Strength-Based Pedagogies in Mathematics Education: "I Like Being Your Little Teacher"

Kaja Burt-Davies, *University of Southeastern Norway* Annica Andersson, *University of Southeastern Norway*

Authors' Notes

Kaja Burt-Davies https://orcid.org/0009-0001-0788-9450

Annica Andersson https://orcid.org/0000-0003-1897-7322

This research is funded by the Norwegian Research Council's Finnut-granted project *Mathematics Education in Indigenous and Migrational contexts: Storylines, Cultures and Strength-Based Pedagogies* (Prof. Annica Andersson, principal investigator). For further communications, please contact Kaja Burt-Davies at <u>kaja.burtdavies@usn.no</u>.

Competing interests: The authors declare no competing interests.

Abstract

This article presents a strength-based, cross-age mentorship program where second and sixth-grade students in a multicultural primary school collaborate in mathematics. The sixth-grade students serve as mentors/tutors for the younger students. Drawing on positioning theory and storylines, we have focused on the mentor's outcome, specifically how the program can help mentors position themselves as mathematics learners. The study presented is a single study based on observations and subsequent interviews with twenty students and their two teachers. The identified storylines suggest that well-structured strength-based cross-age collaboration in mathematics can create learning-focused relationships and learning contexts that enrich mentors (and mentees) both socially and academically. In this strength-based learning environment, mentors are valued for their personal strengths and mathematical proficiency, allowing them to experience a sense of achievement and pride.

Keywords: strength-based pedagogies, cross-age collaboration, multicultural mathematics education, positioning theory, mentoring, classroom tensions

Strength-Based Pedagogies in Mathematics Education: "I Like Being Your Little Teacher"

In the Norwegian tradition of implemented cross-age mentorship programs, known as "fadderordning," first-grade students are paired, individually or in small groups, with a mentor or a mentoring group from the same school. These mentors, usually four years older, provide guidance and support within the school environment. The duration of the collaboration varies. At some schools, the partnership dissolves after a few months, while at other schools, it lasts until the mentor's graduation. Aligned with UNICEF's (n.d) mentorship program 'One for all—all for one,' which emphasizes the Rights of the Child, the aim is to cultivate inclusive school environments where students are taught to value diversity. Following the goals of UNICEF, the multicultural suburban school where the data collection took place has a long tradition of cross-age peer mentoring. The motivation behind such a program aligns with the perspectives of Slavin and Cooper (1999), who posit that positive social interactions among students within heterogeneous groups have the potential to forge cross-ethnic friendships and diminish racial stereotyping, discrimination, and prejudice, with the ultimate goal of creating a belonging and a positive school environment.

This article examines a strength-based mentorship program in a multicultural primary school in Norway, where two teachers extended the typical cross-age peer mentorship program to foster relationships across age groups, not only for relational purposes, but also to provide students with opportunities to discuss and apply mathematics. Within their regular classroom setting, the mentors demonstrated tensions related to cultures, languages, and (unacceptable) behaviour—issues that teachers and school administration have grappled with since the mentors started school. A plethora of resources, including increased adult presence, rules, and structures, have previously been deployed and evaluated by the teachers and school leaders, though with minimal impact. This article illustrates the influence of cross-grade peer mentoring on mentors' perceptions and experiences related to mathematics, even when mentors face challenges, both socially and academically, within their own classroom environment. More specifically, we investigate how cross-grade peer mentoring can positively influence mentors' positions related to mathematics. We propose that a well-developed cross-age peer mentorship program can serve as a context for cultivating learning environments that resonate with principles of strength-based pedagogies.

The Concept: Cross-Age Peer Collaboration

The concept of Cross-Age Peer Mentoring is used for various arrangements where older and younger students spend time together during school hours. The framework and objectives of the program presented in this article align with Karcher's (2014) definition, which, in short, states that a middle or high school mentor meets regularly with the, ideally, minimum two years younger mentee for more than 20 sessions. They engage in conversations, play, or structured activities, where the aim is to build a close relationship, where the mentee receives empathy, praise, and attention. Program staff, teachers in this case, should prioritize this relationship development as the key mechanism for change. We emphasize that the cross-age mentorship program highlighted in this article integrates aspects of both mentoring and tutoring. Nonetheless, to align with the school's objective of promoting developmental relationships, we use 'mentor/mentoring' when discussing relationship-building, and 'tutor/tutoring' when addressing mathematics learning.

Cross-Age Peer Collaboration in Literature

A significant part of research on cross-age mentoring predominantly centres on the program's impact on mentees. While the mentees constitute an integral aspect of this research, our study primarily focuses on the outcomes of the mentors.

Despite limited research on mentor outcomes, a literature review investigated the impact of peer and cross-age tutoring in mathematics on minority students (Robinson et al., 2005). The review indicates that cross-age peer mentoring fosters positive attitudes, behaviours, and academic advancements for both tutees and tutors. An early study showed that Australian tutors in the fifth and sixth grades significantly enhanced the operational mathematics achievements of their tutees. Moreover, the improvements observed in both the tutors' and tutees' mathematics achievements were considerably greater than those recorded for the students in the control group (Sharpley et al., 1983). Positive academic results were also found in a brief five-week study with students aged 7 and 11 (Topping et al., 2003). Using mathematical games, a noticeable increase in the use of mathematical terminology, strategic dialogue, and praise, along with a decrease in procedural talk among tutors and tutees, was observed. The project also appeared to successfully raise and improve the amount and quality of interactive mathematical discussions between students. Additionally, the tutors' general social and communication behaviours were enhanced. Furthermore, a study by Karcher (2009) reports that mentors in grades 10 and 11 made substantial gains in school-related connectedness and self-esteem compared to their peers, who were not involved in a mentoring program. This conclusion was drawn from surveys conducted with trained mentors participating in an afterschool program.

Among the few recent studies on cross-age peer tutoring in mathematics, a study involving middle school tutors and first-grade tutees with low mathematical skills reported that the majority of the tutees' teachers observed measurable improvements in mathematics and enhanced attitudes toward the subject (Haynes & Brendle, 2019). Conversely, most tutors' teachers did not observe a noticeable improvement in the tutors' mathematical abilities; however, we note that the age difference and the lower-than-expected competency level of the tutees may have influenced this outcome. Still, the tutors' teachers endorsed the cross-age tutoring experience, noting that the tutors developed increased leadership skills and confidence and found assisting others to be rewarding. The teachers' experiences align with Riessman's (1965) helper's theory, which posits that 'helpers'—mentors in this context—benefit from their position through mechanisms like feeling worthwhile, self-persuasion, and experiencing the status of a helper position, suggesting that helping others can foster efficiency and motivation. Barahona et al. (2023) conducted an observational study in middle schools primarily serving Hispanic students in the US, where the tutors were two grade levels above the tutees. Barahona et al. (2023) discovered that the strength of this cross-age program was closely tied to positive emotional experiences. The study indicated that the tutees exhibited favourable attitudes toward their tutors, seemingly enjoying the cross-age collaboration. The relationships between tutors and tutees were characterized by warmth and support, further enhancing the positive experience. Notably, tutors also appeared to derive satisfaction from this program. However, Barahona et al. (2023) identified weaknesses in the program's implementation related to the quality of instruction. Key issues included a lack of positive reinforcement and ineffective use of class time.

This review of cross-age peer mentoring and tutoring in mathematics education underscores that cross-age collaboration is underrepresented in mathematics education research. Despite this, the existing findings show potential benefits and effectiveness of cross-

age peer mentoring, suggesting that cross-age collaboration could be a significant yet largely unexplored resource in mathematics.

Objectives and Research Question

Our two-fold aim is to demonstrate that a cross-age mentorship program can serve as a beneficial learning environment when classroom norms and the learning environment in mathematics classrooms fall short of satisfactory standards, and that mentee-mentor collaborations can foster strength-based learning opportunities that could alter and improve students' perceptions of themselves as both individuals and mathematics learners. To examine how strength-based learning processes can support mentors in positioning themselves as learners of mathematics, we posited the following research question: *How can a strength-based cross-age peer mentorship program in primary school support mentors in assuming positions beneficial for learning mathematics?*

Theoretical Lens

In positioning theory, Davies and Harré (1990) highlight the dynamic aspects of selfunderstanding in contrast to the static nature of the concept of "role" (p. 43). They propose that 'positioning' directs attention to how we perceive ourselves in dialogues, using the terms 'positioning' and 'subject position' based on existing narratives. Metaphorically, positionings are used to symbolize relationships (Herbel-Eisenmann & Wagner, 2010) and occur through words and actions grounded in one or more such narratives as in any statement; hints in the choice of words, or related actions bring forth images of familiar storylines and positions within that story (Harré & van Langenhove, 1999). Harré (2012) described a position as a "cluster of beliefs with respect to the rights and duties of the members of a group of people to act in certain ways" (p. 196). This element implies that cultural traditions and boundaries influence people's actions to follow already-established patterns. The "positioning process" (Herbel-Eisenmann et al., 2015, p. 190) is thus restricted by the cluster of beliefs and the social and logical possibilities of a given context because "A position can be looked at as a loose set of rights and duties that limit the possibilities of action" (Harré & Moghaddam, 2003 p. 5). In other words, the actions of individuals within a group are influenced by the collective beliefs and expectations present in their social environment.

While we constantly negotiate positions for ourselves, consciously or unconsciously, we also participate in shaping the positions of others. When others take or are given a place in a shared experience, "whether explicit or implicit, a speaker makes available a subject position which the other speaker in the normal course of events would take up. A person can be said thus to 'have been positioned' by another speaker" (Davies & Harré, 1990, p. 43). By resisting a position, alternative positions become available (Wagner & Herbel-Eisenmann, 2009). In this manner, cultural storylines and interactions influence the "production of selves" (Davies & Harré, 1990, p. 62) and others. As importantly emphasized by Davies and Harré, we also want to underscore the presence of agency and choice in the positioning process. Not all individuals and groups have their actions recognized or acknowledged by those in positions of power, resulting in significant limitations on their ability to act.

We define taking a position as a mathematics learner as actively making choices that foster the development of mathematical competence. To support students in embracing these positions, learning environments must consistently facilitate such processes. From a societal perspective, it is imperative that students are afforded these opportunities, as societal growth is enhanced by individuals who appreciate, understand, and effectively employ mathematics.

Storylines: What Are They, and Why Are They Helpful in Mathematics Education Research?

As mathematics teachers and researchers, we have recognized that students' attitudes often resonate with one or several recognizable patterns that validate their self-perception and position as learners or non-learners (Andersson et al., 2015). In positioning theory, these patterns are referred to as storylines and are used to shape and make sense of "our own and others' lives" (Davies & Harré, 1990, p. 4). In the context of mathematics education, Herbel-Eisenmann et al. (2015) describe storylines as "the ongoing repertoires that are already shared culturally, or they can be invented as participants interact" (p. 15).

The cultural element in storylines is intrinsically linked to positions through implicit "taken-for-granted systems of rights and duties" (Harré, 2012, p. 191). These sets of rights and duties vary across cultures, influencing how individuals interpret and navigate situations. Adding more depth to storylines, Herbel-Eisenmann et al. (2016) explain that, at certain times, relevant storylines serve as the backdrop for enacted positionings. In other words, our self-understanding and our perceptions of others depend on the context and culture and can change based on the situations we encounter and the storylines available at any given time.

This study concentrates on a micro-sociological unit (Delgado-Gaitan & Trueba, 2023) of two classes engaged in cross-age mentorship. This group possesses "specific sets of experiences shared collectively by individuals of those units but interpreted by each in a different way" (Delgado-Gaitan & Trueba, 2023, p. 25). In the context of this study, this proposes that although students engage in shared experiences and storylines, their interpretations of these shared elements differ. Consequently, how they express these storylines can vary from one individual to another.

Despite frameworks established by other scholars, it is challenging to concisely describe a storyline, as it can be explicitly articulated or implicitly recognized. In this research, storylines were identified through interviews with students and the first author's observation. Within this micro-sociological unit, we sought storylines that might explain how the cross-age peer mentorship program helps mentors assume positions that are beneficial for learning mathematics. To do so, we defined storylines as ongoing repertoires in interviews that are (1) recognized by others, (2) cultural, as they are connected to a specific micro-sociological unit, and (3) impact students' actions.

Strength-Based Pedagogies from a Positioning Theory Perspective

The two teachers who developed the focused cross-age mentorship program take a strength-based pedagogical perspective on their students and possess an approach that associates with culturally relevant pedagogy (Ladson-Billings, 1995), culturally responsive teaching (Gay, 2018), and Funds of Knowledge (Gonzalez et al., 2005). Despite their diversity, these pedagogies share a common thread: a shift in focus from a deficit to a strength-based perspective. This shift represents a change in focus from education aiming to improve what students "lack" to acknowledging and nurturing what students possess regarding their skills, abilities, potential, and (cultural) experiences.

The teachers also emphasize elements of Silverman et al.'s (2023) 'universal strengths approach,' which "recognizes that all people [...] have inherent strengths that are in part determined by their life experiences" (p. 256). Inspired by positive psychology (Peterson & Seligman, 2004), Silverman et al. (2023) illuminate various types of strengths. Character strengths define the best in people. They are stable and general yet influenced by context and thus capable of change. Examples include open-mindedness, fairness, and patience. Signature strengths represent a specific set of character strengths most distinctive to an individual. These

are strengths "that a person owns, celebrates, and frequently exercises" (Peterson & Seligman, 2004, p. 18). The "exercise of signature strengths is fulfilling" and "convey[s] the motivational and emotional features of fulfillment with terms like excitement, yearning, inevitability, discovery, and invigoration" (p. 18). Silverman et al. (2023) also identify "identity-specific strengths approach," which "recognizes people's systemically marginalized identities and associated lived experiences as a direct source of strengths that can help them succeed and contribute to their societies, regardless of how these identities and experiences differ from those of privileged individuals" (p. 256).

From a mathematics education perspective, focusing on students' strengths can be a turning point for fostering a more inclusive and empowering learning environment. Additionally, the combination of strength-based pedagogies and positioning theory is particularly compelling for the field of mathematics education because, together, these theories provide a framework for understanding and discussing how students perceive themselves as learners or non-learners in mathematics, which, in our opinion, is the most critical aspect of mathematics education.

Methodology

Data Collection Site

The data collection site is a large, multicultural primary school located in a municipality neighbouring Oslo, Norway's capital city. Both authors know the participating teachers and school leaders well. In recent years, the school has made a deliberate effort to foster diversity within its community. One key strategy for achieving this has been the development of the cross-age mentorship program. As part of the school's tradition, the cross-age mentorship program dates back to the 1990s. The program emphasizes active engagement and relationships between mentors and mentees in various contexts, primarily during break time and extracurricular activities such as forest trips, games, and sports. While mentoring initially involved one-on-one interactions, the current standard practice involves group mentoring.

Observation

Observation First Phase

Kaja, the first author, initiated her observational study in February 2022, focusing on acquainting herself with the mentor class, a class struggling with behavioural issues and adherence to classroom norms, aiming to explore strength-based pedagogies in mathematics. Unexpectedly, during the spring semester of 2023, Kaja learned about the established crossage mentorship program in which the now sixth-grade students mentored second-grade students during mathematics classes. To clarify the research context, we briefly summarize Kaja's initial observations and field notes:

In February 2022, I, Kaja, visited the teachers and classes in the primary school that had agreed to participate in my research project. I immediately understood that one of the classes faced challenges. After the first week, Grete, the teacher, apologized for the student's behaviour and explained that the class had struggled with challenging attitudes and behaviour since they started school. With a twinkle in her eye, Grete also said something like, "Well, at least in this class, we have real challenges. It's not the kind of class you read about in textbooks". And she was right; the classroom was chaotic. After a few weeks, the situation escalated. The class was, of course, divided into separate groups, and some students were guided to other classrooms, but altogether, there were seven adults involved to handle 18 5th graders. Frustrated after a lesson days later, Grete said: "The only thing that works with this class is to take a bus or be mentors." I noted her statement in my notebook but didn't think to ask her

about the mentoring, as this is a regular thing in Norwegian schools. Months later, when the mentors had started 6th grade, I saw the mentorship program in action. The mentees, a class of 2nd graders, had their classroom just across the corridor from the mentors' classroom. In groups of 2–6 students from both classes (carefully assigned by the teachers), the 6th graders, now positioned as mentors, demonstrated remarkable skill and dedication in assisting their mentees with mathematics tasks. It was almost as if a magical enchantment had spread over the students. The atmosphere was light, and the students seemed content and exhibited a sense of joy. The mentors read out problems, counted on their fingers, and demonstrated with pen and paper to their mentees. When I overheard one of the more challenging sixth graders addressing a second grader: "You have to read the problem first, if not, you won't understand what to do. Listen, I'll read it out loud to you", I immediately felt compelled to investigate why the cross-age mentorship program impacted the mentors' positioning and whether this collaboration was also beneficial for the mentors' development of mathematical competence.

Observation Second Phase

To gain insight into the program's practical implementation and to understand the aspects of the change in the mentor's behaviour, Kaja conducted weekly observations of the cross-age collaboration over three months in 2023. The students met between one and three times a week, sometimes for outdoor activities and play, and at other times, for reading to each other. They met regularly once a week for mathematics. The duration varied depending on the activity, but mathematics sessions typically lasted a regular school hour of 60 minutes. Depending on the activity, older and younger students were grouped, sometimes with a shared task to solve collaboratively, and other times with assignments tailored to their grade levels. During mathematics sessions, mentors provided support and guidance to the mentees, acting like little teachers. In situations involving joint tasks, there was less guidance and more collaboration. Occasionally, mentors also taught mentees new games or applications.

During the participatory observation phase of mathematics classes, Kaja typically assumed a role similar to that of a teacher. However, at times, she stepped back to observe group interactions as students engaged with mathematical tasks. Throughout this period, detailed field notes were maintained, which later informed the structured interview guides used in interviews with the teachers, mentors, and mentees.

Participants and interviews

Students

While this article focuses on the mentors' benefits of the cross-age mentorship program, their experiences are intrinsically connected to those of the mentees. To gain a deeper understanding of the mentors' experiences, interviews were conducted in September and October 2023, with ten mentees now in third grade and ten mentors in seventh grade. The students in the two classes come from varied backgrounds and reflect typical diversity in terms of minority language backgrounds, which in and around larger cities in Norway is slightly over 30% (Directorate for Education and Training, 2022). Some of the interviewed students are first-generation immigrants with less than two years in Norway, while others are Norwegian born, with some having native languages other than Norwegian. The group includes students from socioeconomically advantaged families and those who have arrived in Norway as refugees, representing diverse religions and cultural backgrounds. Several of the interviewed mentors faced behavioural challenges in their regular classroom settings.

Participation in interviews was voluntary; mentees were asked if they wanted to be interviewed by their teacher, Sigrid, and the mentors were asked by Kaja. Given the young age of the students, all parents and students were clearly and repeatedly informed that participation in the interview was entirely voluntary and that pseudonyms would be used in line with approved Norwegian ethical guidelines. All students chose their pseudonyms. Mentees were interviewed in pairs, while mentors chose to be interviewed individually, in pairs, or in groups of three. Student interviews lasted between 20 minutes and an hour, varying based on the group size and the depth of responses, and centred on their experiences with the mentorship program. Each interview followed a semi-structured guide and was recorded for later review.

Teachers

In August 2023, a joint interview, lasting approximately two hours, was conducted with Sigrid, the mentee's teacher, and Grete, the mentor's teacher. Utilizing a semi-structured interview guide, the objective was to understand the rationale behind their selection of this specific form of cross-age collaboration in mathematics, and to examine the practical aspects related to planning and implementation, as well as how the teachers perceived their intentions materializing in practice. The interview was audio recorded for accuracy and reference.

The Cross-Age Mentorship Program and Teacher's Class Description

To provide a deeper contextual understanding of this study, we include the teachers' characterizations of their classes. The mentor's teacher, Grete, gave the following description in the interview:

A collection of remarkable individuals. [...] In peacetime, they are all lovely children [...]. It is demanding because, what can I say, the combination of students in this class is very unfortunate, quite simply. That's it. The parents were very determined that they should not be together, but then there has been some mismatch here in terms of communication [from kindergarten], or that someone has not bothered to listen, we don't know. [...] so it has to do with that, quite simply, that those kids should not have been together.

While this depiction may seem harsh, it aligns with Kaja's empirical observations. The students undeniably exhibit remarkable capabilities and skills. However, the persistent presence of negative tensions significantly undermined the classroom environment, resulting in a less conducive learning atmosphere. Conversely, Sigrid, the teacher of the mentee class, described the mentee class as follows:

[...] we were 20 when we started [in first grade]. We have become a large group [28 students]. I have received many new [students]. Yes, so my class, the way it is now, they are the nicest, kindest, calmest group I've ever had. Good mix, boys and girls, fantastic parent group. They are academically strong, they are socially strong, good with each other, concerned about each other, playing, dancing, singing, committed, I have never had a group like them.

Mentor-Mentee Grouping

The teachers involved in this project had not received specific training in strength-based pedagogical processes. Nonetheless, their efforts and outlook embody aspects that are consistent with it. The student groups were carefully configured with three primary objectives: (1) to nurture collaboration and friendship within and across grades; (2) to create a learning environment where students can utilize and develop their strengths; and (3) to promote the discussion, application, and learning of mathematics. Recognizing and acknowledging their students' diverse strengths, the teachers leveraged these strengths to form cross-grade groups.

For instance, they grouped students with similar interests and ensured that uncertain mentees were paired with compassionate mentors who could also provide thorough mathematical explanations. Other groups were put together for linguistic purposes. As Sigrid articulated, "The aim is to assist students in fostering beneficial relationships". Group rotations were applied as needed based on teachers' observations. While some groups remained stable for months or years, others were adjusted when teachers believed changes would enhance social and academic outcomes.

Analysis

Building on the work of Herbel-Eisenmann and Wagner (2010) and Perlander and Sjøberg (2023), we utilized the concept of positionings as a framework to investigate the experiences of mentors and mentees within the mentorship program. We analysed the interviews with mentors and mentees to explore how they ascribed and claimed positions for themselves and others by defining emotions, roles, rights, and duties within the given context.

The analytical process began with transcribing all audio recordings, followed by an inductive categorization of the text into themes reflecting the students' experiences. These themes encompassed the students' efforts to support each other's mathematics learning, the learning opportunities provided by the program, the responsibilities students held toward one another, and the emotions and relationships between mentors and mentees. Next, we thoroughly reviewed the transcripts and identified three key dimensions of the experiences mentors and mentees shared during the interview: (1) the mentor role, (2) emotions, and (3) how cross-age collaboration affected the mentors' mathematical competence. During this step, we also reviewed the first author's field notes, taken during observation phase 2, which supported the three identified dimensions.

To identify storylines within each dimension, we adapted a four-component process inspired by Perlander and Sjøberg (2023). Specific attention was directed towards personal pronouns as indicators of positioning (Fairclough, 2001) and self- and other-positioning (Harré & van Langenhove, 2010). This involved examining how mentors and mentees positioned themselves and others to belong or to be excluded from a position. Additionally, we identified statements that correlated positioning with cultural connection (Herbel-Eisenmann et al., 2015) and elements relating to rights and duties (Harré, 2012; Harré & Moghaddam, 2003), often connected to emotional factors influencing students' behaviours.

Table 1Process of Identifying Storylines

Components of the process	Examples in italics
Component 1: Identify repertoires of action to belong to or be excluded from a position. Connected to pronouns (I, you, we, one), nouns, verbs, and descriptions of others or places.	Eirik: We [mentors] have to behave more maturely than we do otherwise [during mentor-sessions]. Explanation: Eirik's (mentor) statement demonstrates his understanding that mentors need to adapt their behaviour to meet the expectations and duties of their role.

Component 2: Identify positions related to emotional connections and the reasons for acting in specific ways.	Linda: Because if they [mentees] can't do it [mathematics] and I can, I think it's nice to be able to help others.
Visible in clear choices, taking a stand, accepting consequences, commitments, etc.	Explanation: Linda (mentor) likes to help mentees because she believes it is a nice thing to do (commitment).
Component 3: Identify actions, emotions, values, social dynamics, etc., related to cultural elements.	Fariah: Eh, that it is good that the mentors exist, and it is better to be with the mentors and the mentees have a good time and then
Visible concerning the mentioning of activities, desirable features, expectations, persons, memories, and futures, etc.	they learn a bit more. Explanation: Fariah (mentee) states that when mentors are present, mentees learn more while having a good time (connection to the micro-sociological unit).
Component 4: Identify positioning related to rights and duties. Visible when pronouns are combined with verbs and their consequences, autobiographical aspects, future choices, struggles, conflicting statements, emotions, etc.	Eirik: So that we [mentors] don't teach them to use, maybe, swear words and stuff like that.
	Explanation: Eirik (mentor) changes his behaviour when he is with the mentees because he does not want them to learn bad behaviour (consequence of duty).

Note. Adapted based on the work of Perlander and Sjøberg (2022)

To be qualified as a storyline, all components were present, even if not every element is evident in the final phrasing of the storyline. We identified several storylines at play (Herbel-Eisenmann et al., 2016), but focused on the storylines, we regarded as most significant to the research question. We acknowledge that despite our backgrounds as mathematics teachers and the first author's relationship with the students, our roles as researchers may constrain our capacity to fully interpret the students' experiences and, hence, potentially overlook significant storylines.

To facilitate discussion of the students' collective experiences as patterns rather than individual statements, we formulated the storylines into eight phrases across three dimensions, each encapsulating our interpretation of the essence of the patterns identified in the students' interviews. To gain additional perspectives on the analysis, we presented the storylines and transcripts to the [project name] research group, where their formulation and significance to the research question were thoroughly discussed. This process resulted in a ninth storyline and reformulation of two storylines to reflect the students' statements more accurately.

 Table 2

 Dimensions and Storylines Identified in the Transcripts

Dimensions	Number	Storylines
Dimension 1: The	1A	Mentors: "Mentors need to be good role models"
mentor role in mathematics education 1B	1B	Mentees: "Mentoring is a respected and highly regarded role"

Dimension 2: Emotions linked to learning mathematics with mentees/mentors	2A	Mentees: "We admire you"
	2B	Mentees: "When you are close to me, I feel better"
	2C	
	2D	Mentors: "I like being your little teacher"
		Mentors: "Helping others makes me proud"
Dimension 3: The process of learning mathematics together	3A	Mentors: "Mathematical explanations are
	3B	challenging"
	3C	Mentors: "Challenges bring mathematical thinking forward"
		Mentors: "Mastering a task on your own signifies learning"

Findings: Identified Storylines

Dimension 1: The Mentor Role in Mathematics Education

Storyline 1A, mentors: "Mentors have to be good role models," was present in all mentors' interviews. This storyline reveals the mentors' self-positioning through phrases such as "our job is to teach them and make sure it goes well," and "have to behave more maturely," which demonstrate that the mentors are aware of the rights and duties associated with the mentor role. This awareness, confirmed through Kaja's observations, influences the mentors' actions toward their mentees. By taking the position as a role model, the mentors acknowledge their position as being older and having more knowledge and experience than the mentees, which, in turn, places upon them the responsibility to demonstrate good behaviour and ensure the well-being of the mentees. For instance, the element of trust articulated by Rizwan can prompt mentors to exhibit greater maturity than they typically show in their regular classroom.

Table 3

Examples of Transcripts Supporting Storyline 1A

Rizwan: We're not adults exactly, but we're still older than them and know more than them, and our job is to teach them and make sure it goes well.

Rizwan: And they [mentees] trust you

Jesper: Role models!

Eirik: ... behave properly and be role models, yes.

Kaja: Mmm, is it something you consciously think about, or does it just happen naturally?

Eirik: It happens naturally. Jesper: Kind of on its own.

Kaja: Mmm. Why do you think it happens?

Eirik: So that we don't teach them to use, maybe, swear words and stuff like that.

Jesper: [...] not teach them [mentees] to be mischievous and things like that. We have to behave more maturely than we do otherwise.

Another reason related to rights and duties is evident in Jesper and Eirik's transcripts. These boys use the term 'role model' and explain that they do not want to teach the mentees to swear or engage in other negative behaviours.

Storyline 1B, mentees: "Mentoring is a respected and highly regarded role," was recognized with cheerful tones and eager articulation in all mentee interviews. The storyline implies an eager anticipation of becoming a mentor. Iselin's and Henrik's words indicate that they look forward to assuming the responsibility of caring for younger students.

Table 4

Examples of Transcripts Supporting Storyline 1B

Iselin: Oh, it's going to be very, very, very, very fun! [to become a mentor]

Henrik: [...] then we kind of get our own child to be with, in a way.

Another example of this storyline is evident in the dialogue with Linda, which reflects her view of the mentor's role as a helper in aiding her mentees' understanding of mathematics.

Table 5

Example of a Transcript Supporting Storyline 1B

Linda: [...] we can help them with difficult things.

Kaja: Do you like helping people?

Linda: Mmm...

Kaja: Why?

Linda: Because if they can't do it [mathematics] and I can, I think it's nice to be able

to help others.

Kaja: Why is that?

Linda: Because then they understand much more of what they're supposed to do.

Kaja: How do you feel about that?

Linda: I feel that it's nice. And that I become happy.

Field notes highlighted a relationship and atmosphere characterized by friendly and productive collaboration between the mentors and mentees. This dynamic contrasted with the mentors' behaviour in their regular classroom environment, which was described as chaotic and stressful. Within the mentorship context, the mentors demonstrated a notable shift in behaviour, taking on roles as responsible and compassionate helpers; a transformation influenced by the exchange of positions and the change in context. Additionally, the field notes suggested that the way the mentors embodied their positions had a significant impact, inspiring the mentees to envision themselves in similar roles in the future.

Dimension 2: Emotions Linked to Learning Mathematics with Mentees/Mentors

Dimension 2 comprises four distinct storylines, centring around the emotions and attitudes that mentors and mentees experience in their relationships. These storylines relate to interpersonal dynamics and emotions.

Storyline 2A, mentees: "We admire you," originates from the mentees' shared admiration for their mentors. Although this admiration is only evident in the written words presented here, the distinct loving tone and joy in the mentees' voices when discussing their

mentors prompted us to use the word 'admiration'. In almost every interview, the mentees highlighted various strengths they perceived in their mentors. These strengths ranged from kindness, exemplified by Nora's comment that "we can have fun and ride on their backs," to helpfulness, with Iselin noting that "they always want to help us." Fariah remarked on their physical stature, describing the mentors as "taller and taller and bigger," and also recognized their mathematical proficiency, stating, "they become better at math every single day."

Table 6

Examples of Transcripts Supporting Storyline 2A

Iselin: I think mentor class is fun because then we get to be with the mentors and then we can have fun and ride on their backs!

Nora: And then you can learn things that you don't quite know yet.

Kaja: So, you think it's nice to have a mentor class?

Nora: Yes.

Iselin: Yes, really fun!

Nora: [...] if someone needs help with something. Not that kind of help, help with math, but help if they get stuck or something like that.

Iselin: And they are kind, they are almost like friends. Almost, just that they are older than us. And then they always want to help us and those boys are a bit naughty, but the girls are always quite kind.

Fariah: [...] they are getting taller and taller and bigger, and then they almost become adults, and that's when they become better at math every single day.

The transcripts illustrate that mentors effectively leverage their inherent strengths and natural abilities during their mathematics sessions with the mentees. Emphasizing the importance of relationships, the mentees' storyline reveals that mentors' support is not confined to academic help, such as mathematics. Instead, it extends to assisting mentees with various challenges, exemplified by Nora's comment, "help if they [mentees] get stuck or something like that."

Kaja noted the mentors' multifaceted roles across contexts. Working on mathematics together, mentors also aided mentees with finding materials and navigating new apps. Additionally, the mentors assisted in articulating the mentees' struggles to the teachers when the mentees found tasks challenging or when the mentors' explanations were insufficient. This involvement illustrates the mentors' active role in facilitating communication and their extensive involvement in diverse aspects of the mentees' lives. Jakub's comment in the following transcript offers an interesting perspective on the mentors' competence, attributing it to their daily practice of mathematics. This reflects Jakub's basic understanding of skill development, recognizing the effort and time necessary to acquire mathematical knowledge.

Table 7

Example of a Transcript Supporting Storyline 2A

Jakub: [...] so every day, they had math, that's why they are so good at math.

The admiration storyline, driven by mentees' anticipation of becoming mentors (storyline 1b), reflects a learning context where mentees feel secure and happy. This aspect can be crucial to the success of cross-age collaboration because the mentee's admiration motivates mentors to position themselves as responsible leaders, enhancing collaboration.

The admiration storyline is supported by another mentee storyline, storyline 2B, mentees: "When you are close to me, I feel better," which encapsulates the essence of the mentorship program. The heart of collaboration is articulated by Fariah:

Table 8

Example of a Transcript Supporting Storyline 2B

Fariah: Eh, that it is good that the mentors exist, and it is better to be with the mentors and the mentees have a good time and then they learn a bit more.

Kaja: Mmm, why do you learn more when you're having a good time?

Fariah: Because when you have a good time, you also learn math at the same time. Then you sort of learn something while having a good time.

Fariah's statement is deeply connected to human bonds. Her words indicate that enjoyment and learning are not mutually exclusive. Instead, when people enjoy themselves, they are more receptive to learning, even complex subjects like mathematics. The physical proximity provides immediate, accessible support, which contrasts with waiting for a teacher's attention:

Table 9

Example of a Transcript Supporting Storyline 2B

Jakub: It's best to have a mentor because when the teacher, when, it's best not to shout Sigrid, Sigrid, Sigrid, come, come, Sigrid come, it's difficult, come! It is best to have a mentor, then you must not shout for the teacher, but you have a mentor by your side to help.

Having an older, more knowledgeable student for immediate assistance supports the learning process. Extended waiting periods can lead to diminished patience, inducing a shift in focus towards alternative activities, such as drawing or engaging our peers in distraction. During Kaja's observation of this collaborative process, it was common to see numerous mentors and mentees working together on the same task. Most of these tasks were resolved without requiring teacher involvement. Even when mentors lacked the exact solution to a problem, they provided problem-solving strategies.

Another key finding is the mentors' joy in assuming a helper's position. **Storyline 2C**, **mentors:** "I like being your little teacher," shows that the mentors appreciate the position that comes with mentoring and tutoring. The term "little teacher" is used affectionately and embraced positively by the mentors, suggesting they view the role as significant:

Table 10

Example of a Transcript Supporting Storyline 2C

Thea: So, in a way, you become like a little teacher. You go around helping students just like a teacher.

Madelen: I liked that word. I like that word a lot.

Thea and Madelen: Little teacher [giggling laughter]. Or young teacher?

Madelen: I like little teacher. A little teacher.

Kaja: Do you think it's okay to be a little teacher then?

Madelen: Yes, very nice. It's like, "Hey, you, little teacher." It's [koselig]

Table 2: Koselig is a Norwegian word that is challenging to translate directly into English due to its broad and culturally specific meaning. It describes a pleasant, comfortable, or enjoyable atmosphere, experience, or feeling.

Having the knowledge and experience to help mentees learn mathematics and assist them with personal difficulties (Nora, storyline 2a) appears to boost the mentors' self-esteem. The use of phrases like 'I feel,' a notable indicator of personal positioning (Fairclough, 2001), along with terms such as "strong," "cool," and "old," demonstrates a sense of accomplishment and self-confidence.

Table 11

Example of a Transcript Supporting Storyline 2C

Madelen: You feel like you're so smart and strong!

Thea: You feel like you're the big, strong, smart, cool one.

Madelen: Not cool?

Thea: No? I feel...tough!

 $[\ldots]$

Madelen: Yes, I feel I like it because I feel smart. And I'm actually smart in my class too, just saying.

Thea: Yes, you are.

Madelen: I feel [giggles, laughs] better than the others, I feel a bit egoistic but [giggles].

 $[\ldots]$

Thea: I feel kind of tough. I feel like the old and cool one, like a little, little teacher or whatever it was. It's quite fun to be the one that they, in a way, look up to.

Particularly interesting is Madelen's assertion of feeling "smart" and her affirmation of being "actually smart in my class, too." This reveals her confidence in her academic abilities beyond mentoring. Additionally, her statements about feeling "better than the others" and experiencing a sense of "egoism" reinforce the growth of self-esteem.

Storyline 2D, mentors: "Helping mentees makes me proud" is intricately interconnected with the previous storyline. Kaja observed that mentors often exchanged high-fives with mentees upon task completion. This celebratory gesture suggests that mentors take pride in their mentees' achievements, recognizing their role in successes.

The following transcripts show Jesper describing the "satisfying feeling" associated with successfully teaching the mentees. Guro, Bertine, and Sofie describe the act of helping and being needed as a source of happiness that enhances their day. Rizwan uses the word "proud" to describe his experience.

Table 12

Examples of Transcripts Supporting Storyline 2D

Jesper: A satisfying feeling. We've taught them how to do it.

Eirik: Nice.

[...]

Jesper: I get a bit excited because then I'm happy that they managed to solve what they struggled with before.

Guro: It makes me have a better day afterward.

Bertine: You feel like...

Sofie: ...you've done a good job!

Bertine: ...and that you're needed for something. That you're helpful and things like

that.

Guro: It's that good feeling in your body that you've been helpful.

Rizwan: I just teach them what I've learned.

Kaja: But how does it feel for you, when you manage to teach another child?

Rizwan: I feel proud.

The four interconnected storylines within dimension 2 clarify the reciprocal nature of how constructive storylines can operate within specific contexts or cultures. The mentees' admiration and affirmative emotions towards their mentors are mirrored in the two mentor storylines, demonstrating a reflective process where positivity is reciprocated. The relationships are not merely a one-way transfer of knowledge or guidance; they are also enriching for the mentors.

Dimension 3: The Process of Learning Mathematics Together

The third dimension explores the mentors' role as tutors and the benefits they acquire in the helper position. Storyline 3A, mentors: "Mathematical explanations are challenging" highlights mentors' experiences when adapting or relearning methods and algorithms and their efforts to elucidate their functionality to younger students. In the following transcript, Bertine, Thea, and Sofie talk about how tutoring mentees challenge them.

Table 13

Example of Transcript Supporting Storyline 3A

Bertine: We have to learn other methods to calculate or explain in a different way.

Kaja: Why is that?

Bertine: Because they don't understand adult language like we do.

[...]

Sofie: Explain it in a different way. It's harder for us but easier for them.

Kaja: What's more challenging for you and easier for them?

Bertine: It's harder for us to explain it.

Sofie: Because they have other methods.

Bertine: But it's easier for them to understand it.

Thea: So it's a bit difficult because they have a completely different method that we probably did in 3rd grade, but we have now become accustomed to a completely

different method, and it's a bit difficult to help them when they don't understand the way we're trying to help them.

This storyline is followed by **storyline 3B, mentors: "Challenges bring mathematical thinking forward,"** which informs us about how providing explanations enhances the mentors' learning and indicates that mentors' efforts to elucidate mathematical concepts with the mentees enhance their own mathematical comprehension. The following transcripts indicate that as mentors work on explanations, they simultaneously process and expand their own mathematical understanding.

Table 14

Examples of Transcripts Supporting Storyline 3B

Bertine: [...] I learn how to do it in other ways, and I learn more about how to simplify questions.

Madelen: Sometimes I just have to stop and then I have to write it down in my method, and they ask, "What is that, what is that?" And I say, "I just have to calculate it this way, I can help you after that, I just need to get the answer for myself first".

While demanding, these cognitive processes hold potential to enhance mentors' comprehension of mathematics. For example, Madelen's strategy of writing down her preferred method before assisting the mentees demonstrates her understanding of the importance of thoroughly grasping a problem before providing practical help.

Storyline 3C, mentors: "Mastering a task on your own signifies learning" was explicitly articulated in all the mentor interviews and concurrently reflected in the dialogues with the mentees. For instance, Jesper underscores the importance of explaining the problem-solving process to the mentees rather than simply providing them with solutions. Eirik expands on this discussion, suggesting that without mastering the method, mentees might struggle with similar problems when their mentors are not around.

Table 15

Example of Transcript Supporting Storyline 3C

Jesper: [...] we have to show them how to arrive at the answer!

Kaja: Why is it not okay to just say that the answer is 12?

Jesper: Because they won't learn anything.

Eirik: They won't learn anything.

Kaja: No. So, that would be poor mentoring?

Eirik: Yes. They wouldn't learn the method. In case we're not there.

Kaja: Yes, because what you teach them, they should be able to do...

Eirik: ...themselves.

Eirik and Jesper's comments underline the mentors' understanding of the importance of process over product. At the same time, the boys also demonstrate that they want to help the mentees develop independent thinking and problem-solving skills.

Discussion of the Storylines

Guided by the research question, "How can a strength-based cross-age peer mentorship program in primary school support mentors in assuming positions beneficial for learning mathematics?", this article presents a long-term strength-based cross-age mentorship program implemented weekly in mathematics classes at a multicultural suburban school in Norway. The initiative is driven by the aspirations of two teachers to create positive change for their students. The teachers' primary focus was on the mentor class, a group dealing with significant cultural, linguistic, and behavioural tensions within their classroom environment. Despite the school's extensive efforts to initiate change, the teachers broadened their perspective beyond the classroom walls when these measures proved insufficient.

As our study reveals, the cornerstone of the strength-based pedagogy approach inherent in this program lies in the relationships between the two teachers and their students. Their intimate knowledge of students' strengths equipped them to capitalize on the mentors' strengths (Silverman et al., 2023) to form cross-age groups that accentuate both personal and mathematical strengths. While this article predominantly focuses on the mentor's positionings and storylines, it is important to note that the cross-age collaboration also had profound implications for the mentees.

We identified three distinct dimensions of storylines from interviews and observations. In the following sections, we will discuss these dimensions separately and conclude by synthesizing them to provide a more comprehensive understanding of the cross-age mentorship program.

Dimension 1: The Mentor Role in Mathematics Education

Primarily, we argue that the mentor role in mathematics education holds significant importance for both mentors and mentees. In the context of positioning, storyline 1a, "Mentors need to be good role models," clearly ties the mentor role to specific rights and duties (Harré & Moghaddam, 2003). Their behaviour reflects a commitment to positively impact their mentees, exemplify (a new) commendable behaviour, and situate the mentors in a position (Riessman, 1965).

Adopting the position, the mentors leverage many strengths that transcend mathematical strengths. Mentors utilized their character and signature strengths (Silverman et al., 2023) to foster strong relationships with their mentees. The fact that mentors, who struggle with relationships in their home classroom, engage in relationship building where they find their signature strengths to be indispensable, bolsters their self-confidence and self-belief. Furthermore, through this form of collaboration, mentors gained practical experience in leadership within a real-life context. These experiences can prove beneficial across various life domains, nurturing transferrable life skills.

The storyline "Mentoring is a respected and highly regarded role" illustrates the mentors' success in embodying the role of role models and holds significant implications for future generations of mentors, establishing a standard for mentorship in mathematics throughout the entire school context. Furthermore, the storyline elevates the mentorship role to a desirable position, emphasizing its crucial influence within the school community.

Dimension 2: Emotions Linked to Learning Mathematics with Mentees/Mentors

The second dimension of the interviews has its genesis in the interpersonal bonds between mentors and mentees. The four intertwined storylines reinforce the positive emotional exchanges among older and younger students. Guided and supported by the mindful instruction and scaffolding teachers offer, the learning environment fosters warm, supportive relationships and atmospheres, as documented by Barahona et al. (2023). The cross-age collaboration establishes a learning context that cultivates democratic values. It provides a secure environment where students engage with cultures, languages, and religions. Given the long-term collaboration, students become intimately familiar with, gain understanding of, and acquire more knowledge about others. We believe the age difference could potentially ease the process of exploring and understanding others. We imagine that this form of collaboration could foster students' appreciation of human diversity, a central component of the Norwegian curriculum (Ministry of Education and Research, 2017).

This storyline is pivotal in the relationship dynamics between mentors and mentees and is not limited to the mentor's mathematical competence. Mentees admire their mentors for their signature strengths, physical capabilities of being older, and because they sit close and spend time together, which in turn offers mentors a position of respect. In this context, such positioning could hold particular significance for the mentors due to challenges within their mathematics classroom environment. Being participants in a learning environment where mentors consider themselves as "smart and strong" (Madelen) and "cool" (Thea), and where active participation and practical application of skills underscore the usefulness and importance of their mathematical competence, could reinforce the mentors' self-conception as learners of mathematics. This improved self-conception can boost their confidence in their abilities, triggering increased motivation and interest in the subject, ultimately fostering a deeper commitment to learning mathematics. Over time, this can nurture a more positive attitude towards mathematics.

Through the storyline "When you are close to me, I feel better," the mentees outline the mentors as sources of comfort and positivity, implying that the presence of the mentors directly influences the mentee's emotional balance. The storyline invites the mentors to take a position where they are providers of comfort, trust, and empathy. The storyline "I like being your little teacher" suggests that mentors find joy in sharing knowledge and guiding their mentees, which aligns with the notion that "Mentors need to be good role models." The mentors' tone when discussing their role as 'little teachers' indicated their satisfaction in being the more experienced students who could exert a level of influence or control. As Topping et al. (2003) highlighted, mentoring can enhance the self-esteem of mentors. We confirm this as "Helping mentees makes me proud," which shows that mentors consider their position valuable and believe their efforts and support positively impact the mentees.

Dimension 3: The Process of Learning Mathematics Together

The third dimension highlights the process of learning mathematics. As acknowledged in the review, there is limited research on tutors' mathematical gains in cross-age collaborations. However, the storylines in the third dimension reveal that such collaborations in mathematics create opportunities where mentors are challenged to engage in reflective thought processes to explain and demonstrate mathematical concepts to the mentees. This supports Topping et al. (2003)'s findings, which showed an increase in the use of mathematical terminology and strategic dialogue, thereby contradicting Haynes and Brendle (2019), who reported that most first-grade tutors' teachers did not identify any detectable mathematical gain from tutoring kindergarten students. The storyline "Mathematical explanations are challenging" positions mentors in a tutoring role. The mentors must actively navigate various methods or approaches to explain mathematical concepts at a level the younger mentees understand. The challenge takes the mentors further along in the process of their mathematical understanding, which is evident in the storyline "Challenges bring mathematical thinking forward."

Here, we see a shift in how the mentors position the mathematical tasks: the first storyline positions mathematical explanations as obstacles. In contrast, the second storyline frames these challenges as mechanisms for advancing mathematical thinking. The mentors acknowledge that explaining mathematics to the mentees encourages them to delve deeper into mathematical thinking, which could be a step toward positioning themselves as strong mathematical learners. This supports Sharpley et al. (1983), who posits that tutors' mathematics achievements were significantly higher than those of the control group students.

The mentors' readiness to overcome the mathematical challenges is likely linked to the storyline "Mastering a task on your own signifies learning." Additionally, when the mentees have acquired the necessary skills and understanding to work on mathematics independently, the mentors feel a sense of pride, as shown in "Helping mentees makes me proud". Also illustrated, mentors are depicted as enablers in this process, possessing the capacity to empower their mentees. These three storylines may explain the observed increase in the use of mathematical terminology and strategic dialogue noted by Topping et al. (2003).

Conclusion

The identified storylines in this study highlight several wide-ranging benefits of a strength-based, cross-age mentorship program, where mentors were encouraged to position themselves as caregivers, role models, leaders, helpers, and, importantly, as "little mathematics teachers" as opposed to less constructive or even harmful positionings. Initially, we questioned whether such a program could support not only mentors but also mentees in positioning themselves as mathematics learners. The presented storylines indicate that this is feasible.

In addition to supporting mentors in interacting with mentees (and peers) with varying levels of mathematics experience, familiarizing themselves with individuals from diverse cultural and linguistic backgrounds, and hence gaining valuable collaborative experiences that extend beyond school life, the program also supports mentors to develop crucial mathematical skills like explaining concepts clearly, problem-solving, and articulating mathematical reasoning, positions, and competence. These are indispensable in a democracy, where we are to "live, learn, and work together in a complex present and the face of an unknown future" (Ministry of Education and Research, 2017, p. 3).

The cross-age mentorship program, as outlined in this article, can inspire pedagogical developments and, in turn, pivot deficit storylines (Andersson et al., 2022; Gerbrandt & Wagner, 2023), providing students with positive experiences, relationships, and positionings that promote mathematics learning. This research may, in particular, inspire teachers who face tensions within their mathematics classrooms. Even if peers do not treat each other well, they may take other positions when given the chance, especially in the presence of younger students. As one mentor said: We have to behave more maturely than we do otherwise".

Additionally, this work can be inspiring for mathematics education research, as the widespread practice of mentoring in primary schools means that teachers and school leaders, in Norway and elsewhere, already have experience with cross-age mentoring, allowing for relatively simple expansions of existing mentoring programs.

In future studies, we see rich opportunities to further explore cross-age mentoring in mathematics, especially given the limited research that has been done. We believe there is significant potential in developing strength-based cross-age mentor programs, specifically in mathematics education.

References

- Andersson, A., Ryan, U., Herbel-Eisenmann, B., Huru, H. L., & Wagner, D. (2022). Storylines in public news media about mathematics education and minoritized students. *Educational Studies in Mathematics*, 111(2), 323-343. https://doi.org/10.1007/s10649-022-10161-5
- Andersson, A., Valero, P., & Meaney, T. (2015). "I am [not always] a maths hater": Shifting students' identity narratives in context. *Educational Studies in Mathematics*, 90, 143-161. https://doi.org/10.1007/s10649-015-9617-z
- Barahona, E., Padrón, Y. N., & Waxman, H. C. (2023). Classroom observations of a crossage peer tutoring mathematics program in elementary and middle schools. *European Journal of Science and Mathematics Education*, 11, 515-532. https://doi.org/10.30935/scimath/12983
- Davies, B., & Harré, R. (1990). Positioning: The discursive production of selves. *Journal for The Theory of Social Behaviour*, 20, 43-63. https://doi.org/10.1111/j.1468-5914.1990.tb00174.x
- Delgado-Gaitan, C., & Trueba, H. (2023). Crossing cultural borders: Education for immigrant families in America (Vol. 6). Routledge. https://doi.org/10.4324/9781003331322
- Directorate for education and training. (2022). Minoritetsspråklige barn. Retrieved 5. May from <a href="https://www.udir.no/tall-og-forskning/statistikk/statistikk-barnehage/analyser/fakta-om-barnehager-2022/minoritetsspraklige-barn/#okning-i-antall-minoritetsspraklige-barn-de-siste-10-arene
- Fairclough, N. (2001). Critical discourse analysis as a method in social scientific research. In R. Wodak & M. Meyer (Eds.), *Methods of critical discourse analysis* (1st ed., pp. 121-138). SAGE Publications, Ltd. https://doi.org/10.4135/9780857028020.n6
- Gay, G. (2018). Culturally responsive teaching: Theory, research, and practice (3rd ed.). Teachers College Press.
- Gerbrandt, J., & Wagner, D. (2023). Conflict, hope, and mathematics education storylines: Pivoting away from a pathology-based orientation. *Journal of Mathematics and Culture*, 17(3), 126-144.
- Gonzalez, N., Moll, L. C., & Amanti, C. (2005). Funds of knowledge: Theorizing practices in households, communities and classrooms (1st ed.). Taylor & Francis Group. https://doi.org/10.4324/9781410613462
- Harré, R. (2012). Positioning theory: Moral dimensions of social-cultural psychology. In *The Oxford handbook of culture and psychology*. (pp. 191-206). Oxford University Press.
- Harré, R., & Moghaddam, F. (2003). Introduction: The self and others in traditional psychology and in positioning theory. In R. Harré & F. Moghaddam (Eds.), *The self and others: Positioning individuals and groups in personal, political, and cultural contexts.* (pp. 1-11). Praeger Publishers/Greenwood Publishing Group.
- Harré, R., & van Langenhove, L. (Eds.). (1999). Positioning theory: Moral contexts of intentional action. Blackwell.
- Harré, R., & van Langenhove, L. (2010). Varieties of positioning. In L. van Langenhove (Ed.), *People and societies: Rom Harré and designing the social sciences* (pp. 106-120). Taylor & Francis Group. https://doi.org/10.4324/9780203860885

- Haynes, K. B., & Brendle, J. (2019). Cross-age math tutoring of kindergarten and first grade students by middle school tutors. *International Journal of Education in Mathematics*, *Science and Technology*, 7, 238-250. https://doi.org/10.46328/ijemst.3364
- Herbel-Eisenmann, B., Sinclair, N., Chval, B. K., Clements, H. D., Civil, M., Pape, J. S., Stephan, M., Wanko, J. J., & Wilkerson, L. T. (2016). Positioning mathematics education researchers to influence storylines. *Journal for Research in Mathematics Education*, 47(2), 102-117. https://doi.org/10.5951/jresematheduc.47.2.0102
- Herbel-Eisenmann, B., & Wagner, D. (2010). Appraising lexical bundles in mathematics classroom discourse: Obligation and choice. *Educational Studies in Mathematics*, 75(1), 43-63. https://doi.org/10.1007/s10649-010-9240-y
- Herbel-Eisenmann, B. A., Wagner, D., Johnson, R. K., Suh, H., & Figueras, H. (2015). Positioning in mathematics education: Revelations on an imported theory. *Educational Studies in Mathematics*, 89(2), 185-204. http://www.jstor.org/stable/43590248
- Karcher, M. (2009). Increases in academic connectedness and self-esteem among high school students who serve as cross-age peer mentors. *Professional School Counseling*, *12*, 292-299. https://doi.org/10.1177/2156759X0901200403
- Karcher, M. (2014). Cross-age peer mentoring. In D. L. DuBois & M. J. Karcher (Eds.), Handbook of youth mentoring (Vol. 2, pp. 233-257). Sage. https://doi.org/10.4135/9781412996907.n16
- Ladson-Billings, G. (1995). Toward a theory of culturally relevant pedagogy. *American Educational Research Journal*, 32(3), 465-491. https://doi.org/10.3102/00028312032003465
- Ministry of Education and Research. (2017). *Overordnet del-verdier og prinsipper for grunnopplæringen*. Retrieved from https://www.udir.no/lk20/overordnet-del/prinsipper-for-laring-utvikling-og-danning/tverrfaglige-temaer/demokrati-og-medborgerskap/?lang=nob
- Ministry of Education and Research. (2020). *Curriculum for mathematics year 1-10 (MAT01-05)*. Retrieved from https://www.udir.no/lk20/mat01-05?lang=eng
- Peterson, C., & Seligman, M. E. (2004). *Character strengths and virtues: A handbook and classification* (Vol. 1). Oxford University Press.
- Perlander, A., & Sjøberg, M. H. (2023). Exploring sense-making processes to discover storylines about becoming a mathematics and science teacher in Norway. *Journal of Mathematics and Culture*, 17(4), 285-307.
- Riessman, F. (1965). The "helper" therapy principle. Social Work, 10(2), 27-32.
- Robinson, D. R., Schofield, J. W., & Steers-Wentzell, K. L. (2005). Peer and cross-age tutoring in math: Outcomes and their design implications. *Educational Psychology Review*, 17(4), 327-362. https://doi.org/10.1007/s10648-005-8137-2
- Sharpley, A. M., Irvine, J., & Sharpley, C. F. (1983). An examination of the effectiveness of a cross-age tutoring program in mathematics for elementary school children. *American Educational Research Journal*, 20(1), 103-111. https://doi.org/10.3102/00028312020001103
- Silverman, D. M., Rosario, R. J., Hernandez, I. A., & Destin, M. (2023). The ongoing development of strength-based approaches to people who hold systemically

- marginalized identities. *Personality and Social Psychology Review*, 255-271. https://doi.org/10.1177/10888683221145243
- Slavin, R. E., & Cooper, R. (1999). Improving intergroup relations: Lessons learned from cooperative learning programs. *Journal of Social Issues*, *55*(4), 647-663. https://doi.org/10.1111/0022-4537.00140
- Topping, K. J., Campbell, J., Douglas, W. B. T., & Smith, A. (2003). Cross-age peer tutoring in mathematics with seven- and 11-year-olds: Influence on mathematical vocabulary, strategic dialogue and self-concept. *Educational Research*, 45, 287-308.
- Unicef. (n.d). *En for alle-alle for en: Et inkluderende fadderprogram for barneskolen*. https://www.unicef.no/skole/undervisning/fadderprogram-for-grunnskolen
- Wagner, D., & Herbel-Eisenmann, B. (2009). Re-mythologizing mathematics through attention to classroom positioning. *Educational Studies in Mathematics*, 72, 1-15. https://doi.org/10.1007/s10649-008-9178-5

APPENDIX

Appendix 1, Interview Guide for Mentees Interviews

- 1. How do you feel about having a mentor class?
- 2. Tell me about what it's like when they come to work on tasks with you.
- 3. What do the mentors help you with? (Examples)
- 4. How do you learn from them? (Examples)
- 5. Would you say that you collaborate with the mentors? (What do you think about collaborating to learn something?)
- 6. Could you provide an example of how the mentors do it when they teach you?
- 7. Do you show the mentors things sometimes?
- 8. What do you like best about being with the mentors?
- 9. Do you feel like you are friends? (What is it like to have a friend older than you?)
- 10. Does it make a difference during recess? (Do they help you then? Do you talk to the mentors at other times besides during class?)
- 11. What do you think about becoming a mentor?

Appendix 2, Interview Guide for Mentors Interviews

1. Tell me about the mentorship program in Praxis.

(Examples of what you do when you are with the mentees during mathematics class?)

- 2. How do you feel about being a mentor?
- 3. How do you find working on math with the mentees?
- 4. Do you feel like you can teach them something?

(Tell me more about that. How does it make you feel?)

5. How do you like working with the younger students?

(Are there any specific activities or ways of working that are better than others?)

6. Do you think you learn anything from working with them?

(examples, why?)

7. Do you sometimes prepare things to teach the younger students?

(How do you prepare?)

8. What is the relationship between you?

(What is it like to be with someone younger than yourself?)

- 9. Do you think it's important for the younger students to have mentors?
- 10. Does it make a difference during recess?

(Do you talk to mentees, play, help, support, etc.?)