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ABSTRACT  
Introductory regression books typically begin their derivation of the least squares matrix estimation formula 
by considering the simple linear regression model. We suggest beginning with the zero-intercept model 
which has advantages. We provide two examples of this approach, one of which is a new, non-calculus 
derivation using the Cauchy-Schwarz inequality. 
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1  Introduction 

  Linear regression is an essential modeling methodology and, typically, the first one 
students study in depth. In addition, the matrix formulation of linear regression is often students’ 
first encounter with treating samples as vectors. Given these facts, reconsidering how the matrix 
formulation of linear regression is taught in upper-level statistics courses seems worthwhile. 
Here we consider motivating and deriving the least squares estimation formula 𝜷෡ = (𝑿′𝑿)ିଵ𝑿′𝒚. 
In contrast to the standard approach which begins with the simple linear regression model 𝑦 =
𝛽଴ + 𝛽ଵ𝑥 + 𝜖, we suggest beginning with the zero-intercept model 𝑦 = 𝛽ଵ𝑥 + 𝜖 instead. We 
present two different ways to do this, one of which uses a new non-calculus derivation 
employing the Cauchy-Schwarz inequality. 
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2  Current approaches for deriving least squares estimates 

 Essentially all introductory regression textbooks begin with a discussion of the simple 
linear regression model 𝑦 = 𝛽଴ + 𝛽ଵ𝑥 + 𝜖 where 𝛽଴ and 𝛽ଵ are constants and 𝜖 ∼ Normal(𝜇 =
0, 𝜎ଶ) (e.g., Abraham and Ledolter 2006; Kutner, Nachtsheim, and Neter 2004; Mendenhall and 
Sincich 2020; Montgomery, Peck, and Vining 2021; Ryan 2009). One exception is Freund, 
Williams, and Sa (2006) who begin with the constant-only model 𝑦 = 𝜇 + 𝜖. While discussing 
the simple linear regression model, the equations for computing the least squares estimates 𝛽መ଴ and 
𝛽መଵ are derived. The standard approach is to use multivariate calculus methods to show that  

 

             𝛽መଵ =
∑(௫೔ି௫̄)(௬೔ି௬̄)

∑(௫೔ି௫̄)మ
,   and 

                  𝛽መ଴ = 𝑦̄ − 𝛽መଵ𝑥̄ 

minimize the residual sum of squares 𝑅𝑆𝑆൫𝛽෨଴, 𝛽෨ଵ൯ = ∑[𝑦௜ − ൫𝛽෨଴ + 𝛽෨ଵ𝑥௜൯]ଶ. Details of the second 
derivative test confirming that the critical point ൫𝛽መ଴, 𝛽መଵ൯ minimizes 𝑅𝑆𝑆൫𝛽෨଴, 𝛽෨ଵ൯ are typically 
omitted. 

A downside of this approach is that it assumes students have had multivariate calculus and 
are familiar with minimizing functions of two variables. This is problematic since multivariate 
calculus is not universally required for STEM majors - mathematics education majors for example 
- and is only recommended for students studying statistics (American Statistical Association 
Undergraduate Guidelines Workgroup 2014). In addition, students can be confused by the fact that 
𝑅𝑆𝑆൫𝛽෨଴, 𝛽෨ଵ൯ is differientiated with respect to 𝛽෨଴ and 𝛽෨ଵ rather than the usual 𝑥 and 𝑦. To avoid 
these issues, algebraic approaches for deriving 𝛽መ଴  and 𝛽መଵ  have been devised (e.g. Ehrenberg 
1983; Stanley and Glass 1969). Although interesting, these have not been adopted by introductory 
regression textbooks. 

In contrast to their fairly uniform treatment of the simple linear regression model, 
introductory regression texts differ substantially in their derivation of the matrix formula for the 
least squares coefficient estimates. Some (e.g., Mendenhall and Sincich 2020; Kutner, 
Nachtscheim, and Neter 2004) simply state the normal equations (𝑿′𝑿)𝜷෡ = 𝑿′𝒚 and then solve 
them to get 𝜷෡ = (𝑿′𝑿)ିଵ𝑿′𝒚. Others (e.g., Abraham and Ledolter 2006; Montgomery, Peck, and 
Vining 2021) derive the normal equations using calculus. No mention is usually made of verifying 
that 𝜷෡ actually minimizes 𝑅𝑆𝑆൫𝜷෩൯. A notable exception is Abraham and Ledolter (2006) who 
demonstrate this algebraicly; see Theorem 1 below. A similar proof is provided by Darlington 
(1969). 

 

3  New approaches for deriving least squares estimates 
 As an alternative to deriving least squares formulas beginning with the simple linear 

regression model, we suggest starting with the regression through the origin or zero-intercept 
model 𝑦 = 𝛽ଵ𝑥 + 𝜖. In addition we recommend beginning with the simplest, 𝑛 = 2 observation, 
case. An example of using this approach is the following: 

   
1. Derive the least squares estimate 𝛽መଵ using two observations, (𝑥ଵ, 𝑦ଵ) and (𝑥ଶ, 𝑦ଶ), as follows:   



     JPSS Vol. 20 No. 1 August 2022 pp. 184-190 

186 
 

     1.1. Define the residual sum of squares 𝑅𝑆𝑆൫𝛽෨൯:  

 𝑅𝑆𝑆൫𝛽෨ଵ൯ = (𝑦ଵ − 𝛽෨ଵ𝑥ଵ)ଶ + (𝑦ଶ − 𝛽෨ଵ𝑥ଶ)ଶ 

     1.2. Differentiate 𝑅𝑆𝑆൫𝛽෨ଵ൯ with respect to 𝛽෨ଵ:  

 𝑅𝑆𝑆൫𝛽෨ଵ൯′ = −2𝑥ଵ൫𝑦ଵ − 𝛽෨ଵ𝑥ଵ൯ − 2𝑥ଶ൫𝑦ଶ − 𝛽෨ଵ𝑥ଶ൯ 

     1.3. Solve the estimating equation 𝑅𝑆𝑆൫𝛽መଵ൯′ = 0 to get the critical point  

 𝛽መଵ =
௫భ௬భା௫మ௬మ

௫భ
మା௫మ

మ  

     1.4. (Optional) Use the second derivative test to show that 𝛽෨ଵ = 𝛽መଵ minimizes 𝑅𝑆𝑆൫𝛽෨ଵ൯:  

 𝑅𝑆𝑆൫𝛽෨ଵ൯′′ = 2𝑥ଵ
ଶ + 2𝑥ଶ

ଶ > 0 

2. Convert the system of equations 𝑦௜ = 𝛽ଵ𝑥௜ + 𝜖௜, 𝑖 = 1,2, to vector form: 

 𝒚 = ቀ
𝑦ଵ

𝑦ଶ
ቁ = 𝛽ଵ ቀ

𝑥ଵ

𝑥ଶ
ቁ + ቀ

𝜖ଵ

𝜖ଶ
ቁ 

     = 𝛽ଵ𝒙 + 𝜖 

3. Observe that 𝛽መଵ = (𝒙′𝒙)ିଵ𝒙′𝒚. 
  
4. Note that the regression model 𝑦 = 𝛽଴ + 𝛽ଵ𝑥ଵ + ⋯ + 𝛽௣𝑥௣ + 𝜖 with 𝑛 observations can be 

written in the form 𝒚 = 𝑿𝜷 + 𝝐 where the design matrix 𝑿 is defined as  

 𝑿 =

⎣
⎢
⎢
⎡
1 𝑥ଵ,ଵ 𝑥ଵ,ଶ ⋯ 𝑥ଵ,௣

1 𝑥ଶ,ଵ 𝑥ଶ,ଶ ⋯ 𝑥ଶ,௣

⋮ ⋮ ⋮ ⋯ ⋮
1 𝑥௡,ଵ 𝑥௡,ଶ ⋯ 𝑥௡,௣⎦

⎥
⎥
⎤

, 

the coefficient vector 𝜷 = ൫𝛽଴, 𝛽ଵ, 𝛽ଶ, ⋯ , 𝛽௣൯′, and the random error vector  = (𝜖ଵ, 𝜖ଶ, ⋯ , 𝜖௡)′.  
 
5. Motivated by the fact that 𝛽መଵ = (𝒙′𝒙)ିଵ𝒙′𝒚, conjecture that 𝜷෡ = (𝑿′𝑿)ିଵ𝑿′𝒚 is the least 
squares estimate of 𝜷 and verify this using Theorem 1.  

 
Lemma 1 Suppose that the design matrix 𝑿  is full rank so that (𝑿′𝑿)ିଵ and 𝜷෡  exist. then 
𝑿′൫𝒚 − 𝑿𝜷෡൯ = 𝟎.  
 
Proof: Multiply both sides of 𝜷෡ = (𝑿′𝑿)ିଵ𝑿′𝒚 by (𝑿′𝑿) and re-arrange the result.     

 
Theorem 1 Suppose 𝑿 is full rank. Then 𝜷෡ = (𝑿′𝑿)ି𝟏𝑿′𝒚 exists and minimizes  

 𝑅𝑆𝑆൫𝜷෩൯ = ∑(𝑦௜ − 𝑦ො௜)ଶ 

                 = ൫𝒚 − 𝑿𝜷෩൯′൫𝒚 − 𝑿𝜷෩൯ 

Proof: Because 𝑿 is full rank, (𝑿′𝑿)ିଵand 𝜷෡ exist. Let 𝜷෡∗ be an alternate estimator of 𝜷. Then 
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𝜷෡∗ = 𝜷෡ + 𝜟 and  

 𝑅𝑆𝑆൫𝜷෡∗൯ = ൣ𝒚 − 𝑿൫𝜷෡ + 𝜟൯]′[𝒚 − 𝑿൫𝜷෡ + 𝜟൯൧ 

                   = ൣ൫𝒚 − 𝑿𝜷෡൯ − 𝑿𝜟]′[൫𝒚 − 𝑿𝜷෡൯ − 𝑿𝜟൧ 

                   = ൫𝒚 − 𝑿𝜷෡൯′൫𝒚 − 𝑿𝜷෡൯ + 𝜟′𝑿′𝑿𝜟 

since the cross products 𝜟′𝑿′൫𝒚 − 𝑿𝜷෡൯ and ൫𝒚 − 𝑿𝜷෡൯′𝑿𝜟 are zero by Lemma 1. Since 𝑿 is full 

rank, 𝑿𝜟 ≠ 𝟎 and so  

 𝑅𝑆𝑆൫𝜷෡∗൯ = 𝑅𝑆𝑆൫𝜷෡൯ + 𝜟′𝑿′𝑿𝜟 

                   > 𝑅𝑆𝑆൫𝜷෡൯.     

As a calculus-free alternative to the preceding example, we propose deriving the least squares 
estimate 𝛽መଵ using the Cauchy-Schwarz inequality. One possibility is to replace 1.1 1.4  above 
with the following:   

     
1.1’ Suppose we have one observation (𝑥ଵ, 𝑦ଵ) from the zero-intercept model 𝑦 = 𝛽ଵ𝑥 + 𝜖. Then 
a reasonable estimate of the slope 𝛽ଵ is the rise over the run, 𝛽෨ଵ = 𝑦ଵ/𝑥ଵ.  
 
1.2’ (Optional) Derive the following properties of 𝛽෨ଵ:  

 𝛽෨ଵ = 𝛽ଵ +
ఢభ

௫భ
 

 𝐸ൣ𝛽෨ଵ൧ = 𝛽ଵ 

 Varൣ𝛽෨ଵ൧ =
ఙమ

௫భ
మ (1) 

 where 𝜎ଶ is the random error variance.  
 

1.3’ If we have two observations, (𝑥ଵ, 𝑦ଵ) and (𝑥ଶ, 𝑦ଶ), we can estimate 𝛽ଵ by 𝛽෨ଵ,௪ = 𝑦̄௪/𝑥̄௪ 

where 𝑦̄௪ and 𝑥̄௪ are weighted averages of the 𝑦 and 𝑥 values, e.g., 𝑦̄௪ = 𝑤ଵ𝑦ଵ + 𝑤ଶ𝑦ଶ:  

 𝛽෨ଵ,௪ =
௪భ௬భା௪మ௬మ

௪భ௫భା௪మ௫మ
 

Equation (1) suggests using weights which depend on the magnitudes of the 𝑥 values.  
 
1.4’ Derive the following properties of 𝛽෨ଵ,௪:  

 𝛽෨ଵ,௪ = 𝛽ଵ +
௪భఢభା௪మఢమ

௪భ௫భା௪మ௫మ
 

 𝐸ൣ𝛽෨ଵ,௪൧ = 𝛽ଵ 

 Varൣ𝛽෨ଵ,௪൧ = 𝜎ଶ ௪భ
మା௪మ

మ

(௪భ௫భା௪మ௫మ)మ
 (2) 
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1.5’ Determine weights which minimize Varൣ𝛽෨ଵ,௪൧  using the Cauchy-Schwarz inequality. 

Cauchy-Schwarz states that for any 𝑤ଵ, 𝑤ଶ, 𝑥ଵ, and 𝑥ଶ  

 (𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ)ଶ ≤ (𝑤ଵ
ଶ + 𝑤ଶ

ଶ)(𝑥ଵ
ଶ + 𝑥ଶ

ଶ) (3) 

with equality if and only if 𝑤௜ = 𝑐𝑥௜ , 𝑖 = 1,2, for any constant 𝑐. Combining (2) and (3) yields  

 Varൣ𝛽෨ଵ,௪൧ ≥ 𝜎ଶ ଵ

௫భ
మା௫మ

మ 

with equality if and only if 𝑤௜ = 𝑐𝑥௜ , 𝑖 = 1,2  for any 𝑐 ≠ 0 . Thus the version of 𝛽෨ଵ,௪  with 

minimum variance is  

 𝛽෨ଵ,௠௜௡ =
௫భ௬భା௫మ௬మ

௫భ
మା௫మ

మ  (4) 

  
1.6’ Show that 𝛽෨ଵ,௠௜௡ is the least squares estimate of 𝛽ଵ using Theorem 2, the scalar version of 
Theorem 1.  

 
 

Lemma 2 Let 𝛽෨ଵ,௠௜௡ be defined by (4) then  

 𝑥ଵ൫𝑦ଵ − 𝛽෨ଵ,௠௜௡𝑥ଵ൯ + 𝑥ଶ൫𝑦ଶ − 𝛽෨ଵ,௠௜௡𝑥ଶ൯ = 0. 

 
Proof: Replace 𝛽෨ଵ,௠௜௡ by the right side of (4) and simplify.     

 
 

Theorem 2 Let 𝛽መଵ,∗ be any other estimator of 𝛽ଵ. Then  

𝑅𝑆𝑆൫𝛽መଵ,∗൯ > 𝑅𝑆𝑆൫𝛽෨ଵ,௠௜௡൯. 

Proof: Let 𝛽መଵ,∗ = 𝛽෨ଵ,௠௜௡ + 𝛥. Then  

 𝑅𝑆𝑆൫𝛽መଵ,∗൯ = (𝑦ଵ − 𝛽መଵ,∗𝑥ଵ)ଶ + (𝑦ଶ − 𝛽መଵ,∗𝑥ଶ)ଶ 

                     = ൣ𝑦ଵ − ൫𝛽෨ଵ,௠௜௡ + 𝛥൯𝑥ଵ൧
ଶ

+  ൣ𝑦ଶ − ൫𝛽෨ଵ,௠௜௡ + 𝛥൯𝑥ଶ൧
ଶ
 

            = ൣ൫𝑦ଵ − 𝛽෨ଵ,௠௜௡𝑥ଵ൯ − 𝛥𝑥ଵ൧
ଶ

+ ൣ൫𝑦ଶ − 𝛽෨ଵ,௠௜௡𝑥ଶ൯ − 𝛥𝑥ଶ൧
ଶ

     

            = (𝑦ଵ − 𝛽෨ଵ,௠௜௡𝑥ଵ)ଶ + (𝑦ଶ − 𝛽෨ଵ,௠௜௡𝑥ଶ)ଶ 

                          −2𝛥ൣ𝑥ଵ൫𝑦ଵ − 𝛽෨ଵ,௠௜௡𝑥ଵ൯ + 𝑥ଶ൫𝑦ଶ − 𝛽෨ଵ,௠௜௡𝑥ଶ൯൧ + 𝛥ଶ(𝑥ଵ
ଶ + 𝑥ଶ

ଶ) 

                     = (𝑦ଵ − 𝛽෨ଵ,௠௜௡𝑥ଵ)ଶ + (𝑦ଶ − 𝛽෨ଵ,௠௜௡𝑥ଶ)ଶ + 𝛥ଶ(𝑥ଵ
ଶ + 𝑥ଶ

ଶ) 

 where the last line follows since the cross product term is zero by Lemma 2. Thus 

       2 2 2
1,* 1, 1 2 1,Δmin minRSS RSS x x RSS        .     
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4  Discussion 

 Rigorously deriving least squares coefficient formulas beginning with the zero-intercept 
model has several benefits. The first is that it reduces or eliminates the need for calculus and 
emphasizes the linear algebra and matrix concepts central to regression. For example, formulas for 
𝛽መଵ can easily be written in vector form and thereby be seen as special cases of the general formulas, 
e.g., 𝛽መଵ = (𝒙′𝒙)ିଵ𝒙′𝒚 versus 𝜷෡ = (𝑿′𝑿)ିଵ𝑿′𝒚 and 𝜎

ఉ෡భ

ଶ = 𝜎ଶ(𝒙′𝒙)ିଵ versus 𝛴𝜷෡ = 𝜎ଶ(𝑿′𝑿)ିଵ . 

Similarly, the zero-intercept prediction formula, easily written in vector form,  
 𝒚ෝ = 𝛽መଵ𝒙 

 = ቀ
𝒙′𝒚

𝒙′𝒙
ቁ 𝒙 

 = 𝒙(𝒙′𝒙)ିଵ𝒙′𝒚 

is seen to be a special case of the general formula 𝒚ෝ = 𝑿(𝑿′𝑿)ିଵ𝑿′𝒚, motivating the fact that in 
the general case 𝒚ෝ is the projection of 𝒚 onto on the vector space spanned by the columns of 𝑿. 
Further, Lemma 2, i.e., 𝒙′(𝒚 − 𝒚ෝ) = 0, provides a simple illustration of least squares geometry, 
namely, that the residual vector 𝒆 = 𝒚 − 𝒚ෝ and 𝒙 are orthogonal. Finally, an additional benefit of 
starting with the zero-intercept model is that the least squares formula for 𝛽ଵ can be derived using 
Cauchy-Schwarz, e.g. 1.1' 1.6 ' . Combining this result with Theorem 1 provides a new, non-
calculus derivation of the least squares matrix formula which has advantages compared to other 
non-calculus approaches (e.g., Darlington 1969; Ehrenberg 1983). A major advantage of the 
Cauchy-Schwarz derivation is that it’s thoroughly statistical and emphasizes optimal estimation 
and linear algebra rather than calculus. In the process of deriving the least squares estimate of 𝛽ଵ 
we prove that it’s unbiased and that, among all estimators of the form 𝛽෨ଵ,௪, it has the least variance. 
In other words, we prove a zero-intercept analogue of the Gauss-Markov theorem and show that 
𝛽መଵ is the best linear unbiased estimator (BLUE) of 𝛽ଵ among estimators of the form 𝛽෨ଵ,௪. Thus 
students see optimal estimation properties of least squares estimates in a simple univariate setting 
prior to seeing them in the general case. 
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