 𝜉) = ∑ஶ
௝,௠,௣ୀ଴ ∑௡ି௜

௞ୀ଴

ଶ௕(ିଵ)೘శ೛௎ೕ,ೖ

ଶ௣ାଶ
ቀ

𝑗 + 𝑘 + 𝑖 − 1
𝑚

ቁ 

                            × ൬
𝑏(𝑚 + 1) − 1
𝑝

൰ (2𝑝 + 2)𝑔(𝑥; 𝜉)𝐺ଶ௣ାଵ(𝑥; 𝜉) 

                            = ∑ஶ
௣ୀ଴ 𝑈௣

∗𝑔௣(𝑥; 𝜉), 
 
where  

 𝑈௣
∗ = ∑ஶ

௝,௠ୀ଴ ∑௡ି௜
௞ୀ଴

ଶ௕(ିଵ)೘శ೛௎ೕ,ೖ

ଶ௣ାଶ
ቀ

𝑗 + 𝑘 + 𝑖 − 1
𝑚

ቁ ൬
𝑏(𝑚 + 1) − 1
𝑝

൰ 

 
and 𝑔௣(𝑥; 𝜉) = (2𝑝 + 2)𝑔(𝑥; 𝜉)𝐺ଶ௣ାଵ(𝑥; 𝜉)  is an Exp-G distribution with power parameter 
(2𝑝 + 2). 

 
Also, for 𝛿 > 1, the distribution of the order statistics of MO-TII-TL-G family of distributions 
can be obtained from those of the Exp-G since the distribution of the 𝑖th order statistic is an infinite 
linear combination of Exp-G densities with parameter (2𝑝 + 2). 

 
4.2  Entropy 
 

Entropy measures variation of uncertainty of a random variable. Rényi entropy [23] is a 
generalization of Shannon entropy [26]. Rényi entropy is defined to be  
 

 𝐼ோ(𝑣) =
ଵ

ଵିజ
log(∫

ஶ

଴
𝑓ெைି்ூூି்௅ି

௩ (𝑥; 𝛿, 𝑏, 𝜉)𝑑𝑥), 

 
where 𝜐 > 0, and 𝜐 ≠ 1. Using expansion (5), for 𝛿 ∈ (0,1)  

      𝑓ெைି்ூூି்௅ି
௩ (𝑥; 𝛿, 𝑏, 𝜉) =   

ఋഔ௙೅಺಺ష೅ಽషಸ
ഔ (௫;௕,క)

୻(ଶజ)
∑ஶ

௝ୀ଴ (1 − 𝛿)௝Γ(2𝜐 + 𝑗) 

                                                  ×   [భషಷ೅಺಺ష೅ಽషಸ(ೣ;್,഍)]ೕ

ೕ!
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and for 𝛿 > 1 

𝑓௩(𝑥; 𝛿, 𝑏, 𝜉)  =
ఋഔ௙೅಺಺ష೅ಽషಸ

ഔ (௫;௕,క)

ఋഔ୻(ଶజ)
∑ஶ

௝ୀ଴ (𝛿 − 1)௝Γ(2𝜐 + 𝑗)    

 

                                   ×   
[ி೅಺಺ష೅ಽషಸ(௫;௕,క)]ೕ

௝!
 

 
Therefore, the Rényi entropy for 𝛿 ∈ (0,1) is  
 

 𝐼ோ(𝑣) =
ଵ

ଵିజ
log(∑ஶ

௝ୀ଴ 𝑒௝ ∫
ஶ

଴
𝑓 ூூି்௅ିீ

జ (𝑥; 𝑏, 𝜉)[1 − 𝐹்ூூି்௅ିீ(𝑥; 𝑏, 𝜉)]௝𝑑𝑥), 

 

where 𝑒௝ = 𝑒௝(𝛿) =
ఋഔ(ଵିఋ)ೕ୻(ଶజା௝)

୻(ଶజ)௝!
 .  

 
Thus  

 𝐼ோ(𝑣) =
ଵ

ଵିజ
log(∑ஶ

௝ୀ଴ 𝑒௝ ∫
ஶ

଴
(2𝑏)జ𝑔జ(𝑥; 𝜉)𝐺జ(𝑥; 𝜉)[1 − 𝐺ଶ(𝑥; 𝜉)]జ(௕ିଵ) 

             × [1 − 𝐺ଶ(𝑥; 𝜉)]௕௝𝑑𝑥). 
 
Using the generalized binomial expansion  

 [1 − 𝐺ଶ(𝑥; 𝜉)]௕(௝ାజ)ିజ = ∑ஶ
௞ୀ଴ (−1)௞ ቀ

𝑏(𝑗 + 𝜐) − 𝜐
𝑘

ቁ 𝐺ଶ௞(𝑥; 𝜉), 

 
we can write  

 𝐼ோ(𝑣) =
ଵ

ଵିజ
log(∑ஶ

௝,௞ୀ଴ 𝑒௝
(ଶ௕)ഔ(ିଵ)ೖ

(
మೖశഔ

ഔ
ାଵ)ഔ

ቀ
𝑏(𝑗 + 𝜐) − 𝜐
𝑘

ቁ 

             × ∫
ஶ

଴
[(

ଶ௞ାజ

జ
+ 1)𝑔(𝑥; 𝜉)𝐺

మೖశഔ

ഔ (𝑥; 𝜉)]జ𝑑𝑥) 

             =
ଵ

ଵିజ
log(∑ஶ

௞ୀ଴ 𝑒௞
∗𝑒(ଵିజ)ூೃಶಸ), 

 
where 

 𝑒௞
∗ = ∑ஶ

௝ୀ଴ 𝑒௝
(ଶ௕)ഔ(ିଵ)ೖ

(
మೖశഔ

ഔ
ାଵ)ഔ

ቀ
𝑏(𝑗 + 𝜐) − 𝜐
𝑘

ቁ 

 
and  

 𝐼ோாீ =
ଵ

ଵିజ
log(∫

ஶ

଴
[(

ଶ௞ାజ

జ
+ 1)𝑔(𝑥; 𝜉)𝐺

మೖశഔ

ഔ (𝑥; 𝜉)]జ𝑑𝑥) 

 

is the Rényi entropy of the Exp-G distribution with power parameter 
ଶ௞ାజ

జ
+ 1.  

 
For 𝛿 > 1,  

 𝐼ோ(𝑣) =
ଵ

ଵିజ
log(∑ஶ

௝ୀ଴ ℎ௝ ∫
ஶ

଴
𝑓 ூூି்௅ିீ

జ (𝑥; 𝑏, 𝜉)𝐹 ூூି்௅ିீ
௝

(𝑥; 𝑏, 𝜉)𝑑𝑥), 

 

where ℎ௝ = ℎ௝(𝛿) =
(ఋିଵ)ೕ୻(ଶజା௝)

ఋഔశೕ୻(ଶజ)௝!
 .  
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Now 
 

                             𝐼ோ(𝑣) =
ଵ

ଵିజ
log(∑ஶ

௝ୀ଴ ℎ௝ ∫
ஶ

଴
(2𝑏)జ𝑔జ(𝑥; 𝜉)𝐺జ(𝑥; 𝜉)[1 − 𝐺ଶ(𝑥; 𝜉)]జ(௕ିଵ) 

              × (1 − [1 − 𝐺ଶ(𝑥; 𝜉)]௕)௝𝑑𝑥). 
Applying the generalized binomial expansions  

 (1 − [1 − 𝐺ଶ(𝑥; 𝜉)]௕)௝ = ∑ஶ
௞ୀ଴ (−1)௞ ቀ

𝑗
𝑘

ቁ [1 − 𝐺ଶ(𝑥; 𝜉)]௕௞ 

 
and  

 [1 − 𝐺ଶ(𝑥; 𝜉)]௕(௞ାజ)ିజ = ∑ஶ
௟ୀ଴ (−1)௟ ቀ

𝑏(𝑘 + 𝜐) − 𝜐
𝑙

ቁ 𝐺ଶ௟(𝑥; 𝜉), 

 
we get  

 𝐼ோ(𝑣) =
ଵ

ଵିజ
log(∑ஶ

௝,௞,௟ୀ଴ ℎ௝
(ଶ௕)ഔ(ିଵ)ೖశ೗

(
మೖశഔ

ഔ
ାଵ)ഔ

ቀ
𝑗
𝑘

ቁ ቀ
𝑏(𝑘 + 𝜐) − 𝜐
𝑙

ቁ 

             × ∫
ஶ

଴
[(

ଶ௟ାజ

జ
+ 1)𝑔(𝑥; 𝜉)𝐺

మ೗శഔ

ഔ (𝑥; 𝜉)]జ𝑑𝑥) 

             =
ଵ

ଵିజ
log(∑ஶ

௟ୀ଴ ℎ௟
∗𝑒(ଵିజ)ூೃಶಸ), 

 
where 

 ℎ௟
∗ = ∑ஶ

௝,௞ୀ଴ ℎ௝
(ଶ௕)ഔ(ିଵ)ೖశ೗

(
మೖశഔ

ഔ
ାଵ)ഔ

ቀ
𝑗
𝑘

ቁ ቀ
𝑏(𝑘 + 𝜐) − 𝜐
𝑙

ቁ 

 
and  

 𝐼ோாீ =
ଵ

ଵିజ
log(∫

ஶ

଴
[(

ଶ௟ାజ

జ
+ 1)𝑔(𝑥; 𝜉)𝐺

మ೗శഔ

ഔ (𝑥; 𝜉)]జ𝑑𝑥) 

 

is the Rényi entropy of the Exp-G distribution with power parameter 
ଶ௟ାజ

జ
+ 1. 

 
4.3  Moments and Generating Functions 
 

Let 𝑋 ∼ MO-TII-TL-G(𝛿, 𝑏, 𝜉) and 𝑌 ∼ EXP-G(2𝑚 + 1), then the 𝑟௧௛  moment of X can be 
obtained as follows. For 𝛿 ∈ (0,1),  

 𝐸[𝑋௥] = ∑ஶ
௠ୀ଴ 𝑤௠

∗ 𝐸[𝑌௥], 
 
where 𝑤௠

∗  is given by equation (7) and 𝐸[𝑌௥] is the 𝑟௧௛ moment of 𝑌 which follows an Exp-G 
distribution with power parameter (2𝑚 + 1). 

  
For 𝛿 > 1,  

 𝐸[𝑋௥] = ∑ஶ
௠ୀ଴ 𝑣௠

∗ 𝐸[𝑌௥], 
 
where 𝑣௠

∗  is given by equation (9) and 𝐸[𝑌௥] is the 𝑟௧௛ moment of 𝑌 which follows an Exp-G 
distribution with power parameter (2𝑚 + 1). 
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The moment generating function (mgf) of 𝑋 is given by: For 𝛿 ∈ (0,1)  
 𝑀௑(𝑡) = ∑ஶ

௠ୀ଴ 𝑤௠
∗ 𝐸[𝑒௧௒], 

 
where 𝐸[𝑒௧௒] is the mgf of the Exp-G distribution with power parameter (2𝑚 + 1) and 𝑤௠

∗  is 
given by equation (7). 
For 𝛿 > 1, 

 𝑀௑(𝑡) = ∑ஶ
௠ୀ଴ 𝑣௠

∗ 𝐸[𝑒௧௒], 
 
where 𝐸[𝑒௧௒] is the mgf of the Exp-G distribution with power parameter (2𝑚 + 1) and 𝑣௠

∗  is 
given by equation (9).  

 
A table of moments, standard deviation (SD), coefficient of variation (CV), coefficient of 
skewness (CS), and coefficient of kurtosis (CK) for selected parameter values of the MO-TII-TL-
W distribution are given in Table 1. 

 
Table 1 Table of Moments for Selected Parameters of the MO-TII-TL-W Distribution 

   
                                    (𝛿, b, 𝜆) 

(1.5,0.9,0.3) (2,0.9,0.2) (1.5,0.7,0.5) (1.1,2,0.2) (1.2,2.9,0.4) 
E(X) 0.0849 0.0526 0.0955 0.1085 0.2142 

E(X ଶ) 0.0491 0.0294 0.0599 0.0565 0.1158 
E(X ଷ) 0.0345 0.0204 0.0435 0.0380 0.0779 
E(X ସ) 0.0265 0.0156 0.0341 0.0286 0.0584 
E(X ହ) 0.0215 0.0126 0.0280 0.0229 0.0466 

SD 0.2047 0.1632 0.2253 0.2116 0.2645 
CV 2.4110 3.1042 2.3583 1.9504 1.2352 
CS 2.7000 3.6886 2.4518 2.3399 1.2518 
CK 9.5510 16.5919 7.9505 7.8199 3.5090 
  

3D plots of skewness and kurtosis for the MO-TII-TL-W distribution are given in Figures 4 and 
5. We observe that   

 When we fix the parameters for b and 𝜆 the skewness and kurtosis of MO-TII-TL-W 
increases as 𝛿 increases.  

 When we fix the parameters for 𝛿  and 𝜆  the skewness and kurtosis MO-TII-TL-W 
increases as b increases. 
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   Figure 4 Plots of skewness and kurtosis for the MO-TII-TL-W distribtion  
 
 

   
 

 
 
 
 
 
 
 
 
 
 
 

   Figure 5 Plots of skewness and kurtosis for the MO-TII-TL-W distribtion 
   

4.4  Quantile Function 
The quantile function of the MO-TII-TL-G family of distributions is obtained by solving the non-
linear equation:  

 1 −
ఋ[ଵିீమ(௫;క)]್

ଵିఋഥ[ଵିீమ(௫;క)]್
= 𝑢, 

 
for 0 ≤ 𝑢 ≤ 1. Simplifying the equation, we otain 

 
 (1 − 𝑢) − (1 − 𝑢)𝛿̅[1 − 𝐺ଶ(𝑥; 𝜉)]௕ = 𝛿[1 − 𝐺ଶ(𝑥; 𝜉)]௕ , 

 
such that  

 
ଵି௨

ఋഥ(ଵି௨)
= [1 − 𝐺ଶ(𝑥; 𝜉)]௕ . 

 
Further simplifying the equation yields  

 (1 − [
ଵି௨

ఋഥ(ଵି௨)
]

భ

್)
భ

మ = 𝐺ଶ(𝑥; 𝜉). 

 
Therefore, the quantiles of the MO-TII-TL-G family of distributions may be obtained by solving 
the non-linear equation  

 𝑥(𝑢) = 𝐺ିଵ(1 − [
ଵି௨

ఋഥ(ଵି௨)
]

భ

್)
భ

మ. 

 
The equation can be solved using software like R, SAS or MATLAB. Quantiles for selected 
parameter values for the MO-TII-TL-W distribution are shown in Table 2. 

 

 



                                     JPSS    Vol. 20 No. 1    August 2022     pp. 127-149 

140 
 

       
 
 
 
 
    Table 2 Table of Quantiles for Selected Parameters of the MO-TII-TL-W Distribution 

    
                                  (𝛿, b, 𝜆) 

U (1.1,1.5,0.9) (1.2,0.1,1.1) (0.5,0.3,0.8) (0.4,1.7,0.8) (0.5,0.2,1.2) 
0.1 0.2795 1.7615 0.4427 0.1116 0.7135 
0.2 0.4515 2.9591 0.8084 0.1910 1.0827 
0.3 0.6166 4.1925 1.2195 0.2730 1.4424 
0.4 0.7886 5.5368 1.7135 0.3653 1.8308 
0.5 0.9777 7.0553 2.3378 0.4750 2.2780 
0.6 1.1964 8.8376 3.1709 0.6132 2.8240 
0.7 1.4658 11.0446 4.3652 0.8005 3.5371 
0.8 1.8316 14.0305 6.2799 1.0836 4.5652 
0.9 2.4383 18.9112 10.1294 1.6166 6.3653 

  
   

        5  Maximum Likelihood Estimation 
 

Let 𝑋௜ ∼ 𝑀𝑂 − 𝑇𝐼𝐼 − 𝑇𝐿 − 𝐺(𝛿, 𝑏, 𝜉 ) and Δ = (𝛿, 𝑏, 𝜉)்  be the parameter vector. The log-
likelihood ℓ = ℓ(Δ) from a random sample of size n is given by 
  

 ℓ(Δ) = 𝑛log(2𝑏𝛿) + ∑௡
௜ୀଵ log[𝑔(𝑥௜; 𝜉)] + ∑௡

௜ୀଵ log[𝐺(𝑥௜; 𝜉)] 
           +(𝑏 − 1) ∑௡

௜ୀଵ log[1 − 𝐺ଶ(𝑥௜; 𝜉)] − 2 ∑௡
௜ୀଵ log[1 − 𝛿̅[1 − 𝐺ଶ(𝑥௜; 𝜉)]௕]. 

 

The score vector 𝑈 = (
డℓ

డఋ
,

డℓ

డ௕
,

డℓ

డకೖ
) has elements given by  

 

 
డℓ

డఋ
=

௡

ఋ
− 2 ∑௡

௜ୀଵ
[ଵିீమ(௫೔;క)]್

[ଵିఋഥ[ଵିீమ(௫೔;క)]್]
, 

 

 
డℓ

డ௕
=

௡

௕
+ ∑௡

௜ୀଵ log[1 − 𝐺ଶ(𝑥௜; 𝜉)] − 2 ∑௡
௜ୀଵ

[ଵିீమ(௫೔;క)]್୪୭୥[ଵିீమ(௫;క)]

[ଵିఋഥ[ଵିீమ(௫;క)]್]
 

and  

 
డℓ

డకೖ
= ∑௡

௜ୀଵ

ങ

ങ഍ೖ
௚(௫೔;క)

௚(௫೔;క)
+ ∑௡

௜ୀଵ

ങ

ങ഍ೖ
ீ(௫೔;క)

ீ(௫೔;క)
+ (𝑏 − 1) ∑௡

௜ୀଵ

ങ

ങ഍ೖ
[ଵିீమ(௫೔;క)]

[ଵିீమ(௫೔;క)]
 

        −2 ∑௡
௜ୀଵ

ങ

ങ഍ೖ
[ଵିఋഥ[ଵିீమ(௫೔;క)]್]

[ଵିఋഥ[ଵିீమ(௫೔;క)]್]
. 

 
The maximum likelihood estimates of the parameters, denoted by Δ෡ is obtained by solving the 

nonlinear equation (
డℓ

డఋ
,

డℓ

డ௕
,

డℓ

డకೖ
)் =0 using a numerical method such as the Newton-Raphson 

procedure. The multivariate normal distribution 𝑁௤ାଶ(0, 𝐽(Δ෡)ିଵ), where the mean vector 0 = (0, 
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0, 0)T and 𝐽(Δ෡)ିଵ  is the observed Fisher information matrix evaluated at Δ෡ , can be used to 
construct confidence intervals and confidence regions for the model parameters. 
 

 
 
6  Simulation Study 
 

In this section, a simulation study was carried out to assess the performance of the maximum 
likelihood estimates. Different simulations were conducted for the sample sizes n= 100, 200, 400, 
800, 1000 and 1200, for N=1000 for each sample. We estimate the mean, root mean square error 
(RMSE), and average bias (ABIAS). The ABIAS and RMSE for the estimated parameter, are given 
by  

 𝐴𝐵𝐼𝐴𝑆(𝜃෠) =
ଵ

ே
∑ே

௜ୀଵ (𝜃෠௜ − 𝜃)    𝑎𝑛𝑑    𝑅𝑀𝑆𝐸(𝜃෠) = ට
∑ಿ

೔సభ (ఏ෡೔ିఏ)మ

ே
, 

 
respectively. The results of the simulation study are shown in Tables 3 and 4 and from the results 
we see that as the sample size increases, the mean approximates the true parameter values, the 
RMSE and bias decay towards zero for all parameters. Consequently, we conclude that the MO-
TII-TL-W model gives out consistent model parameter estimates. 

  
    Table 3 Monte Carlo Simulation Results for MO-TII-TL-W Distribution: Mean,  
    RMSE and Average Bias 

    
  
  

 
𝛿 = 0.5, 𝑏 = 0.5, 𝜆 = 0.5 

 

 
𝛿 = 0.2, 𝑏 = 0.6, 𝜆 = 0.6 

 
  n Mean RMSE ABIAS Mean RMSE ABIAS 
  100 0.7653 0.6525 0.2653 0.3205 0.2903 0.1205 
 200 0.6435 0.3659 0.1435 0.2677 0.1616 0.0677 

𝛿 400 0.5632 0.2150 0.0632 0.2336 0.0995 0.0336 
 800 0.5272 0.1346 0.0272 0.2163 0.0572 0.0163 
 1000 0.5264 0.1268 0.0264 0.2125 0.0532 0.0125 
 1200 0.5170 0.1094 0.0170 0.2097 0.0494 0.0097 
  100 0.6564 0.3851 0.1564 0.7973 0.4672 0.1973 
 200 0.5834 0.2546 0.0834 0.7196 0.3185 0.1196 

𝛽 400 0.5380 0.1610 0.0380 0.6589 0.2088 0.0589 
 800 0.5186 0.1089 0.0186 0.6342 0.1292 0.0342 
 1000 0.5182 0.1026 0.0182 0.6251 0.1205 0.0251 
 1200 0.5099 0.0893 0.0099 0.6180 0.1115 0.0180 
  100 0.4664 0.0704 -0.0336 0.5773 0.0642 -0.0227 
 200 0.4782 0.0532 -0.0218 0.5796 0.0486 -0.0204 

𝜆 400 0.4859 0.0361 -0.0141 0.5844 0.0344 -0.0156 
 800 0.4910 0.0268 -0.0090 0.5888 0.0233 -0.0112 
 1000 0.4909 0.0246 -0.0092 0.5899 0.0221 -0.0101 
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 1200 0.4937 0.0220 -0.0063 0.5915 0.0205 -0.0085 
 
 

     
 
    Table 4 Monte Carlo Simulation Results for MO-TII-TL-W Distribution: Mean,  
     RMSE and Average Bias 

 
 
 

  
𝛿 = 0.2, 𝑏 = 1.1, 𝜆 = 1.1 

 

 
𝛿 = 0.9, 𝑏 = 0.2, 𝜆 = 0.2 

 
 n Mean RMSE ABIAS Mean RMSE Bias 
 100 0.2988 0.3088 0.0988 1.6470 1.3322 0.7470 
 200 0.2477 0.1600 0.0477 1.1732 0.4518 0.2732 

𝛿 400 0.2223 0.0953 0.0223 1.0286 0.2356 0.1286 
 800 0.2117 0.0603 0.0117 0.9581 0.1338 0.0581 
 1000 0.2093 0.0537 0.0093 0.9372 0.0447 0.0372 
 1200 0.2044 0.0480 0.0044 0.9185 0.0992 0.0185 
 100 1.3267 0.7280 0.2267 0.3230 0.2169 0.1230 
 200 1.2255 0.5035 0.1255 0.2430 0.0853 0.0430 

𝛽 400 1.1573 0.3345 0.0573 0.2196 0.0484 0.0196 
 800 1.1354 0.2251 0.0354 0.2076 0.0233 0.0076 
 1000 1.1290 0.2025 0.0290 0.2020 0.0056 0.0020 
 1200 1.1095 0.1855 0.0095 0.2104 0.0222 0.0104 
 100 1.0952 0.1276 -0.0048 0.1811 0.0293 -0.0189 
 200 1.0996 0.0933 -0.0004 0.1912 0.0161 -0.0088 

𝜆 400 1.0991 0.0660 -0.0009 0.1951 0.0106 -0.0049 
 800 1.0978 0.0456 -0.0022 0.1976 0.0048 -0.0024 
 1000 1.0984 0.0410 -0.0016 0.1990 0.0030 -0.0010 
 1200 1.0999 0.0378 -0.0001 0.1966 0.0056 -0.0034 

 
   

       7  Applications 
 

In this section, we present two real data examples to illustrate the applicability of the MO-TII-TL-
W distribution. Model parameters were estimated using the maximum likelihood estimation 
technique, with the aid of the R software for fitting the data and model diagnostics. The 
performance of the models were assessed using the following goodness-of-fit statistics: -
2loglikelihood (-2 log L), Akaike Information Criterion (AIC), Consistent Akaike Information 
Criterion (CAIC), Bayesian Information Criterion (BIC), Cramér-von Mises (𝑊∗) and Andersen-
Darling (𝐴∗) (as described by Chen and Balakrishnan [11]), Kolmogorov-Smirnov (K-S) statistic 
and its p-value. The smaller the goodness-of-fit statistics, the better the model. 
 
We present the model parameters estimates (standard errors in parenthesis) and the goodness-of-
fit-statistics in Tables 5, 6, 7 and 8. In addition, the plots of the fitted densities and probability 
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plots (Chambers et al. [10]) are provided to demonstrate how well our model fits the two data sets. 
 
The non-nested models compared to the MO-TI-TL-W distribution are the Weibull-exponential 
(WE) distribution by Oguntunde et al. [21], Odd Lindley Fréchet (OLiFr) distribution by Mansour 
et al. [17], Type II generalized Topp-Leone-Rayleigh (TIGTL-R) distribution by Hassan et al. [14], 
Topp-Leone generalized exponential (TL-GE) distribution by Sangsanit and Bodhisuwan [25], 
Marshall-Olkin extended Fréchet (MOEFr) and Marshall-Olkin extended generalized exponential 
(MOEGE) distribution given by Barreto-Souza et al. [8]. The pdfs of the non-nested models are 
given by:  

 𝑓ௐா(𝑥; 𝛼, 𝛽, 𝜆) = 𝛼𝛽(𝜆𝑒ିఒ )[
(ଵି௘షഊೣ)ഁషభ

(௘షഊೣ)ഁశభ
]𝑒

ିఈ[
(భష೐షഊೣ)

(೐షഊೣ)
]ഁ

, 

 
for 𝛼, 𝛽, 𝜆 > 0,  

𝑓ை௅௜ி௥(𝑥; 𝜃, 𝛼, 𝛽) =
𝜃𝛼ఉ𝜃ଶ𝑥ିఉିଵ𝑒ି(

ఈ
௫

)ഁ

(1 + 𝜃)(1 − 𝑒ି(
ఈ
௫

)ഁ
)ଷ

exp(
−𝜃𝑒ି(

ఈ
௫

)ഁ

1 − 𝑒ି(
ఈ
௫

)ഁ
), 

 
for 𝜃, 𝛼, 𝛽 > 0,  

 𝑓 ூூீ்௅ିோ(𝑥; 𝛼, 𝛽, 𝛿) = 4𝛼𝛽𝛿𝑥𝑒ିఋమ
[1 − 𝑒ିఋమ

]ଶఉିଵ(1 − (1 − 𝑒ିఋమ
)ଶఉ)ఈିଵ, 

 
for 𝛼, 𝛽, 𝛿 > 0,  

 𝑓 ௅ିீ (𝑥; 𝛼, 𝛽, 𝜆) = 2𝛼𝛽𝜆𝑒ିఒ௫(1 − (1 − 𝑒ିఒ௫)ఉ(1 − 𝑒ିఒ௫)ఉఈିଵ 
× (2 − (1 −  𝑒ିఒ௫)ఉ))ఈିଵ, 

 
for 𝛼, 𝛽, 𝜆 > 0,  

 𝑓ெைாி௥(𝑥; 𝛼, 𝛿, 𝜆) =
ఈఒఋഊ௫ష(ഊశభ)೐ష(ഃ/ೣ)ഊ

[ଵିఈഥ(ଵି௘ష(ഃ/ೣ)ഊ
)]మ

, 

 
for 𝛼, 𝛿, 𝜆 > 0, and  

 𝑓ெைாீா(𝑥; 𝛼, 𝛾, 𝜆) =
ఈఊ௘షഊೣ(ଵି௘షഊೣ)ംషభ

(ଵିఈഥ[ଵି௘షഊೣ])మ
 

 
for 𝛼, 𝛾, 𝜆 > 0. 

 
7.1  Silicon Nitride Data 
 

The first data set is on fracture toughness of silicon nitride measured in MPa 𝑚ଵ/ଶ. The data set 
was analyzed by Nadarajah and Kotz [20] and also by Ali et al. [3]. The data are 5.50, 5.00, 4.90, 
6.40, 5.10, 5.20, 5.20, 5.00, 4.70, 4.00, 4.50, 4.20, 4.10, 4.56, 5.01, 4.70, 3.13, 3.12, 2.68, 2.77, 
2.70, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91, 2.66, 2.61, 1.68, 2.04, 2.08, 2.13, 3.80, 3.73, 3.71, 3.28, 
3.90, 4.00, 3.80, 4.10, 3.90, 4.05, 4.00, 3.95, 4.00, 4.50, 4.50, 4.20, 4.55, 4.65, 4.10, 4.25, 4.30, 
4.50, 4.70, 5.15, 4.30, 4.50, 4.90, 5.00, 5.35, 5.15, 5.25, 5.80, 5.85, 5.90, 5.75, 6.25, 6.05, 5.90, 
3.60, 4.10, 4.50, 5.30, 4.85, 5.30, 5.45, 5.10, 5.30, 5.20, 5.30, 5.25, 4.75, 4.50, 4.20, 4.00, 4.15, 
4.25, 4.30, 3.75, 3.95, 3.51, 4.13, 5.40, 5.00, 2.10, 4.60, 3.20, 2.50, 4.10, 3.50, 3.20, 3.30, 4.60, 
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4.30, 4.30, 4.50, 5.50, 4.60, 4.90, 4.30, 3.00, 3.40, 3.70, 4.40, 4.90, 4.90, 5.00.   
         
         
 
        Table 5 Parameter estimates for various models fitted for silicon nitride data set 

 
Model 𝛿 𝛽 𝜆 

MO-TII-TL-

W 
71.2032 
(0.0014) 

0.3663 
(0.1045) 

1.6974 
(0.1695) 

 𝛼 𝛽 𝜆 

WE 
25.6129 
(0.0014) 

4.1621 
(0.2700) 

0.0798 
(0.0032) 

 𝜃 𝛼 𝛽 

OLiFr 
0.1591 

(0.1063) 
2.1951 

(0.4366) 
3.3991 

(0.2320) 

 𝛼 𝛽 𝛿 

TIIGTL-R 
3585.2000 

(2.1799 x 10-7) 
1.2646 

(0.0966) 
1.8076 x 10-3 

(4.4088 x 10-4) 

 𝛼 𝛽 𝜆 

TL-GE 
0.3892 

(0.2426) 
56.9230 

(42.6845) 
0.7549 

(0.0779) 

 𝛼 𝛿 𝜆 

MOEFr 
2407.7000 

(7.7867 x 10-6) 
1.4344 

(0.1296) 
7.0579 

(0.5495) 

 𝛼 𝛾 𝜆 

MOEGE 
0.0107 

(7.0715 x 10-3) 
20.7600 

(3.5685 x 10-5) 
1.7321 

(0.1434) 
 

Table 6 Goodness-of-fit statistics for various models fitted for silicon nitride data set 
 

Model -2 log L AIC AICC BIC W* A* KS P-value 
MO-TII-TL-

W  336.9 342.9 343.1 351.2 0.0460 0.3294 0.0473 0.9527 
WE 337.2 343.2 343.4 351.5 0.0820 0.4981 0.0689 0.6252 
OLIFr 339.2 345.2 345.4 353.5 0.1426 0.8740 0.0818 0.4037 
TIIGTL-R  337.5 343.5 343.7 351.8 0.0942 0.5795 0.0725 0.5599 
TL-GE 359.6 365.6 365.8 373.9 0.4620 2.7741 0.1414 0.01713 
MOEFr 356.6 362.6 362.9 371.0 38.2495 235.4782 0.9989 < 2.2 x10-16 
MOEGE 340.3 346.3 346.5 354.6 0.4722 2.9106 0.9893 < 2.2 x 10-16 
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The estimated variance-covariance for the MO-TII-TL-W model on silicon nitride data is given 
by 
 

                 ൥
   2.0274 × 10ି଺ −1.4830 × 10ିସ 2.4119 × 10ିସ

−1.4830 × 10ିସ    0.0109 −0.0176
   2.4119 × 10ିସ −0.0176    0.0287

൩ 

and the 95% confidence intervals for the model parameters are given by 𝛿 ∈ [71.2032 ± 
0.0028], b ∈ [0.3663 ± 0.2048] and 𝜆 ∈ [1.6974 ± 0.3323]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 6 Fitted densities and probability plots for silicon nitride data 
 
Based on the results of the goodness-of-fit statistics and the p-value shown in Tables 5 and 6, we 
conclude that the MO-TII-TL-W distribution performs better than the non-nested models 
considered in this paper. Figure 6 which shows the fitted densities and probability plots also shows 
that the MO-TII-TL-W model fit the silicon nitride data set better than the non-nested models. 

 
7.2  Kevlar 49/Epoxy Strands Failure at 90% Data 
 

The second data set is on 101 observations representing the stress-rupture life of kevlar 49/epoxy 
strands which are subjected to constant sustained pressure at the 90% stress level until all had 
failed. The failure times are in hours and are shown below (see Andrews and Herzberg [6] or 
Barlow et al. [7], for details): 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 
0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 
0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 
0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 
1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 
1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 
3.34, 4.20, 4.69, 7.89. 

 
The estimated variance-covariance for the MO-TII-TL-W model on kelvar data is given by 
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 ൥
  17.6587   5.8581 −0.3385
   5.8581   2.0343 −0.1162
−0.3385 −0.1162    0.0079

൩ 

 
and the 95% confidence intervals for the model parameters are given by 𝛿 ∈ [5.0534 ± 8.2364], 
b ∈ [4.4047 ± 2.7956] and 𝜆 ∈ [ 0.4231 ± 0.1744]. 
 
           Table 7 Parameter estimates for various models fitted for kelvar data set 
 

Model 𝛿 𝛽 𝜆 
MO-TII-TL-

W 
5.0534 

(4.2022) 
 

4.4047 
(1.4263) 

 

0.4231 
(0.0890) 

 

 𝛼 𝛽 𝜆 

WE 
147.49 

(1.6905 x 10-6) 
 

0.9232 
(0.0711) 

 

4.5027 x 10-3 

(1.7793 x 10-3) 
 

 𝜃 𝛼 𝛽 

OLiFr 
0.2650 

(0.1627) 
 

0.0377 
(0.0353) 

 

0.6349 
(0.0480) 

 

 𝛼 𝛽 𝛿 

TIIGTL-R 
41.4010 

(1.5381 x 10-6 
 

0.2278 
(0.0178) 

 

2.7764 x10-4 

(1.6758 x10-4) 
 

 𝛼 𝛽 𝜆 

TL-GE 
0.4742 

(0.5673) 
 

1.7241 
(1.9169) 

 

0.5110 
(0.1540) 

 

 𝛼 𝛿 𝜆 

MOEFr 

312.8500 
(4.4813 x 10-6) 

 

6.5773 x10-3 

(2.6809 x 10-3) 
 

1.2631 
(0.1033) 

 

 𝛼 𝛾 𝜆 

MOEGE 
0.5942 

(0.3306) 
 

0.7307 
(0.1849) 

 

1.0456 
(0.2071) 

 

 
 

   Table 8 Goodness-of-fit statistics for various models fitted for kelvar data set 
 

Model -2 log L AIC AICC BIC W* A* KS P-value 
MO-TII-TL-

W  204.1 210.1 210.4 217.9 0.1580 0.9161 0.0799 0.5400 
WE 206.0 212.0 212.2 219.8 0.1973 1.1051 0.0903 0.3820 
OLIFr 207.2 213.2 213.5 221.1 0.2858 1.5263 0.1065 0.2021 
TIIGTL-R  206.0 212.0 212.2 219.8 0.1922 1.0825 0.0898 0.3895 
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TL-GE 205.4 211.4 211.7 219.3 0.1518 0.8982 0.0801 0.5366 
MOEFr 225.2 231.2 231.5 239.1 33.5614 199.4422 0.9960 <2.2 x 10-16 
MOEGE 204.8 210.8 211 218.6 0.1568 1.4421 0.4186 8.882 x 10-16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 

     Figure 7 Fitted densities and probability plots for kelvar data 
   

Furthermore, the results of the goodness-of-fit statistics and the p-value shown in Tables 7 and 8 
also confirms that the MO-TII-TL-W distribution performs better than the non-nested models 
considered in this paper. Figure 7 which shows the fitted densities and probability plots also 
indicates that the MO-TII-TL-W model fit the kelvar data set better than the non-nested models. 

 
8  Concluding Remarks 

 
A new generalized distribution referred to as the Marshall-Olkin-Type II-Topp-Leone-G family of 
distributions is developed and presented. The MO-TII-TL-G family of distributions has hazard 
function with flexible behavior and can be expressed as an infinite linear combination of the Exp-
G distribution. Closed form expressions for the moments, distribution of order statistics and 
entropy were obtained. Maximum likelihood estimation method was used to estimate the model 
parameters. The performance of the special case of the MO-TII-TL-G distribution was examined 
by conducting various simulations for different sample sizes and lastly, the special case of the MO-
TII-TL-G distribution was fitted to two real data sets to illustrate the applicability and usefulness 
of the proposed family of distributions. 
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